А. В. Варламов, Е. В. Болтухина, Ф. И. Зубков, Н. В. Сидоренко, А. И. Чернышев, Д. Г. Грудинин

ПРЕПАРАТИВНЫЙ СИНТЕЗ 7-КАРБОКСИ-2-R-ИЗОИНДОЛОНОВ-1

На основе реакции [4+2]-циклоприсоединения вторичных фурфуриламинов к малеиновому ангидриду разработан препаративный метод синтеза 7-карбокси-2-R-изоиндолонов-1.

Ключевые слова: изоиндолоны, фурфуриламины, внутримолекулярная реакция Дильса-Альдера.

Изоиндолоны, или фталимидины, могут быть получены из фталевого ангидрида [1] и различных производных фталевой кислоты [2, 3] окислением 2-R-1-метоксикарбонилизоиндолов [4].

В синтетическом плане интересны функционально замещенные изоиндолоны, на основе которых могут быть получены различные конденсированные гетероциклические системы, содержащие изоиндольный фрагмент. Большие перспективы в этом направлении открывает разрабатываемый в последнее время метод синтеза изоиндолонов-1, базирующийся на трансформации азотсодержащих трициклических соединений – 2,3,7,7атетрагидро-3а,6-эпокси-2-R-изоиндолонов-1, которые с высоким выходом получают путем внутримолекулярного [4+2]-циклоприсоединения из N-фурфурил-N-алкил(арил)акриламидов [5–12]. Указанные эпоксиизоиндолоны могут быть получены также четырехкомпонентной конденсацией фурфурола и бензиламина или фурфуриламина и бензальдегида с производными малеиновой и фумаровой кислот [13].

В плане развития и изучения границ применимости последнего метода мы предлагаем двухстадийный препаративный метод синтеза 7-карбокси-2R-изоиндолонов-1 **2**, который базируется на реакции [4+2]-циклоприсоединения малеинового ангидрида к N-замещенным фурфуриламинам **1а–j**.

Исходные фурфуриламины 1a-j были получены восстановлением соответствующих оснований Шиффа боргидридом натрия в этаноле. Циклоприсоединение малеинового ангидрида к аминам 1a-j проводили при 25 °C в бензоле. Реакция протекает стереоселективно и в большинстве случаев с высоким выходом (табл. 1). Образование карбоксизамещенных эпоксиизоиндолонов 2a-j идет через первоначальное образование N-фурфуриламида малеиновой кислоты 2^* , который далее через *экзо*-переходное состояние превращается в эпоксипроизводное 2.

Существенно, что N-ацетил-N-фенилфурфуриламин не вступает в реакцию [4+2]-циклоприсоединения с малеиновым ангидридом даже при продолжительном кипячении в ксилоле, что является косвенным доказательством описанного пути реакции. Интересно отметить и важную роль заместителя R при атоме азота фурфуриламинов **1**. Так, при взаимодействии фурфуриламина с малеиновым ангидридом с количественным выходом образуется Z-4-[(2-фурилметил)амино]-4-оксобут-2-еновая кислота, которая не претерпевает внутримолекулярной реакции Дильса– Альдера и не вступает в реакцию с избытком малеинового ангидрида даже при нагревании до 150 °C.

а R = Ph; b R = Bn; c R = C_6H_4Cl -*m*; d R = $C_6H_4NO_2$ -*p*; e R = $C_6H_4NO_2$ -*m*; f R = тетрагидрофурил; g R = циклогексил; h R = метоксиэтил; i R = циклопропил; j R = фурфурил

Несмотря на имеющиеся данные об успешно протекающем [4+2]циклоприсоединении малеинового ангидрида к фурфуриловым спиртам [14, 15], нам не удалось осуществить взаимодействие малеинового ангидрида со вторичными фурфуриламинами, содержащими в радикале R реакционноспособные функциональные группы –OH, –NR₂. При попытке циклоприсоединения к N-(β-гидроксиэтил)-, N-(α-пиридил)- и N-(γ-пиридил)фурфуриламинам происходит быстрая полимеризация реакционных смесей.

Для превращения эпоксипроизводных **2а–ј** в 7-карбоксифталимидины **3а–і** использовали соляную и серную кислоты различных концентраций, 85% H_3PO_4 , а также эфират трехфтористого бора в кипящем диоксане. Наибольшие выходы соединений **3** получены при использовании $BF_3 \cdot Et_2O$, однако с препаративной точки зрения наиболее целесообразно использовать 85% H_3PO_4 в интервале температур 70–100 °C. Несмотря на то, что выход целевых продуктов при этом понижается на 10–15%, существенно упрощается процедура синтеза и выделения целевых изоиндолонов **3**.

Не удалось подобрать условия для ароматизации N-фурфурилзамещенного эпоксида 2j. При этерификации кислот 2a и 3a получены соответствующие моноэфиры 4 и 5.

В масс-спектрах соединений 2 и 3 (табл. 1, 2) наблюдаются пики молекулярных ионов низкой интенсивности, соответствующие их брутто-28 формулам. Легко протекающее элиминирование молекулы СО2 и ретродиеновый распад (в случае аддуктов 2) являются причиной недостаточной надежности этого метода для доказательства строения синтезированных веществ.

Таблица 1

		- T -			-,	
Соели-	Брутто-		Найденс	0 <u>, %</u>	Тпп	Выход, %
нение	формула	~	Вычислен	10, %	°C	
		C	H	N		
2a	$C_{15}H_{13}NO_4$	<u>66.43</u> 66.42	<u>4.79</u> 4.79	$\frac{5.18}{5.17}$	184–185.5*	86
2b	C ₁₆ H ₁₅ NO ₄	<u>67.35</u> 67.37	<u>5.27</u> 5.26	<u>4.93</u> 4.91	164	90
2c	C ₁₅ H ₁₂ NO ₄ Cl	<u>58.90</u> 58.92	<u>3.95</u> 3.93	<u>4.59</u> 4.58	179–181*	89
2d	$C_{15}H_{12}N_2O_6$	<u>56.99</u> 56.96	<u>7.82</u> 7.80	$\frac{8.84}{8.86}$	202-204	74
2e	$C_{15}H_{12}N_2O_6$	<u>56.95</u> 56.96	<u>7.84</u> 7.80	<u>8.90</u> 8.86	205-207	80
2f	C14H17NO5	$\frac{60.23}{60.21}$	<u>6.08</u> 6.09	$\frac{5.03}{5.01}$	134–136	37
2g	$C_{15}H_{19}NO_4$	<u>64.97</u> 64.98	<u>6.84</u> 6.86	<u>5.04</u> 5.05	191–192	90
2h	C ₁₂ H ₁₅ NO ₅	<u>56.73</u> 56.92	<u>5.87</u> 5.93	<u>5.27</u> 5.53	127-128.5	92
2i	$C_{12}H_{13}NO_4$	<u>61.29</u> 61.28	<u>5.53</u> 5.53	<u>5.93</u> 5.96	168–171.5	35
2j	C ₁₅ H ₁₃ NO ₅	<u>65.44</u> 65.45	<u>4.72</u> 4.73	<u>5.05</u> 5.09	146-148	95
3a	C ₁₅ H ₁₁ NO ₃	<u>71.13</u> 71.15	<u>4.37</u> 4.35	<u>5.52</u> 5.53	227-230	46
3b	C ₁₆ H ₁₃ NO ₃	<u>71.94</u> 71.91	$\frac{4.85}{4.87}$	<u>5.26</u> 5.24	177-178.5*	33
3c	C ₁₅ H ₁₀ NO ₃ Cl	$\frac{62.62}{62.60}$	$\frac{3.49}{3.48}$	$\frac{4.89}{4.87}$	229.5-230*	48
3d	$C_{15}H_{10}N_2O_5$	$\frac{60.41}{60.40}$	<u>3.35</u> 3.35	<u>9.36</u> 9.39	297 (с разл.)**	30
3e	$C_{15}H_{10}N_2O_5$	<u>60.38</u> 60.40	<u>3.36</u> 3.35	<u>9.38</u> 9.39	239-240**	52
3f	C ₁₄ H ₁₅ NO ₄	<u>64.34</u> 64.36	<u>5.78</u> 5.75	<u>5.33</u> 5.36	130–132*	56
3g	C ₁₅ H ₁₇ NO ₃	<u>69.50</u> 69.49	<u>6.56</u> 6.56	$\frac{5.40}{5.40}$	245-246*	37
3h	$C_{12}H_{13}NO_4$	<u>61.55</u> 61.28	<u>5.51</u> 5.53	<u>5.81</u> 5.92	168.5-170.5	30
3i	$C_{12}H_{11}NO_3$	<u>66.34</u> 66.36	$\frac{5.04}{5.07}$	$\frac{6.48}{6.45}$	213-213.5	22
4	C ₁₇ H ₁₇ NO ₄	$\frac{68.22}{68.23}$	<u>5.60</u> 5.69	$\frac{4.70}{4.68}$	133–134***	75
5	C ₁₇ H ₁₅ NO ₃	<u>72.59</u> 72.60	<u>5.56</u> 5.34	<u>4.95</u> 4.98	106–107* ⁴	86

Характеристики соединений	2а—ј, За—і, 4 и 5
---------------------------	-------------------

* Перекристаллизация из смеси *i*-PrOH–ДМФА; ** ДМСО; *** этилацетата; *⁴ из смеси гексан–этилацетат.

	Молекуляри	ная масса	ИК, v, см ⁻¹					
Соеди-	U-≍ [\/1 ⁺	D						
нение	наидено [м]	вычислено	VNCO	VCOO	VOH			
2a	271	271	1669	1729	2460			
2b	285	285	1659	1729	2485			
2c	305, 307	305, 307	1680	1730	_			
2d	316	316	1680	1705	2480			
2e	316	316	1675	1728	2400			
2f	279	279	1680	1720	2500			
2g	277	277	1660	1730	2480			
2h	253	253	1625	1715	2400			
2i	235	235	1630	1710	2460			
2j	275	275	1660	1725	2460			
3 a	253	253	1610	1714	2460			
3b	267	267	1600 1583	1713	2300			
3c	287, 289	287, 289	1610 1589	1710	2370			
3d	298	298	1690	1705	2400			
3e	298	298	1615	1711	2410			
3f	261	261	1610	1705	2380			
3g	259	259	1600	1700	2380			
3h	235	235	1615	1720	2300			
3i	217	217	1610	1715	2280			
4	299	299	1690	1725	-			
5	281	281	1640	1715	—			

Спектральные характеристики соединений 2а-5

В ИК спектрах карбоновых кислот **2а–ј** и **3а–і** (см. табл. 2) имеются характеристические полосы валентных колебаний амидной и карбоксильной групп в области 1610–1690 и 1705–1730 см⁻¹, соответственно, а также широкая полоса ассоциированного гидроксила в области 2280–2485 см⁻¹. В ИК спектрах эфиров **4** и **5** полоса сложноэфирной группы проявляется при 1715–1725 см⁻¹.

Спектры ЯМР ¹Н соединений **2а-ј** (табл. 3) содержат три характеристичных сигнала взаимодействующих протонов 7-Н, 8-Н и 9-Н с химическими сдвигами 4.96–5.35, 6.40–6.51 и 6.46–6.66 м. д., соответственно, и КССВ ${}^{3}J_{78} = 1.3-1.8$ и ${}^{3}J_{89} = 5.5-5.9$ Гц. Отсутствие КССВ ${}^{3}J_{67-9к30}$ в бициклооксагептеновом фрагменте молекулы однозначно указывает на эндо-расположение протонов 5-Н, 6-Н ($J_{56} = 9.0-9.3$ Гц) и экзо-расположение карбоксильного и амидного заместителей. Протоны группы 2-СН₂ в соединениях **2а–ј** химически неэквивалентны и наблюдаются в спектре в виде АВ-системы. Напротив, в спектрах ЯМР ¹Н соединений **3а–е,g–i** сигналы протонов 3-СН₂ эквивалентны и наблюдаются в виде синглета при 4.63–5.25 м. д. Лишь в случае магнитно-анизотропного тетрагидрофурфурильного заместителя R эти протоны становятся неэквивалентными и проявляются в виде АВ-системы (табл. 4).

Co-	Химический сдвиг, б, м. д.*					КССВ (<i>J</i> , Гц)								
еди не- ние	СООН	2А-Н д	2В-Н д	5-Н д	6-Н д	7-H	8-H	9-H	другие	2A, 2B	5,6	7,8	8,9	другие
2a	12.15	4.55	4.06	3.07	2.60	5.05	6.49	6.64	7.66 (2Н, д); 7.38 (2Н, т);	11.7	9.1	1.8	5.9	$J_{om} = J_{mp} = 7.3$
2b	уш. с —	д 3.89 л	д 3.44 л	д 2.84 л	д 2.51 л	д 4.98 л	д. д 6.40 л. л	д 6.54 л	7.33–7.21 (2Н, м); 4.42 (1Н, д); 4.34 (1Н, 1)	11.7	9.2	1.5	5.7	$J_{\rm AB} = 15.3 \; (\rm CH_2 Ph)$
2c	-	4.52 д	4.06 д	3.07 д	2.59 д	5.02 уш. с	6.47 уш. д	6.62 д	7.88 (1H, уш. с); 7.49 (1H, д); 7.40 (1H, т); 7.17 (1H, д)	11.5	9.2	1.3	5.6	$J_{5'6'} = J_{4'5'} = 8.0$
2d	_	4.58	4.18	3.15	2.67	5.03	6.48	6.62	8.22 (2H, AA'); 7.91 (2H, BB')	11.6	9.1	1.7	5.7	J _{AB} ~9.2
2e	12.25 уш. с	д 4.64 д	д 4.19 д	д 3.14 д	д 2.65 д	д 5.07 д	д. д 6.51 д. д	д 6.66 д	8.76 (1Н, т); 7.96 (2Н, д. д); 7.69 (1Н, т)	11.6	9.2	1.5	5.5	$J_{5'6'} = J_{4'5'} = 8.2$ $J_{2'4'} = J_{2'6'} = 2.1$
2f	9.41 уш. с	4.23 д	3.92 д	2.89 д	2.80 д	5.26 c	6.45 д	6.50 д	4.07(1H, д. д); 3.95–3.65 (3H, м); 3.16 (1H, д. д); 2.10–1.75 (2H, м); 1.70–1.50 (2H, м)	12.5	9.2	0	5.8	$J_{AB}=14.0$ $J_{A2}=J_{B2}=7.0$ (CH ₂ CHO)
2g	-	3.84	3.82	2.	86	5.32	6.	48	3.85 (1Н, м); 1.90–1.60 (10Н, м)	11.5	-	-	_	-
2h	-	4.05 л	3.62 д	2.74 л	2.46 л	4.96 л	6.42 д. д	6.57 л	3.60–3.40 (3H, м); 3.26 (3H, с); 3.17 (1H, м)	11.6	9.2	1.8	5.8	-
2i	-	3.91 д	3.46 д	3.20 д	2.79 д	4.97 д	6.41 д. д	6.53 д	2.67 (1Н, м); 0.66 (4Н, м)	11.5	9.2	1.3	5.6	$J_{1'2A'} = J_{1'3A'} \sim 5.6$
2j	-	3.96 д	3.78 д	2.80 д	2.50 д	5.35 д	6.50 д. д	6.46 д	7.38 (1Н, д. д); 6.34 (1Н, д. д); 6.30 (1Н, д. д); 4.78 (1Н, д); 4.30 (д)	12.2	9.0	1.5	5.8	$J_{AB} = 15.6; J_{\beta\beta'} = 3.4$ $J_{\alpha\beta'} = 0.8; J_{\alpha\beta} = 1.8$ (СН2фурил)
4	-	4.42 д	4.19 д	2.98 д	2.79 д	5.19 уш. с	6.48 уш. д	6.58 д	7.58 (2H, д); 7.35 (2H, т); 7.14 (1H, т); 4.27 (м, <u>CH</u> ₂ CH ₃); 1.32 (т, CH ₂ <u>CH</u> ₃)	11.4	8.9	~1.0	5.5	$J_{om} = J_{mp} = 7.6$ $J_{CH2CH3} = 7.0$

Спектры ЯМР ¹Н N-R-4-оксо-10-окса-3-азатрицикло[5.2.1.0^{1,5}]дец-8-ен-6-карбоновых кислот 2а–ј и этилового эфира N-фенил-4-оксо-10-окса-3азатрицикло[5.2.1.0^{1,5}]дец-8-ен-6-карбоновой кислоты 4 (ТМС)

* Растворитель: ДМСО-d₆ (соединения **2а–і**) и CDCl₃ (соединения **2ј** и **4**).

Co-				Химиче	ский сдвиг	, δ, м. д.*		КССВ (Ј, Гц)				
еди- не- ние	СООН	3A-H	3B-H	4-H	5-H	6-H	другие	3A,3B	4,5	4,6	5,6	другие
3 a	15.53 c	5.0	04 c	7.85-	7.85-7.70 м		7.76 (1H, д); 7.50 (2H, т); 7.34 (2H, т)	_		2.6	6.3	$J_{om} = J_{mp} = 7.5$
3b	-	4.8	81 c	7.80-	—7.76 м	8.08 уш. д	7.39–7.26 (5Н, м); 4.57 (2Н, с)	-	-	-	-	_
3c	-	5.	18 c	7.88 уш. д	7.82 T	7.97 уш. д	8.02 (1H, т); 7.80 (1H, д. д); 7.51 (1H, т); 7.33 (1H, д. д)	-	7.2	0	7.2	$J_{5'6'} = J_{5'4'} = 7.9; J_{2'6'} = J_{2'4'} = 1.3$
3d	-	5.09 c		7.70–7.60 м			8.27 (2Н) и 8.12 (2Н, АА'ВВ')	-	-	-	-	J _{AB} ~9.1
3e	-	5.2	5.25 7.91 7.85 7.99 с д т д		7.99 д	8.83 (1H, уш. с); 8.23 (1H, д. д); 8.09 (1H, д. д); 7.78 (1H, т)	-	7.3	0	7.3	$J_{5'6'} = J_{5'4'} = 8.2;$ $J_{4'6'} = 1.3$	
3f	15.74 уш. с	4.83 д	4.64 д	7.65 д	7.69 т	8.38 д	4.16 (1Н, д. кв); 3.97 (1Н, д. д); 3.87 (1Н, т); 3.77 (1Н, д. д); 3.55 (1Н, д. д); 2.10 (1Н, д. д); 1.93 (2Н, п); 1.63 (1Н, л. д. л.)	18.5	7.2	0	7.2	_
3g	15.94 уш. с	4.0	69 c	7.88 д	7.79 т	8.16 д	4.08 (1Н, м); 1.93–1.18 (10Н, м)	-	7.4	0	7.4	_
3h	-	4.7	76 c	7.91 д. д	7.81 т	8.16 д. д	3.82 (2H, т); 3.64 (2H, т); 3.29 (3H, с)	-	7.6	1.4	7.6	_
3i	-	4.0	63 c	7.86 уш. д	7.79 т	8.15 уш. д	3.16–3.03 (1Н, м); 1.00–0.85 (4Н, м)	-	7.3	0	7.3	_
5	_	4.83 7.60 c ym. c		7.83 (2H, д); 7.40 (2H, т); 7.16 (1H, т); 4.50 (м, <u>CH</u> ₂ CH ₃); 1.43 (т, CH ₂ <u>CH₃)</u>	-	-	-	-	$J_{om} = J_{mp} = 7.6;$ $J_{CH2CH3} = 7.2$			

Спектры ЯМР ¹Н растворов 2-R-7-карбоксиизоиндолин-1-онов 3а–і и 2-фенил-7-этоксикарбонилизоиндолин-1-она 5 (ТМС)

Таблица 4

* Растворитель: ДМСО-d₆ (соединения **3b-i**) и CDCl₃ (соединения **3a** и **5**).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры зарегистрированы на спектрометре Specord IR-75 в таблетках КВг. Массспектры записаны на масс-спектрометре HP MS 5988 с прямым вводом образца в источник ионов. Ионизирующее напряжение 70 эВ. Спектры ЯМР ¹Н получены в растворах CDCl₃, ДМСО-d₆ при 20 °C на приборах Bruker WP-200 (200 МГц) или Bruker WH-400 (400 МГц), внутренний стандарт ТМС. Для тонкослойной хроматографии использовали пластины Silufol UV-254 (проявление парами иода).

3-R-4-Оксо-10-окса-3-азатрицикло[**5.2.1.0**^{1,5}]дец-8-ен-6-карбоновые кислоты (2а–j). Смесь 0.1 моль малеинового ангидрида и 0.1 моль N-R-фурфуриламина **1а–** в 100 мл бензола перемешивают 2–3 сут при 25 °C. Выпавший осадок отфильтровывают, промывают бензолом и сушат при 90 °C до постоянной массы. Соединения **2а–** получают в виде белых мелкокристаллических порошков. Спектральные данные и физико-химические характеристики трициклов **2а–** приведены в табл. 1–3.

2-R-7-Карбоксиизоиндолин-1-оны (3а–і). Эпоксиизоиндолиноны **2а–і** (0.01 моль) нагревают 1 ч при 70–100 °С в 40 мл 85% Н₃РО₄. Реакционную массу охлаждают и выливают в воду. Выпавшие кристаллы отфильтровывают, промывают водой до нейтральной реакции промывных вод, сушат и перекристаллизовывают из смеси *i*-PrOH–ДМФА. Спектральные данные и физико-химические характеристики изоиндолонов **3а–і** приведены в табл. 1–3.

Этиловый эфир 3-фенил-4-оксо-10-окса-3-азатрицикло[5.2.1.0^{1,5}]дец-8-ен-6-карбоновой кислоты (4), 2-фенил-7-этоксикарбонилизоиндолин-1-он (5). К суспензии 0.01 моль соединения 2a (3a) в 50 мл этанола добавляют 1 мл конц. HCl, кипятят 10–12 ч (контроль TCX). Реакционную массу выливают в воду, экстрагируют эфиром (3 × 50 мл), сушат MgSO₄. Остаток после отгонки эфира перекристаллизовывают из этилацетата. Получают эфиры 4 и 5 в виде белых кристаллов (табл. 1–4).

Работа выполнена при финансовой поддержке РФФИ (грант № 01-03-32844).

СПИСОК ЛИТЕРАТУРЫ

- 1. D. T. Minh, J. E. Johnson, J. Org. Chem., 42, 4217 (1977).
- 2. J. D. White, M. E. Mann, Adv. Heterocycl. Chem., 10, 113 (1969).
- 3. R. Bonnett, S. A. North, Adv. Heterocycl. Chem., 29, 341 (1981).
- 4. R. Fryor, J. V. Early, L. U. Sternbach, J. Org. Chem., 34, 649 (1969).
- 5. M. S. Bailey, B. J. Brisdon, D. W. Brown, K. M. Stark, Tetrahedron Lett., 24, 3037 (1983).
- 6. D. D. Sternbach, D. H. Rossane, K. D. Onan, Tetrahedron Lett., 26, 591 (1985).
- 7. M. E. Gung, J. Gervay, *Tetrahedron Lett.*, **29**, 2429 (1988).
- 8. S. C. Hirst, A. D. Hamilton, J. Am. Chem. Soc., 113, 382 (1991).
- 9. M. Suzuki, T. Okada, T. Taguchi, Y. Hanzawa, Y. Iitaka, J. Fluorine Chemistry, 57, 239 (1992).
- 10. D. Prajapati, D. R. Borthakur, J. S. Sandhu, J. Chem. Soc., Perkin Trans. 1, 1197 (1993).
- 11. K. H. Doetz, D. Boettcher, M. Jendro, Inorg. Chim. Acta, 222, 291 (1994).
- 12. J. B. F. N. Engberts, Pure Appl. Chem., 67, 823 (1995).
- 13. K. Paulvannan, Tetrahedron Lett., 40, 1851 (1999).
- 14. A. Pelter, B. Singaram, J. Chem. Soc., Perkin Trans. 1, 1383 (1983).
- 15. A. Pelter, B. Singaram, Tetrahedron Lett., 23, 245 (1982).

Российский университет дружбы народов, Москва 117198 e-mail: avarlamov@sci.pfu.edu.ru e-mail: fzubkov@sci.pfu.edu.ru Поступило в редакцию 25.12.2001