Я. Страдыню в благодарность за слова в защиту науки и порядочности, сказанные в 1957 году

И. Стракова, М. Петрова, С. Беляков^а, А. Страков

РЕАКЦИИ З-ФОРМИЛ-4-ХЛОРКУМАРИНА С АРИЛГИДРАЗИНАМИ

Взаимодействие 3-формил-4-хлоркумарина с гидрохлоридами арилгидразинов в присутствии ацетата натрия приводит к соответствующим 3-арилгидразонометил-4-хлоркумаринам, а с гидрохлоридами фенилгидразина, 4-броми 4-хлорфенилгидразинов в присутствии двух эквивалентов триэтиламина в зависимости от условий реакций – приводит либо к 1-арил-, либо к 2-арил-[1]бензопирано[4,3-*c*]пиразол-4-онам. В реакциях 3-формил-4-хлоркумарина с 2,4-дихлор-, 2,4-дифтор-, 2-гидроксикарбонил-, 4-нитро- и 3,5-ди(трифторметил)фенилгидразинами, 2-пиридил- и 2-хиноксалилгидразинами в присутствии избытка триэтиламина получены исключительно 2-арил[1]бензопирано[4,3-*c*]пиразол-4(2H)-оны. Строение 1-фенил- и 2-(2-пиридил)[1]бензопирано[4,3-*c*]пиразол-4(1H)-онов подтверждено рентгеноструктурными данными. Предложен простой метод отнесения [1]бензопирано[4,3-*c*]пиразол-4онов к 1- или 2-замещенным по химическим сдвигам спектров ЯМР ¹H С(3)–H протона в двух растворителях – ДМСО-d₆ и CDCl₃.

Ключевые слова: 3-арилгидразонометил-4-хлоркумарины, 1-арил- и 2-арил[1]бензопирано[4,3-*c*]пиразол-4-оны, 3-формил-4-хлоркумарин.

Формилирование 4-гидроксикумарина (1) и взаимодействие получаемого при этом 3-формил-4-хлоркумарина (2) [1–5], а также 4-азидо-3формилкумарина с азотистыми нуклеофилами – аминами и гидразинами – описано в ряде работ [1–13].

Мы применили методику [14], ранее нами использованную для формилирования 1-(2-пиридил)-4-оксо-4,5,6,7-тетрагидроиндазола, отличительной чертой которой является предварительное приготовление формилирующего реагента, и с выходом 67% получили 3-формил-4-хлоркумарин, идентичный продукту, описанному в работе [5].

Взаимодействие формилпроизводного 2 с гидрохлоридами арилгидразинов в присутствии эквимолярного количества безводного ацетата натрия приводит к 3-арилгидразонометил-4-хлоркумаринам (3), которые выпадают в осадок при сливании горячих этанольных растворов альдегида 2 и арилгидразина. Строение арилгидразонов 3 подтверждается спектрами ЯМР ¹Н ($\delta_{\rm NH}$ 10.82–11.62 м. д.), ИК спектрами ($\nu_{\rm CO}$ 1745–1735, $\nu_{\rm NH}$ 3300–3280 см⁻¹) и данными элементного анализа (табл. 1, 2). Синтезу 1-фенил- и 2-фенил[1]бензопирано[4,3-*c*]пиразол-4-онов в реакциях с 3-формил-4-хлор- и 4-азидо-3-формилкумарином посвящен ряд работ [1, 4, 6], в которых определение 1- или 2-замещения обосновано методом синтеза и подтверждено данными спектров ЯМР ¹Н и ¹³С. При кипячении в течение 5 ч в этаноле эквимолярных количеств хлоркумарина 2, гидрохлорида арилгидразина и избытка триэтиламина (схема 1) в случае фенилгидразина, 4-бром-, 3- и 4-хлорфенилгидразинов, 4-метоксифенилгидразина мы получили смеси 1-арил- (4) и 2-арил[1]бензопирано-[4,3-*c*]пиразол-4-онов (5). Для смесей соединений 4a,b,e, 5a,b,e удалось подобрать условия проведения реакций с последующей многократной кристаллизацией и выделить индивидуальные 1- и 2-арилизомеры 4a, 5a, 4b, 5b, 4e, 5e. Из смесей, образующихся из 2-, 3-хлорфенил- и 4-фторфенилгидразина, удалось выделить лишь 2-арилзамещенные бензопиранопиразолоны 5c,d,f. Смесь соединений 4g, 5g, получающуюся из метоксифенилгидразина, разделить не удалось.

3–5 а Ar = C₆H₅, **b** Ar = C₆H₄Br-4, **c** Ar = C₆H₄Cl-2, **d** Ar = C₆H₄Cl-3, **e** Ar = C₆H₄Cl-4, **f** Ar = C₆H₄F-4, **g** Ar = C₆H₄OMe-4, **h** Ar = C₆H₃Cl₂-2,4, **i** Ar = C₆H₃F₂-2,4, **j** Ar = C₆H₄COOH-2, **k** Ar = C₆H₄NO₂-4, **l** Ar = C₆H₃(CF₃)₂-3,5, **m** Ar = C₅H₄N-2, **n** Ar = 2-хиноксалил

В результате реакций 2,4-дихлор-, 2,4-дифтор-, 2-гидроксикарбонил-, 4-нитро- и 3,5-ди(трифторметил)фенилгидразинов, 2-пиридил- и 2-хиноксалилгидразинов с альдегидом **2** (кипячение в течение 5 ч и выдерживание в течение 1 сут в холодильнике) получили исключительно 2-замещенные бензопирано[4,3-*c*]пиразол-4-оны **5h**-**m**. Спектры ЯМР ¹Н всех синтезированных соединений (табл. 2) содержат сигналы протонов всех структурных частей арилгидразонов **3** и пиразолокумаринов **4**, **5**.

В основу определения строения изомеров 4 и 5 мы положили данные рентгеноструктурных исследований соединений 4a и 5m (рис. 1), которые сопоставляли с данными спектров ЯМР ¹Н изомерных пар в CDCl₃ и ДМСО-d₆ (табл. 3). Спектры ЯМР ¹Н 1- и 2-замещенных бензопиранопиразолов в CDCl₃ практически неразличимы. При смене растворителя на

Соеди-	Брутто-		<u>Найде</u> Вишие	<u>eno, %</u>			Вы-
нение	формула	C	Вычис. Ц	Ieho, %	Hal	1. II.I., °C	ход, %
2	C ₁₀ H ₅ ClO ₃	<u>57.40</u> 57.58	$\frac{2.35}{2.42}$		$\frac{16.80}{17.00}$	120-122	67
3a	$C_{16}H_{11}ClN_2O_2$	<u>64.19</u> 64.33	<u>3.60</u> 3.71	<u>9.31</u> 9.39	<u>11.70</u> 11.87	181–182	62
3b	$C_{16}H_{10}BrClN_2O_2$	<u>50.98</u> 50.89	$\frac{2.58}{2.67}$	$\frac{7.33}{7.42}$		207-209	77
3d	$C_{16}H_{10}Cl_2N_2O_2$	<u>57.50</u> 57.68	$\frac{3.11}{3.03}$	$\frac{8.30}{8.41}$	$\frac{21.50}{21.28}$	220-221	76
3e	$C_{16}H_{10}Cl_2N_2O_2$	<u>57.55</u> 57.68	<u>3.05</u> 3.03	$\frac{8.44}{8.41}$	$\frac{21.50}{21.28}$	263–265	74
3f	$C_{16}H_{10}ClFN_2O_2$	<u>60.51</u> 60.68	<u>3.09</u> 3.18	$\frac{8.60}{8.84}$		175–177	73
3h	$C_{16}H_9Cl_3N_2O_2$	$\frac{52.11}{52.28}$	$\frac{2.37}{2.47}$	$\frac{7.59}{7.62}$	$\frac{28.70}{28.93}$	228-230	80
3i	$C_{16}H_9ClF_2N_2O_2$	<u>57.60</u> 57.41	<u>2.61</u> 2.71	<u>8.18</u> 8.37		191–192	82
3ј	C ₁₇ H ₁₁ ClN ₂ O ₄	<u>59.51</u> 59.57	<u>3.12</u> 3.24	<u>8.16</u> 8.17	<u>10.10</u> 10.34	240-242	59
3k	C ₁₆ H ₁₀ ClN ₃ O ₄	<u>55.96</u> 55.91	<u>2.90</u> 2.93	<u>12.11</u> 12.23	<u>10.20</u> 10.31	267–268	88
31	$C_{18}H_9ClF_6N_2O_2$	<u>49.60</u> 49.73	<u>2.02</u> 2.09	<u>6.50</u> 6.44		261–264	55
4 a	$C_{16}H_{10}N_2O_2$	<u>73.11</u> 73.27	<u>3.83</u> 3.84	<u>10.55</u> 10.68		183–185	23
4b	C ₁₆ H ₉ BrN ₂ O ₂	<u>56.12</u> 56.33	<u>2.49</u> 2.66	<u>8.10</u> 8.21	<u>23.20</u> 23.42	173–176	16
4e	$C_{16}H_9ClN_2O_2$	<u>64.63</u> 64.77	$\frac{3.00}{3.06}$	<u>9.49</u> 9.44	<u>11.80</u> 11.95	149–152	16
5a	$C_{16}H_{10}N_2O_2$	<u>73.08</u> 73.27	<u>3.81</u> 3.84	<u>10.50</u> 10.68		201–203	62
5b	C ₁₆ H ₉ BrN ₂ O ₂	<u>56.10</u> 56.33	<u>2.61</u> 2.66	<u>8.18</u> 8.21	<u>23.30</u> 23.42	240 (возг.)	55
5c	C ₁₆ H ₉ ClN ₂ O ₂	<u>64.67</u> 64.77	$\frac{3.01}{3.06}$	<u>9.29</u> 9.44	$\frac{11.80}{11.95}$	178–170	38
5d	C ₁₆ H ₉ ClN ₂ O ₂	<u>64.60</u> 64.77	<u>3.13</u> 3.06	<u>9.31</u> 9.44	<u>11.80</u> 11.95	208–210	67
5e	C ₁₆ H ₉ ClN ₂ O ₂	<u>64.82</u> 64.77	$\frac{3.05}{3.06}$	<u>9.22</u> 9.44	<u>11.80</u> 11.95	220 (возг.)	50
5f	C ₁₆ H ₉ FN ₂ O ₂	<u>68.44</u> 68.57	$\frac{3.11}{3.24}$	$\frac{10.10}{10.00}$		190 (возг.)	48
5h	$C_{16}H_8Cl_2N_2O_2$	<u>58.19</u> 58.03	$\frac{2.40}{3.43}$	<u>8.41</u> 8.46	$\frac{21.30}{21.41}$	198–200	47
5i	$C_{16}H_8F_2N_2O_2$	<u>64.55</u> 64.43	$\frac{2.68}{2.70}$	<u>9.30</u> 9.39		222–224	62
5ј	$C_{17}H_{10}N_2O_4$	<u>66.56</u> 66.67	<u>3.11</u> 3.29	<u>9.10</u> 9.15		258–260	67
5k	$C_{16}H_9N_3O_4$	<u>62.45</u> 62.54	$\frac{2.96}{2.95}$	<u>13.60</u> 13.68		240 (возг.)	67
51	$C_{18}H_8F_6N_2O_2$	<u>54.10</u> 54.28	$\frac{2.00}{2.02}$	<u>7.07</u> 7.03		190 (возг.)	38
5m	$C_{15}H_9N_3O_2$	<u>68.32</u> 68.44	<u>3.41</u> 3.45	<u>15.99</u> 15.96		215 (возг.)	69
5n	$C_{18}H_{10}N_4O_2$	<u>68.88</u> 68.79	$\frac{3.10}{3.21}$	$\frac{17.80}{17.83}$		200 (возг.)	64
						/	1

Характеристики соединений 2-5

C(18) . C(17) C(19) C(16) C C(14) _______ N(15) N(9) N(8) C(10) C(4) C(5) C(11) C(7) C(3) C(12) C(2) C(6) C(13) O(1) O(2)

Рис. 1. Молекулярные структуры соединений **4a** (*a*) и **5m** (*b*) с обозначениями атомов и эллипсоидами тепловых колебаний

b

а

Рис. 2. Проекция элементарной ячейки кристаллов **5m** вдоль (1 0 0)

Таблица 2

Спектры ЯМР - Н соединении 3-5

Соели-	Химические слвиги.	Соели-	Химические слвиги.
нение	δ, м. д. (Ј, Гц)*	нение	δ, м. д. (Ј, Гц)*
3a	6.84–8.01 (9H, м, Ar); 8.04 (1H, с, =CH); 10.96 (1H, уш. с, NH)	5a	7.37–8.16 (9Н, м, Аг); 9.54 (1Н, с, =CH–)
3b	7.02–8.04 (8Н, м, Аг); 8.12 (1Н, с, =CH); 11.02 (1Н, уш. с, NH)	5b	7.38–8.18 (8Н, м, Аг); 9.65 (1Н, с, =CH–)
3d	6.78–8.02 (8Н, м, Аг); 8.09 (1Н, с, =CH); 11.04 (1Н, уш. с, NH)	5c	7.45–8.12 (8Н, м, Аг); 9.27 (1Н, с, =СН–)
3e	7.04–8.11 (8Н, м, Аг); 8.11 (1Н, с, =CH); 10.02 (1Н, уш. с, NH)	5d	7.41–8.13 (8Н, м, Аг); 9.65 (1Н, с, =СН–)
3f	7.08–8.05 (8Н, м, Аг); 8.07 (1Н, с, =CH); 10.96 (1Н, уш. с, NH)	5e	7.34–8.08 (8Н, м, Аг); 9.65 (1Н, с, =СН–)
3h	7.39–7.48 (6H, м, Ar, =CH–); 7.94 (1H, д. д. ${}^{3}J$ = 8, ${}^{4}J$ = 2, Ar); 8.54 (1H, д, ${}^{4}J$ = 2, Ar); 10.94 (1H, уш. с, NH)	5f	7.49–8.09 (8Н, м, Аг); 9.48 (1Н, с, =CH–)
3i	7.01–7.96 (7Н, м, Аг); 8.36 (1Н, с, =CH); 10.82 (1Н, уш. с, NH)	5h	7.43–8.17 (7Н, м, Аг); 9.29 (1Н, с, =CH–)
3ј	6.85 (1H, м, Ar); 7.34–7.97 (7H, м, Ar); 8.22 (1H, с, =CH); 11.61 (1H, уш. с, NH); 12.82 (1H, уш. с, COOH)	5i	7.36–7.91 (7Н, м, Аг); 9.26 (1Н, с, =CH–)
3k	7.18 (2H, м, ³ <i>J</i> = 8, Ar); 7.47–8.09 (4H, м, Ar); 8.21 (2H, м, ³ <i>J</i> = 8, Ar); 8.29 (1H, с, =CH–); 11.67 (1H, уш. с, NH)	5j	7.36–8.01 (8Н, м, Аг); 9.27 (1Н, с, =CH–); 12.72 (1Н, уш. с, СООН)
31	7.28–8.07 (7Н, м, Аг); 8.07 (1Н, с, =CH); 11.02 (1Н, уш. с, NH)	5k	7.36–8.42 (8Н, м, Аг); 9.73 (1Н, с, =CH–)
4 a	6.89–7.72 (9H, м, Ar); 8.47 (1H, с, =CH)	51	7.42–8.76 (7Н, м, Аг); 9.92 (1Н, с, =СН–)
4b	6.96–8.15 (8H, м, Ar); 8.53 (1H, с, =CH)	5m	7.54–8.67 (8Н, м, Аг); 9.47 (1Н, с, =CH–)
4e	7.08–8.30 (8H, м, Ar); 8.51 (1H, с, =CH)	5n	7.26–8.26 (8H, м, Ar); 9.55 (1H, с, =CH–); 9.87 (1H, с, =CH)
4g**	3.94 (3H, с, CH ₃); 7.23–7.54 (8H, м, Ar); 8.32 (1H, с, =CH)		

* Спектры ЯМР ¹Н снимали в CDCl₃ (соединения 4g и 5n) и ДМСО-d₆ (остальные соединения).

^{**} Соединение **4g** составляло 86% в смеси **4g**, **5g**.

Рис. 3. Проекция кристаллической структуры соединения 4а на плоскость (0 0 1)

ДМСО-d₆ более низкопольный резонансный сигнал протона C(3)–H одного из изомеров испытывает более значительный сдвиг в слабое поле ($\Delta\delta 0.63$ –1.07 м. д), чем аналогичный сигнал другого изомера ($\Delta\delta 0.11$ –0.22 м. д). Столь сильная зависимость от растворителя резонансного поглощения указанного протона позволила нам предположить, что наибольшее влияние растворителя должен испытывать сигнал C(3)–H N(2)-замещенного, так как именно в этом случае из-за пространственной близости заместителя смена растворителя может сопровождаться наиболее заметным изменением влияния магнитной анизотропии ароматического заместителя на резонансное поглощение протона C(3)–H.

Аномально малое изменение химического сдвига C(3)–H при переходе от ДМСО к CDCl₃ соединения **5m** обусловлено дезэкранирующим влиянием неподеленной электронной пары атома азота, находящейся в непосредственной близости от указанного протона (рис. 1*b*).

Спектры ЯМР ¹Н изомеров смесей **4d**, **5d** и **4g**, **5g**, которые не удалось разделить фракционированной кристаллизацией в ДМСО-d₆ и CDCl₃, содержат сигналы протонов C(3)–H обоих изомеров, что позволило определить соотношение последних: 50 : 50 (**4d** : **5d**) и 86 : 14 (**4g** : **5g**).

С целью объективного установления структуры соединений **4a** и **5m** получили их монокристаллы и провели PCA (рис. 1 и табл. 4, 5).

Несмотря на то, что в кристаллической решетке молекулы **5m** находятся в общих позициях, все атомы молекулы лежат в одной плоскости в пределах ошибки. Вследствие этой копланарности, сопряжение охватывает всю молекулу; поэтому все ординарные связи в молекуле **5m** укорочены, а двойные (кроме карбонильной связи) удлинены. Очевидно, что порядки соответствующих связей в молекулах **4a** и C(2)–O(2) **5m** различаются, вследствие этого наблюдаются различия в значениях длин связей и валентных углов (см. табл. 4, 5). Молекула **4a** в силу стерических препятствий (отталкивание атомов водорода H(10) и H(19) не может быть копланарной; поэтому торсионный угол N(8)–N(9)–C(14)–C(15) значителен – 73.1(6)°.

1832

Таблица З

Соеди-	Химич	неские сдв	иги, б, м. д.	Соеди-	Хими	ические сдвиги, б, м. д.		
нение*	ДМСО-d ₆	CDCl ₃	∆(бДМСО-d ₆ -	нение*	ДМСО-d ₆	CDCl ₃	Δ(δДМСО-d ₆ –	
_			δCDCl ₃)				δCDCl ₃)	
4a	8.47	8.36	0.11	5h	9.29	8.65	0.64	
4b	8.53	8.36	0.17	5i	9.26	8.62	0.64	
4e	8.51	8.35	0.16	5j	9.27	8.51	0.76	
5a	9.54	8.65	0.89	5k	9.73	8.85	0.88	
5b	9.65	8.66	0.99	51	9.92	8.85	1.07	
5c	9.27	8.64	0.63	5m	9.47	9.38	0.09	
5e	9.65	8.87	0.78	4d–5d	9.65	8.67	0.98	
					(8.54)	(8.36)	0.18	
5f	9.48	8.61	0.87	4g–5g	9.45	8.54	0.91	
					(8.45)	(8.32)	0.13	

Химические сдвиги сигнала С(3)-Н протонов соединений 4 и 5

* Для смеси соединений **4d**, **5d** и **4g**, **5g** приведены химические сдвиги 2-арилизомеров (**5d**,**g**) и (в скобках) 1-арилизомеров (**4d**,**g**), снятые в ДМСО-d₆ и CDCl₃.

Молекулы в кристалле структуры **5m** (рис. 2) упаковываются параллельными рядами, образуя две системы стопок, одна из которых параллельна кристаллографической плоскости (0 3 1), а другая – плоскости (0 3 1). Особенностью кристаллической структуры **4a** является довольно редко встречающийся тип кристаллической решетки (пространственная группа – F dd2). Средние плоскости молекул **4a** в кристалле приблизительно перпендикулярны полярной оси 2 (рис. 3). Межмолекулярные контакты в обеих кристаллических структурах осуществляются для всех атомов на расстояниях, неменьших сумм их ван-дер-ваальсовых радиусов [15].

Таблица 4

Chara	l,	Å	Cargar	l,	Å
Связь	4a	5m	Связь	4a	5m
O(1)–C(2)	1.395(3)	1.382(6)	N(8)-C(14)	-	1.431(5)
C(2)–O(2)	1.197(3)	1.200(5)	N(9)–C(14)	1.427(3)	-
C(2)–C(3)	1.432(3)	1.439(5)	C(10)–C(11)	1.371(4)	1.384(7)
C(3)–C(4)	1.381(3)	1.414(5)	C(11)-C(12)	1.368(4)	1.386(6)
C(3)–C(7)	1.410(3)	1.373(7)	C(12)–C(13)	1.376(4)	1.382(7)
C(4)–C(5)	1.452(3)	1.436(6)	C(14)–N(15)	_	1.317(5)
C(4)–N(9)	1.344(3)	1.335(5)	C(14)-C(15)	1.394(4)	-
C(5)–C(6)	1.385(3)	1.403(5)	C(14)–C(19)	1.370(5)	1.380(6)
C(5)–C(10)	1.397(3)	1.396(6)	N(15)-C(16)	_	1.343(7)
C(6)–O(1)	1.378(3)	1.392(5)	C(15)-C(16)	1.383(4)	-
C(6)–C(13)	1.384(3)	1.383(7)	C(16)-C(17)	1.372(5)	1.373(8)
C(7)–N(8)	1.312(3)	1.352(5)	C(17)-C(18)	1.381(5)	1.370(7)
N(8)–N(9)	1.388(3)	1.367(5)	C(18)-C(19)	1.354(5)	1.383(7)
N(8)–C(14)	-	1.431(5)			

Длины связей (1) в молекулах 4a и 5m

Таблица 5

	ω,	град.		ω, град.		
Угол	Молекула 4 а	Молекула 5m	Угол	Молекула 4 а	Молекула 5m	
C(6)-O(1)-C(2)	123.3(2)	123.7(3)	C(7)-N(8)-N(9)	104.6(2)	113.1(3)	
O(6)–C(2)–O(2)	116.6(2)	117.5(4)	C(7)–N(8)–C(14)	-	126.8(4)	
O(1)–C(2)–C(3)	114.0(2)	114.8(3)	N(9)-N(8)-C(14)	-	120.0(3)	
O(2)–C(2)–C(3)	129.4(2)	127.7(5)	C(4)–N(9)–N(8)	111.5(2)	103.8(3)	
C(4)-C(3)-C(2)	123.4(2)	122.7(4)	C(4)–N(9)–C(14)	129.6(2)	_	
C(4)-C(3)-C(7)	104.8(2)	105.5(3)	N(8)-N(9)-C(14)	118.8(2)	_	
C(2)-C(3)-C(7)	131.7(2)	131.8(4)	C(5)-C(10)-C(11)	120.3(2)	120.9(4)	
C(3)-C(4)-C(50)	120.8(2)	120.1(3)	C(10)-C(11)-C(12)	119.5(2)	119.8(5)	
C(3)-C(4)-N(9)	107.0(2)	111.4(4)	C(13)–C(12)–C(11)	121.1(2)	120.6(5)	
C(5)-C(4)-N(9)	132.1(2)	128.4(3)	C(6)-C(13)-C(12)	119.1(2)	119.3(4)	
C(4)-C(5)-C(6)	114.5(2)	116.0(4)	N(15)-C(14)-C(19)	-	125.4(4)	
C(4)-C(5)-C(10)	127.7(2)	126.0(3)	C(15)-C(14)-C(19)	119.8(3)	_	
C(6)-C(5)-C(10)	117.8(2)	118.0(4)	C(16)–N(15)–C(14)	-	115.8(4)	
O(1)-C(6)-C(13)	114.9(2)	116.1(3)	C(16)-C(15)-C(14)	119.5(2)	_	
O(1)–C(6)–C(5)	123.9(2)	122.5(4)	C(16)–C(17)–C(18)	120.0(3)	118.7(5)	
C(13)–C(6)–C(5)	121.2(2)	121.3(4)	C(19)-C(18)-C(17)	120.6(3)	119.1(4)	
C(3)-C(7)-N(8)	112.0(3)	106.1(4)	C(14)-C(19)-C(18)	120.3(3)	117.2(4)	

Валентные углы (ю) в молекулах 4a и 5m

Таблица б

Кристаллографические данные соединений 4а и 5т

Характеристика	4a	5m
Брутто-формула	$C_{16}H_{10}N_2O_2$	$C_{16}H_9N_3O_2$
Молекулярная масса	262.27	263.26
Цвет кристаллов	Бесцветный	Бесцветный
Размер, мм	$0.04\times0.06\times0.52$	$0.05\times0.18\times0.50$
Кристаллическая сингония	Ромбическая	Ромбическая
Параметры кристаллической решетки, Á		
а	20.5064(7)	18.911(1)
b	43.111(3)	14.9116(8)
С	5.624(2)	4.1991(2)
Объем элементарной ячейки, V, Å ³	4972.0(15)	1184.1(1)
Пространственная группа	F <i>dd2</i>	$P na2_1$
Число молекул в элементарной		
ячейке, Z	16	4
Плотность, d , г/см ³	1.402	1.477
Коэффициент поглощения, µ, мм ⁻¹	0.09	0.10
Число независимых рефлексов	948	1584
Число рефлексов с I >3 (I)	735	1096
Число уточняемых параметров	181	208
Окончательный фактор		
расходимости, R	0.0467	0.0386

Спектры ЯМР ¹Н регистрировали на спектрометрах Bruker WH 90/DS (90 МГц) и Varian-Mercury BB (200 МГц), внутренний стандарт ТМС. ИК спектры снимали на приборе Specord IR-75 для суспензий веществ в вазелиновом масле (область 1800–1500 см⁻¹) и гексахлорбутадиене (3600–2000 см⁻¹). В работе использовали арилгидразины и их гидрохлориды фирм Acros, Maybridge и Lancaster.

Физико-химические и спектральные характеристики приведены в табл. 1-3.

Рентгеноструктурные исследования. Монокристаллы соединений 4a и 5m выращивали из ДМФА. Съемку дифракционной картины осуществляли при 20 °C на автоматическом дифрактометре Nonius Kappa CCD (Мо K_{α} -излучение, $2\theta_{max} = 55$ (4a), $2\theta_{max} = 45^{\circ}$ (5m). Структуры расшифровывали прямым методом и уточняли полноматричным МНК в анизотропном приближении. Основные кристаллографические характеристики и параметры уточнения кристаллических структур приведены в табл. 6. Расчеты выполнены с помощью программ [16, 17].

3-Формил-4-хлоркумарин (2). К 40 мл сухого ДМФА при 0 °С (охлаждение льдом) при перемешивании по каплям добавляют 10.8 мл (120 ммоль) хлороксида фосфора. Полученный реагент при охлаждении льдом и перемешивании по каплям прибавляют к раствору 6.50 г (40 ммоль) 4-гидроксикумарина в 30 мл сухого ДМФА. По окончании всего формилирующего реагента реакционную смесь 1 ч выдерживают при 55–65 °С, охлаждают и выливают на размельченный лед. Желтый осадок отфильтровывают и перекристаллизовывают из смеси ацетон–вода, 2:1. Получают 5.60 г (67%) желтых кристаллов. Т. пл. 120–122 °С (т. пл. 120–122 [1, 5], 124–126 [5], 125–127 [4], 130 °С [2]). ИК спектр, v, см⁻¹: 1720 (–О–С=О), 1690 (–С=О). Найдено, %: С 57.66; Н 2.40; СІ 22.80. С₁₀Н₅СІО₃. Вычислено, %: С 57.57; Н 2.42; СІ 23.01.

3-Гидразонометил-4-хлоркумарины (3а,d,e,h,i,j,k,l). Растворяют 0.41 г (2 ммоль) 3-формил-4-хлоркумарина при кипячении в 15 мл этанола. Отдельно в 10 мл 85% этанола при кипячении растворяют 2 ммоль гидрохлорида арилгидразина и 2 ммоль безводного ацетата натрия. Оба раствора быстро сливают при перемешивании, при этом сразу начинается образование осадка. Реакционную смесь 5–10 мин выдерживают при 50–60 °C, охлаждают, через 1 ч отфильтровывают и перекристаллизовывают из ДМФА.

1-Фенил[1]бензопирано[4,3-с]пиразол-4(1Н)-он (4а). Растворяют при нагревании 0.41 г (2 ммоль) альдегида 2 в 10 мл этанола и охлаждают до 15–20 °С. К этому раствору медленно добавляют по каплям раствор, приготовленный из 0.29 г (2 ммоль) гидрохлорида фенилгидразина и 4 ммоль триэтиламина, в 10 мл 60% этанола так, чтобы температура реакционной смеси не превышала 25 °С. После прибавления всего количества реагента быстро выпадает желтый осадок. Осадок отфильтровывают, перекристаллизовывают из этанола и потом дважды из ДМФА. Получают 0.1 г (19%) бесцветных мелких кристаллов с т. пл. 183–185 °С, которые по результатам РСА (рис. 1*а*) являются 1-замещенным бензо-пиранопиразолоном 4а.

1-(4-Бромфенил)[1]бензопирано[4,3-*c*]пиразол-4(1Н)-он (4b) и 1-(4-хлорфенил)[1]бензопирано[4,3-*c*]пиразол-4(1Н)-он (4e) получают аналогично 4a из хлорвинилальдегида 2, гидрохлоридов соответствующих гидразинов и триэтиламина.

2-Фенил[1]бензопирано[4,3-*с*]пиразол-4(2Н)-он (5а). Смесь 0.41 г (2 ммоль) альдегида **2**, 2 ммоль фенилгидразина и 2 ммоль триэтиламина кипятят 5 ч в 15 мл этанола. Оставляют на 1 сут в холодильнике, осадок отфильтровывают и дважды перекристаллизовывают из ДМФА. Желтоватые кристаллы, т. пл. 201–203 °C, выход 0.32 г (62%).

2-(4-Бромфенил)- (5b) и 2-(4-хлорфенил)[1]бензопирано[4,3-с]пиразол-4(**2H**)-он (5e) получают аналогично 2-арил[1]бензопирано[4,3-с]пиразол-4(2H)-онам **5h**-n.

2-(2-Хлорфенил)- (5с), 2-(3-хлорфенил)- (5d), 2-(4-фторфенил)- (5f), 2-(2,4-дихлорфенил)- (5h), 2-(2,4-дифторфенил)- (5i), 2-(2-гидроксикарбонилфенил)- (5j), 2-(4-нитрофенил)- (5k), 2-[3,5-ди(трифторметил)фенил]- (5l), 2-(2-пиридил)- (5m), 2-(2-хиноксалил)- (5m) [1]бензопирано[4,3-с]пиразол-4(2H)-оны. При нагревании растворяют 0.41 г (2 ммоль) формилпроизводного 2 в 15 мл этанола и к горячему раствору быстро при перемешивании приливают горячую смесь, приготовленную из 2 ммоль гидрохлорида соответствующего арилгидразина, 4 ммоль триэтиламина и 20 мл этанола. Реакционную смесь кипятят 5 ч, потом 24 ч выдерживают в холодильнике, осадок отфильтровывают и перекристаллизовывают из ДМФА.

Взаимодействие 3-формил-4-хлоркумарина (2) с 3-хлорфенилгидразином и 4-метоксифенилгидразином проводят по методикам синтеза 4a и 5a, 5h-n. Во всех случаях многократная кристаллизация из этанола и ДМФА приводит, по данным ТСХ и спектров ЯМР 1 Н (табл. 3), к твердым веществам, содержащим в первом случае смесь 4d и 5d, во втором – **4g** и **5g**.

СПИСОК ЛИТЕРАТУРЫ

- 1. S. R. Moorty, V. Sundaramurthy, N. V. Subba Rao, Indian J. Chem., 11, 854 (1973).
- 2. J. Andrieux, J. P. Battioni, M. Giraud, D. Molho, Bull. Soc. Chim. Fr., 2093 (1973).
- 3. M. Weiβenfels, A. Hantschmann, T. Steinführer, E. Birkner, Z. Chem., 29, 166 (1989).
- 4. T. Steinführer, A. Hantschmann, M. Pietsch, M. Weißenfels, *Liebigs Ann. Chem.*, 23 (1992).
- 5. D. Heber, I. C. Ivanov, S. K. Karagiosov, J. Heterocycl. Chem., 32, 505 (1995).
- 6. B. Chantegrel, Abdel -Ilah Nadi, S. Gelin, *Tetrahedron Lett.*, 24, 381 (1983).
- 7. K. Tabakovic, I. Tabakovic, N. Ajdini, O. Leci, Synthesis, 308 (1987).
- 8. 9. D. Heber, Arch. Pharm., 320, 577 (1987).
- D. Heber, Arch. Pharm., 320, 595 (1987).
- 10. I. C. Ivanov, S. K. Karagiosov, M. F. Simeonov, Liebigs Ann. Chem., 203 (1992).
- 11. В. М. Бакулев, Г. В. Гридунова, М. А. Кирпиченок, Л. А. Карандашова, Ю. Т. Стручков, И. И. Грандберг, ХГС, 338 (1993).
- 12. I.C. Ivanov, S. K. Karagiosov, Synthesis, 633 (1995).
- 13. A. Alberola, L. Calvo, A. Gonzalez-Ortega, A. P. Encabo, M. C. Sanudo, Synthesis, 1941 (2001).
- 14. И. А. Стракова, Л. Г. Делятицкая, М. В. Петрова, А. Я. Страков, ХГС, 768 (1998).
- 15. Ю. Б. Зефиров, П. М. Зоркий, Успехи химии, **58**, 713 (1989).
- 16. G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, 1997, Univ. of Göttingen, Göttingen, Germany.
- 17. S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, maXus, Computer Program for the Solution and Refinement of Crystal Structures, 1999, Bruker Nonius, The Netherlands, MacScience, Jpn & The Univ. of Glasgow.

Рижский технический университет, Рига LV-1048, Латвия

Поступило в редакцию 04.03.2003

^аЛатвийский институт органического синтеза, Рига LV-1006 e-mail: marina@osi.lv