Авторы рады посвятить эту статью блестящему латвийскому ученому, президенту Латвийской Академии наук Яну Страдыню. Нам посчастливилось многие годы работать вместе с этим удивительно эрудированным и обаятельным человеком. От всей души желаем дорогому юбиляру новых научных побед, дальнейшего творческого горения, доброго здоровья на долгие годы.

М. Г. Воронков, О. М. Трофимова, Ю. И. Болгова, Л. В. Клыба, Л. И. Ларина, А. И. Албанов, В. А. Пестунович, Н. Ф. Чернов, К. Б. Петрушенко

СИНТЕЗ И СТРОЕНИЕ 1- И 2-ИЗОМЕРОВ (ТРИМЕТОКСИСИЛИЛМЕТИЛ)-И (СИЛАТРАНИЛМЕТИЛ)БЕНЗОТРИАЗОЛА

Взаимодействием (1,2,3-бензотриазолил)натрия с триметил- или триметокси(хлорметил)силаном синтезированы 1- и 2-(триметилсилилметил)- и 1и 2-(триметоксисилилметил)бензотриазолы. Переэтерификацией последних триэтаноламином получены 1- и 2-(силатранилметил)бензотриазолы.

Ключевые слова: 1- и 2-силатранилметилбензотриазол, 1- и 2-триметоксисилилметилбензотриазол.

Кремнийорганические производные азотсодержащих гетероциклов нашли широкое применение в органическом синтезе, в том числе в качестве предшественников лекарственных препаратов, пестицидов и других биологически активных веществ [1–4].

За последние годы особое внимание привлекли N-кремнийорганические производные бензотриазола [5–8]. Однако соединения этого типа, содержащие кремнийорганический заместитель в положении 2-гетероцикла, до сих пор не были выделены. Нами изучена реакция (2-бензотриазолил)натрия (1) с триметил- или триметокси(хлорметил)силаном в ДМФА в присутствии 18-краун-6, в результате которой были выделены соответствующие индивидуальные 1- и 2-замещенные кремнийорганические производные бензотриазола 2–5 (см. табл. 1).

1861

Натриевое производное **1** получено взаимодействием 1H-1,2,3-бензотриазола с метанольным раствором метилата натрия. Образование при этом (2-бензотриазолил)натрия (а не 1-изомера) доказано нами ранее [9].

Соединения 3–5 ранее не были известны. 1-(Триметилсилилметил)бензотриазол (2) был описан А. Р. Катрицким [5].

Одновременное образование 1- и 2-изомеров очевидно вызвано двойственной реакционной способностью аниона 1,2,3-бензотриазола [6].

Кремнийорганические производные **3–5** – желтоватые жидкости, а соединение **2** – кристаллическое вещество. Соединения **4** и **5** – гидролитически неустойчивы.

Переэтерификацией 1- и 2-(триметоксисилилметил)бензотриазолов 4 и 5 триэтаноламином получены соответствующие 1- (6) и 2-(силатранилметил)бензотриазолы (7) практически с количественным выходом.

Производные силатрана **6** и **7** – бесцветные кристаллы, растворимые в ДМФА, ДМСО (см. табл. 1). При хранении кристаллы **6** мутнеют.

В спектрах ЯМР ¹Н и ¹³С химические сдвиги бензотриазольного цикла соединений **4**–**7**, а также 1- и 2-метилбензотриазолов [10] практически идентичны (табл. 2). Аналогичны и химические сдвиги протонов в экзоциклическом фрагменте $-N-CH_2Si$ соединений **4**–**7**. Экранирование ядер ¹³С этого фрагмента в 1-замещенных **4** и **6** на ~10 м. д. выше, чем в 2-замещенных **5** и **7**. Резонанс в спектрах ЯМР ²⁹Si производных силатрана **6** и **7** по сравнению с триметоксисилилметильными производными **4** и **5** смещен в сильное поле на ~25 м. д. Это вызвано тем, что в соединениях **6** и **7** атом кремния пентакоординирован, а в соединениях **4** и **5** – тетракоординирован. В то же время различие положения кремнийорганического заместителя (1- или 2-) в соединениях **4**–**7** почти не влияет на химический сдвиг ²⁹Si. При этом в спектрах ЯМР производных четырехвалентного кремния **4** и **5** сигналы атомов ¹³С фрагмента –N–CH₂Si смещены в сильное поле более чем на 7 м. д. по сравнению с сигналами соответствующих силатранов **6** и **7**.

Спектры ЯМР ¹⁵N соединений **4**, **5** и **6**, **7** наиболее строго доказывают положение заместителя в бензотриазольном кольце (табл. 2). Число резонансных сигналов ядер азота этого гетероцикла определяется симметрией молекулы, а существенное различие химических сдвигов – гибридизацией и положением атомов азота.

Со- еди- нение	Брутто- формула	C	<u>Найд</u> Вычис	<u>ено, %</u> глено, %	c:	Т. кип., °С (мм рт. ст.)	Т. пл., °С	Вы- ход, %
		C	п	IN	51			
2	$C_{10}H_{15}N_3Si$	<u>58.78</u> 58.49	<u>7.77</u> 7.36	<u>20.58</u> 20.46	<u>13.79</u> 13.68		41–43	62
3	$C_{10}H_{15}N_3Si$	<u>58.18</u> 58.49	<u>7.55</u> 7.36	<u>20.60</u> 20.46	<u>13.93</u> 13.68	112 (5)		30
4	$C_{10}H_{15}N_3O_3Si$	<u>47.44</u> 47.41	<u>5.70</u> 5.97	<u>16.27</u> 16.59	<u>11.48</u> 11.09	152–153 (3)		60
5	$C_{10}H_{15}N_3O_3Si$	<u>47.75</u> 47.41	<u>5.84</u> 5.97	<u>17.04</u> 16.59	<u>11.25</u> 11.09	118–120 (3)		29
6	$C_{13}H_{18}N_4O_3Si$	<u>51.12</u> 50.96	<u>6.05</u> 5.92	<u>18.51</u> 18.29	<u>9.29</u> 9.17		209–211	96
7	$C_{13}H_{18}N_4O_3Si$	<u>50.79</u> 50.96	<u>6.18</u> 5.92	$\frac{18.56}{18.29}$	<u>9.07</u> 9.17		275	94

Физико-химические характеристики синтезированных соединений 2–7

Химические сдвиги атомов ¹⁵N соединений **4** и **5** отличаются от известных для 1- и 2-метилбензотриазолов [11] не более чем на 1-5 м. д. Экранирование атома N(1) бензотриазола **6** на 12 м. д. ниже, а атома N(3) на 5 м. д. выше экранирования, свойственного соответствующим атомам соединения **4**.

Положение резонансного сигнала атома азота силатранового остова в спектрах ЯМР соединений **6** и **7** примерно одинаково. Таким образом, согласно спектрам ЯМР ¹⁵N соединений **4**–**7**, природа кремнийорганического заместителя мало влияет на электронную плотность всех атомов N. Однако последняя значительно зависит от его положения (1 или 2).

Крайне низкая растворимость соединения 7 не позволила определить химические сдвиги ЯМР ¹⁵N его гетарильного кольца.

Бензоидная и хиноидная структуры 1-кремнийорганических производных 2, 4, 6 и соответствующих 2-замещенных соединений 3, 5, 7 влияют на их ИК спектры [9]. В ИК спектрах 1-изомеров 2, 4, 6 наблюдаются частоты при 665–670, 1588–1591, 1614–1615 см⁻¹, а в спектрах 2-изомеров 3, 5, 7 – при 623–625, 1567–1569 см⁻¹. В ИК спектрах соединений 2–7 частоты поглощения кремнийорганических заместителей CH₂SiR₃ практически не зависят от их положения в гетероцикле (1- или 2-). Для соединений 2 и 3 (R = Me) они проявляются при 743 и 746, 843 и 846, 1248 и 1251 см⁻¹, соответственно, для соединений 4 и 5 (R = OMe) – при 838 и 844, 1090 и 1090, 2845 и 2845 см⁻¹, соответственно, а для производных соединений 6 и 7 (R = 1/3 (OCH₂CH₂)₃N) – при 583 и 578, 641 и 651, 784 и 789, 812 и 819, 915 и 913, 938 и 938, 1085 и 1087, 1126 и 1123 см⁻¹ соответственно.

2-(1-Силатранилметил)бензотриазол 7

В УФ спектрах растворов соединений 2 и 4 в MeCN присутствуют два максимума поглощения в областях 270–290 и 250–270 нм, подтверждающие, что они являются 1-замещенными бензотриазола [12–14]. В УФ спектрах растворов соединений 3 и 5 наблюдается один максимум в области 270–285 нм, совпадающий с наблюдаемым для 2-H-, 2-Me- и 2-Na-бензотриазолов.

При действии электронного удара бензотриазолы **4** и **5** распадаются не одинаково. В масс-спектре соединения **4** отсутствует пик молекулярного иона, который легко теряет молекулу N₂, образуя ионы $[M-N_2]^{+\bullet}$ 225 (100) и $[M+H-N_2]^+$ 226 (47)*.

Первоначальное элиминирование молекулы N_2 является типичным процессом для 1,2,3-бензотриазола и его 1-метил-, 1-винил- и 1-метоксипроизводных [15]. Дальнейший распад образующихся ионов обусловлен выбросом радикала •ОСН₃ (ион 194 (2)) и молекулы HCN (ион 167 (16)). В спектре соединения **4** высока интенсивность пиков ионов [Si(OMe)₃]⁺ 121 (50) и пиков ионов, обусловленных распадом бензотриазольного цикла, 105 (6), 91 (70), 77(15).

Особенностью фрагментации соединения **5** является наличие в массспектре интенсивного пика молекулярного иона $[M+H]^+$ 253 (95), 254 (45), а также практическое отсутствие пиков ионов $[M-N_2]^{+\bullet}$ 225 (2) и 194 (1). В масс-спектре соединения **5** также имеются пики ионов $[Si(OMe)_3]^+$ 121 (100), $[C_7H_7]^+$ 91 (77), $[C_6H_5]^+$ 77 (4).

Таким образом, фрагментация соединений 4 и 5, аналогичная арилбензотриазолам [16], позволяет однозначно подтвердить их структуру.

^{*} Здесь и далее для пиков ионов приведены значения m/z (I, %).

Таблица 2

Соеди- нение	Химические сдвиги, δ, м. д. (J, Гц)														
	4-H	7-H	5-H	6-H	C(4)	C(7)	C(5)	C(6)	C(8)	C(9)	N(1)	N(3)	N(2)	N _{(CH2)3N}	Si
4	7.95 д (³ J = 8.0)	7.54 д (³ J = 8.0)	7.26 д. д (³ J = 8.0)	7.38 д. д (³ J = 8.0)	111.49	108.79	123.32	126.43	133.04	144.57	-160.0	-45.1	-1.1		-55.6
5	7.78		7.26		117.47		125.69		144.30		-61.4		-114.6		-56.4
6	7.97 д (³ J = 8.3)	7.72 д (³ J = 8.0)	7.27 д. д (³ J = 8.3)	7.36 д. д (³ J = 8.0)	119.08	111.76	122.57	125.21	133.84	145.77	-148.4	-50.0	-0.8	-350.4	-80.4
7	7.80		7.	23	117.66		124.52		144.17			I		-350.6	-81.3

Спектры ЯМР ¹Н, ¹³С, ¹⁵N, ²⁹Si соединений 4-7*

* Cnektor SIMP ¹H, δ , M. μ . (*J*, $\Gamma \mu$): **4** – 3.54 (OCH₃), 4.14 (CH₂); **5** – 3.59 (OCH₃), 4.46 (CH₂); **6** – 2.86 (NCH₂, ³*J* = 5.9), 3.76 (OCH₂, ³*J* = 5.9), 4.04 (CH₂); **7** – 2.80 (NCH₂, ³*J* = 5.8), 3.77 (OCH₂, ³*J* = 5.8), 4.29 (CH₂); cnektor SIMP ¹³C, δ , M. μ .: **4** – 32.31 (CH₂), 50.30 (OCH₃); **5** – 42.13 (CH₂), 51.00 (OCH₃); **6** – 40.05 (CH₂), 51.22 (NCH₂), 57.09 (OCH₂); **7** – 49.19 (CH₂), 57.31 (OCH₂).

1865

Масс-спектры соединений **6** и **7** довольно скудны. Они содержат максимальный пик иона силатранового остова 174 (100) и слабо интенсивные пики ионов, обусловленные исключительно его распадом (ионы 144 (7), 130 (1)). Минорный распад этих ионов обусловлен разрывом связи С–Si в молекулярном ионе с появлением положительного заряда на силатрановом остове

 $[Si(OCH_2CH_2)_3N]^+.$

Интенсивность пика молекулярного иона производных силатранов **6** и **7** составляет ~2%.

Молекулярная структура соединения 7 установлена методом PCA [17]. Координационный полиэдр атома Si в молекуле соединения 7 имеет обычную для силатранов конфигурацию тригональной бипирамиды с атомами N(4) и C(7) в аксиальных позициях, экваториальные вершины этого полиэдра заняты атомами O(1), O(2), O(3) (рисунок).

Межатомные расстояния N(4)→Si и Si–C(7) равны, соответственно, 2.089(4) и 1.908 (5) Å. Длины связей и валентные углы в бензотриазольном фрагменте соединения 7 близки к наблюдаемым в молекуле 2H-бензотриазола [12].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³C, ¹⁵N, ²⁹Si синтезированных соединений снимали на спектрометре Bruker DPX-400 (400 (¹H), 40 (¹⁵N), 100 (¹³C), 79 МГц (²⁹Si)) в CDCl₃, внутренний стандарт TMC (для ядер ¹H, ¹³C и ²⁹Si) и Me¹⁵NO₂ (для ядер ¹⁵N). Для получения спектров ЯМР ²⁹Si использовали импульсную последовательность INEPT. Химические сдвиги ЯМР ¹⁵N измеряли из инверсных двумерных спектров ¹H–¹⁵N по методике HMBCGP. Точность измерения химических сдвигов ядер ¹H и ¹³C составляла 0.01 и 0.02 м. д., соответственно, а ¹⁵N и ²⁹Si – 0.1 м. д. УФ спектры растворов соединений получали на спектрофотометре Specord UV-vis, ИК спектры – на спектрометре Specord IR-75 в микрослое или в таблетках KBr, масс-спектры – на масс-спектрометре LKB-2091, ионизирующее напряжение 60 эB, с прямым вводом образца в источник ионов (Т. ист. 250 °C).

1-(Триметоксисилилметил)бензотриазол (4) и 2-(триметоксисилилметил)бензотриазол (5). К раствору 4.52 г (32 ммоль) (1,2,3-бензотриазолил)натрия (1) и 0.063 г 18-краун-6 в 50 мл свежеперегнанного ДМФА прибавляют 5.46 г (32 ммоль) триметокси(хлорметил)силана. Реакционную смесь перемешивают 2 ч при 25–30 °C. Выпавший осадок NaCl отфильтровывают. При перегонке фильтрата в вакууме выделяют 2.35 г соединения **5** и 5.03 г соединения **4**.

Соединения 2 и 3 получают аналогично. При хранении реакционной смеси при комнатной температуре из нее выпадают кристаллы 2, которые отфильтровывают и промывают гексаном, выход 7.38 г. При перегонке фильтрата в вакууме выделяют 3.69 г соединения 3.

1-(Силатранилметил)бензотриазол (6). Смесь 4.31 г (17 ммоль) соединения **4** и 2.54 г (17 ммоль) триэтаноламина перемешивают 10 мин при 25 °С. Выпавший белый осадок перекристаллизовывают из смеси хлороформ-гексан, 1:1. Выделяют 5.01 г силатрана **6**.

Аналогично получают его 2-изомер 7.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 01-03-33034 и № 02-03-32500).

СПИСОК ЛИТЕРАТУРЫ

- 1. E. Lukevics, I. D. Segal, Organomet. Chem. Rev., 69, 69 (1988).
- 2. В. А. Лопырев, Л. И. Ларина, М. Г. Воронков, *ЖОрХ*, **37**, 165 (2001).
- 3. О. М. Трофимова, Н. Ф. Чернов, М. Г. Воронков, Успехи химии, **68**, 318 (1999).
- 4. М. Г. Воронков, О. М. Трофимова, Ю. И. Болгова, Н. Ф. Чернов, ХГС, 1487 (2001).
- 5. A. R. Katritzky, J. N. Lam, *Heteroatom. Chem.*, 1, 21 (1990).
- 6. A. R. Katritzky, X. Lan, J. Z. Yang, O. V. Denisko, Chem. Rev., 98, 409 (1998).
- 7. M. Nasim, P. Tharmaraj, P. S. Venkataramani, Synth. React. Inorg. Met.-Org. Chem., 29, 1249 (1999).
- 8. S. C. Verma, M. Nasim, P. S. Venkataramani, *Synth. React. Inorg. Met.-Org. Chem.*, **31**, 527 (2001).
- О. М. Трофимова, Э. И. Бродская, Ю. И. Болгова, Н. Ф. Чернов, М. Г. Воронков, ДАН, 388, 208 (2003).
- Г. Леви, Г. Нельсон, Руководство по ядерному магнитному резонансу углерода-13 для химиков органиков, Мир, Москва, 1975, 126.
- 11. M. Witanowski, L. Stefaniak, G. A. Webb, in *Annual Reports on NMR Spectroscopy*, Ed. G. A. Webb, London, 1981, 316.
- 12. F. Tomas, J. Catalan, P. Perez, J. Elguero, J. Org. Chem., 59, 2799 (1994).
- 13. W. Roth, D. Spangenberg, Ch. Janzen, A. Westhal, M. Schmitt, *Chem. Phys.*, **248**, 17 (1999).
- 14. E. Cane, A. Trombetti, B. Velino, J. Mol. Spectroscop., 158, 399 (1993).
- 15. R. Lawrence, E. S. Waight, Org. Mass Spectrom., 3, 367 (1970).
- 16. И. П. Белецкая, Д. В. Давыдов, М. С. Горовой, С. В. Кардашов, *Изв. АН, Сер. хим.*, 1553 (1999).
- М. Г. Воронков, Э. А. Зельбст, В. С. Фундаментский, А. А. Кашаев, О. М. Трофимова, Ю. И. Болгова, Н. Ф. Чернов, ДАН, 381, 348 (2001).

Иркутский институт химии им. А. Е. Фаворского СО РАН, Иркутск 664033 e-mail: voronkov@irioch.irk.ru Поступило в редакцию 22.12.2002