Посвящается глубокоуважаемому академику Яну Павловичу Страдыню в связи с его юбилеем

Д. Янсоне, М. Флейшер, Г. Андреева, Л. Лейте, Ю. Попелис, Э. Лукевиц

СИНТЕЗ И ФОТОИЗОМЕРИЗАЦИЯ 6,6-ДИМЕТИЛ-4-(4-НИТРОФЕНИЛВИНИЛ)-3-ЦИАНО-(5,6-ДИГИДРО)-2-ПИРАНОНА

Конденсация 4-нитробензальдегида с 4,6,6-триметил-3-циано(5,6-дигидро)-2-пираноном приводит к образованию продукта кротоновой конденсации и соединения типа аддукта Михаэля. Основным продуктом фотохимического превращения (E)-6,6-диметил-4-(4-нитрофенилвинил)-3-циано(5,6дигидро)-2-пиранона является Z-изомер. Исследование фотоизомеризации 6,6-диметил-4-(4-нитрофенилвинил)-3-циано(5,6-дигидро)-2-пиранона полуэмпирическим методом AM1 показало, что в основном состоянии E-изомер термодинамически стабильнее Z-изомера. E-Z-Фотоизомеризация осуществляется, вероятнее всего, через низшее возбужденное синглетное состояние S_1 .

Ключевые слова: 6,6-диметил-4-(4-нитрофенилвинил)-3-циано(5,6-дигидро)-2-пиранон, 4-нитробензальдегид, 4,6,6-триметил-3-циано(5,6-дигидро)-2-пиранон, альдольная конденсация, полуэмпирический метод AM1, *E*–*Z*-фотоизомеризация.

Известна биологическая активность γ- и δ-лактонов [1]. С целью поиска новых фармакологически активных соединений этого класса конденсацией 4,6,6-триметил-3-циано(5,6-дигидро)-2-пиранона (1) с 4-нитробензальдегидом (2) в ЕtOH в присутствии NaOH синтезирован 6,6-диметил-4-(4-нитрофенилвинил)-3-циано(5,6-дигидро)-2-пиранон (3). Обнаружено, что аналогично конденсации пиранона 1 с пиридинальдегидами [1] в реакции с альдегидом 2 образуются продукт кротоновой конденсации 3 и соединение типа аддукта Михаэля бис(6,6-диметил-2-оксо-3-циано-5,6дигидропиранил-4-метил)-4-нитрофенилметан (4).

Таким образом, и в случае бензальдегидов реакция протекает нехарактерным для альдольной конденсации образом. Выходы пиранонов **3** и **4** при молярном отношении альдегид **2**–пиранон **1**–NaOH 1:2:0.06 составляют 23 и 75% соответственно. Однако в отличие от реакции пиридинальдегидов с пираноном **1** в случае преобладания в реакционной среде альдегида (соотношение альдегид **2**–пиранон **1** 1.5:1) образуется только продукт кротоновой конденсации с выходом 60%. Выход продуктов реакции количественно оценивался методом ВЭЖХ без их выделения. Для изучения динамики реакции использовалась TCX. Судя по результатам TCX вначале образуется продукт **4**, а пиранон **3** появляется в реакционной смеси позднее. Из этого следует, что предложенный авторами [2, 3] механизм, предусматривающий образование соединения типа аддукта Михаэля 4 путем присоединения второй молекулы пиранона 1 к соединению 3, маловероятен.

Константа взаимодействия протонов винильной группы в спектре ЯМР ¹Н винилпиранона **3** (16.2 Гц) указывает на *Е*-конфигурацию полученного соединения (табл. 1).

Биологическая активность органических соединений, в том числе и лактонов, обычно зависит от их геометрической конфигурации [4]. Для получения дополнительной информации об изомерии синтезированных соединений экспериментально и теоретически изучена фотоизомеризация пиранона 3. В УФ спектре 0.026 мМ раствора пиранона 3 в этаноле присутствует одна интенсивная полоса при 344 нм (рис. 1). При облучении раствора этого соединения солнечным светом в спектре поглощения наблюдаются эффекты, характерные для $E \rightarrow Z$ -изомеризации: снижение интенсивности характеристической полосы, сопровождающееся небольшим гипсохромным сдвигом (с 344 до 325 нм), и некоторое увеличение интенсивности поглощения в высокочастотной, так называемой "цисоидной", области спектра [5, 6]. После экспозиции раствора соединения 3 на солнечном свету в течение 3 ч содержание Z- и Е-изомеров составляло 80 и 20%, соответственно, и при дальнейшем облучении не менялось. В спектре ЯМР ¹Н продуктов, полученных после облучения, появляются новые сигналы в слабом поле при 6.83 и 7.23 м. д. Константа взаимодействия винильных протонов 11.6 Гц характерна для Z-изомера, выделить из смеси индивидуальный Z-изомер с помощью колоночной хроматографии на силикагеле 0.06-0.2 мм ("Acros") не удалось.

С целью выяснения механизма фотоизомеризации нами проведены квантово-химические расчеты методом AM1 [7] и оценены структурные и энергетические характеристики в основном и двух нижних возбужденных состояниях (рис. 2–4, табл. 2). Судя по данным теплоты образования, *E*-изомер является более стабильной структурой. Наблюдаемый нами

Рис 1. Спектр поглощения пиранона **3** в этаноле при 20 °С (*1*, *Е*-изомер) и после облучения солнечным светом в течение 3 ч (2, 20% *Е*-изомера + 80% *Z*-изомера)

процесс фотоизомеризации, результатом которой является преобладание термодинамически менее стабильной формы Z, называют "оптическим насосом" [8]. Сравнение рассчитанных значений порядка связи C(2)–C(3) свидетельствует о том, что двойная связь Z-изомера является более прочной, чем в случае E-конфигурации.

Согласно расчетам, при переходе из основного состояния S_0 в возбужденное состояние S_1 более стабильной структурой становится *цис*-изомер (табл. 3, рис. 3). Сравнение данных табл. 2 показывает, что изменение двугранного угла H(1)–C(2)–C(3)–H(4) *Е*-изомера незначительно, в то время как у Z-изомера этот угол меняется приблизительно на 90°. Для состояния S_1 характерно увеличение длины связи C(2)–C(3) по сравнению с состоянием S_0 . При этом происходит существенное (с 1.829 до 1.140 у

Таблица 1

Соеди- нение	Спектр ЯМР ¹ Н, δ, м. д. (<i>J</i> , Гц)*
3	1.55 (6H, с, пиранон CH ₃); 2.88 (2H, с, пиранон CH ₂); 7.31 и 7.54 (2H, д, J = 16.2, CH=CH); 7.76 (2H, м, J = 9.0, фенил H ₍₂₎ , H ₍₆₎); 8.3 (2H, м, фенил H ₍₃₎ , H ₍₅₎)
<i>E</i> - 3 + <i>Z</i> - 3	1.37 (6H, с, CH ₃ Z-изомер); 1.55 (6H, с, CH ₃ <i>E</i> -изомер); 2.39 (2H, с, CH ₂ Z изомер); 2.88 (2H, с, CH ₂ <i>E</i> -изомер); 6.83 и 7.23 (1H и 1H, д и д, J = 11.6, CH=CH Z-изомер); 7.31 и 7.52 (1H и 1H, д и д, J = 16.2, CH=CH <i>E</i> -изомер); 7.41 и 8.27 (2H и 2H A ₂ M ₂ м, J = 9.2, C ₆ H ₄ Z-изомер); 7.31 и 7.52 (2H и 2H, A ₂ M ₂ м, J = 9.0, C ₆ H ₄ <i>E</i> -изомер)
4	1.22 и 1.35 (12H, с, CH ₃); 2.84 (4H, м, пиранон CH ₂); 3.11 и 3.71 (5H, м, CH(CH ₂) ₂); 7.68 (2H, д, <i>J</i> = 9.6, фенил H ₍₂₎ , H ₍₆₎); 8.18 (2H, д, фенил H ₍₃₎ , H ₍₅₎)

Спектр ЯМР¹Н синтезированных соединений 3, 4

^{*} Спектры ЯМР ¹Н снимали в CDCl₃ (соединение **3**) и в ДМСО-d₆ (соединение **4**).

Рис. 2. Рассчитанная методом AM1 геометрия *E*- и *Z*-изомеров пиранона **3** в основном электронном состоянии S_0

Таблица 2

	Рисунок	Состояние	Изомер	
гасчетные характеристики			Ε	Ζ
Теплота образования, ккал/моль	2	S_0	3.74	6.87
	3	S_1	98.16	89.40
	4	T_1	38.3	38.3
Двугранный угол	2	S_0	177.6	-1.96
H(1)–C(2)–C(3)–H(4), град.	3	S_1	166.0	-89.33
	4	T_1	95.35	-95.35
Порядок связи С(2)–С(3)	2	S_0	1.829	1.880
	3	S_1	1.140	1.093
	4	T_1	1.043	1.043
Длина связи С(2)–С(3), Å	2	S_0	1.344	1.339
	3	S_1	1.390	1.378
	4	T_1	1.440	1.440

Характеристики Z- и E-изомеров соединения 3 в состояниях S ₀ , S ₁ и T ₁
рассчитанные методом АМ1

Рис. 3. Рассчитанная методом AM1 геометрия *E*- и *Z*-изомеров пиранона **3** в состоянии S_1

Рис. 4. Геометрия *E*- и *Z*-изомеров пиранона **3** в состоянии *T*₁

Е-формы и с 1.880 до 1.093 для *Z*-конфигурации) уменьшение порядка связей, что указывает на превращение кратной связи в практически простую связь и, следовательно, на возможность вращения вокруг этой связи. Высота барьера вращения, найденная в режиме координаты реакции, для *E*-изомера равна 0.21 ккал/моль, а для *Z*-изомера – 8.97 ккал/моль. Это означает, что фотовозбуждение *E*-изомера с последующим переходом в *Z*-изомер является энергетически более выгодным процессом, нежели обратное превращение, и должно приводить к преобладанию *Z*-изомера в фотостационарном состоянии. Различие значений энергии активации спектроскопически проявляется в гипсохромном сдвиге максимума поглощения. Расчеты показывают, что при дезактивации состояния $S_1 E$ - и *Z*-изомеры превращаются, соответственно, в *E*- и *Z*-изомеры состояния S_0 молекулы **3**.

Для многих химических соединений установлено, что E–Z-изомеризация протекает с участием триплетных состояний [9–12]. Как показывают расчеты, при интеркомбинационном переходе в это состояние наиболее существенно изменяется структура E-изомера. Двугранный угол H(1)–C(2)–C(3)–H(4) уменьшается с 166.0 до 95.35°. Изменение угла у Z-изомера составляет лишь ~6°. Полученные характеристики (табл. 2), а также визуализация молекулярных структур (рис. 4) показывают, что в триплетном состоянии E- и Z-конфигурации пиранона **3** являются зеркальными антиподами. Дальнейшее уменьшение порядка связи C(2)–C(3) и малый барьер вращения вокруг этой связи (2.46 ккал/моль) обеспечивают легкое взаимопревращение одной изомерной формы в другую. Дезактивация состояния T_1 , в отличие от синглетного состояния S_1 , приводит как для E-, так и для Z-изомера, только к одному из основного состояния S_0 , а именно – к E-изомеру.

Таким образом, полученные результаты свидетельствуют в пользу синглетного механизма протекания процесса *E*–*Z*-фотоизомеризации пиранона **3**.

Таблица З

Е-Изомер		Z-Изомер		
Энергия, нм	Сила осциллятора	Энергия, нм	Сила осциллятора	
487.2	0.0	486.4	0.0	
413.5	0.0	413.2	0.0	
341.0	0.006	334.8	0.006	
332.2	1.327	309.1	0.711	
296.7	0.011	292.7	0.023	
281.2	0.149	276.1	0.189	
240.3	0.022	247.5	0.091	
239.2	0.050	238.2	0.045	
226.6	0.052	228.2	0.140	
218.6	0.029	219.6	0.171	

Рассчитанные спектральные характеристики Е-и Z-пиранонов 3

Рис. 5. Теоретические спектры поглощения *E*-изомера (1), *Z*-изомера (2) пиранона **3**, а также смеси, содержащей 20% *E*- и 80% *Z*-изомера (3)

Используя равновесную геометрию основного состояния *E*- и *Z*-изомеров соединения **3** методом INDO/S-SCF-CI [13] были рассчитаны спектроскопические параметры изомеров – энергии переходов и силы осцилляторов (табл. 3). Анализ показал, что наибольшей интенсивностью отличаются переходы, обусловленные возбуждением электрона, с высшей занятой молекулярной орбитали на низшую вакантную молекулярную орбиталь ($\pi \rightarrow \pi^*$).

На основании данных табл. 3 были построены теоретические УФ спектры поглощения E- и Z-изомеров пиранона 3, а также их смеси (рис. 5). Поскольку спектры поглощения гетероциклических соединений, как правило, бывают несимметричными [14, 15], для описания формы пиков была использована би-гауссова функция [16]. Сравнение спектров, приведенных на рис. 1 и 5, свидетельствует о хорошем соответствии экспериментальных данных и теоретически рассчитанным. В частности, гипсохромное отклонение положения максимума поглощения E-изомера соединения 3 в рассчитанном спектре от экспериментального составляет 12 нм, а его смеси с Z-конформацией – 15 нм. Максимум поглощения Z-изомера пиранона 3 в расчетном спектре соответствует 302 нм.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

УФ спектры получены на спектрофотометре СФ-46 (ЛОМО) в этаноле. Для *E*-пиранона **3** lg ε равен 4.57. Спектры ЯМР ¹Н зарегистрированы на приборе Varian Mercury-200 (200 МГц), внутренний стандарт ТМС. ВЭЖХ осуществляли на приборе GILSON-303, на колонке (3.9 × 150 мм) фирмы Waters, которую заполняли сорбентом Nova-Pak Silica. Расход элюента (этилацетат–гексан, 1:1) – 1 мл/мин. Детектор спектрофотометрический ($\lambda = 254$ нм). Анализ ТСХ проводился на пластинках Silufol UV-254, элюент этилацетат– гексан, 1:1.

Квантово-химические расчеты были выполнены полуэмпирическим методом AM1 с полной оптимизацией геометрических параметров как основного, так и двух низших возбужденных состояний *E*- и *Z*-изомеров пиранона **3**. Расчеты возбужденных состояний проводились с учетом взаимодействия конфигураций (ключевое слово программы – OPEN (2,2)). Спектроскопические параметры *E*- и *Z*-изомеров пиранона **3**, позволяющие 1806

проводить сравнение и предсказание электронных спектров поглощения, были рассчитаны методом INDO/S-CI [13] по программе ArgusLab 3.0 [17]. Теоретические спектры поглощения строились с помощью программы, написанной нами на алгоритмическом языке FORTRAN 77. В качестве формы индивидуальных пиков спектров была использована нормированная би-гауссова функция [16]. В случае спектра *E*-изомера для переднего фронта пика была выбрана среднеквадратичная ширина 30, для заднего – 24 нм. Для спектра *Z*-изомера соответствующие значения равны 30 и 26 нм.

Рис. 1-5 получены с использованием программ JPlot [18] и JMol [19].

Конденсация 4,6,6-триметил-3-циано(5,6-дигидро)-2-пиранона с бензальдегидом 2. Смесь пиранона 1, бензальдегида 2, NaOH (молярное отношение альдегид–пиранон–NaOH 1:2:0.06) в этаноле энергично перемешивают, нагревают до температуры кипения и кипятят 4 ч. В ходе реакции сначала выпадает продукт 4 типа аддукта Михаэля, который отфильтровывают из горячего раствора. Продукт кротоновой конденсации 3 выпадает после охлаждения реакционной массы до комнатной температуры. Оба продукта перекристаллизовывают из этанола.

Пиранон 3. Т. пл. 224–226 °С. Найдено, %: С 64.40; Н 4.67; N 9.35. С₁₆Н₁₄N₂O₄ Вычислено, %: С 64.42; Н 4.73; N 9.39.

Пиранон 4. Т. пл. 204–207 (разл.) °С. Найдено, %: С 64.65; Н 4.42; N 9.03. C₂₅H₂₅N₃O₆ Вычислено, %: С 64.79; Н 5.44; N 9.07.

Спектры ЯМР¹Н соединений **3** и **4** приведены в табл. 1.

СПИСОК ЛИТЕРАТУРЫ

- 1. Д. Янсоне, Л. Лейте, М. Флейшер, Ю. Попелис, И. Мажейка, Э. Лукевиц, Г. Меликян, А. Аветисян, *XTC*, 298 (1998).
- 2. C. S. Marvel, L. E. Coleman, G. P. Scott, J. Org. Chem., 20, 1785 (1955).
- 3. N. Wachter-Jurcsak, C. Radu, K. Redin, *Tetrahedron Lett.*, **39**, 3903 (1998).
- 4. Sh. Nishikawa, M. Sato, H. Kojima, Ch. Suzuki, N. Yamada, M. Inagaki, N. Kashimura, H. Mizuno, J. Agr. Food Chem., 44, 1337 (1996).
- 5. Э. Штерн, К. Тиммонс, Электронная абсорбционная спектроскопия в органической химии, Мир, Москва, 1974, 51.
- 6. Ч. Н. Р. Рао, Электронные спектры в химии, Мир, Москва, 1964, 123.
- 7. M. J. S. Dewar, E. G. Zoebish, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- 8. *Введение в фотохимию органических соединений*, под ред. Г. О. Беккера, Химия, Ленинград. отд-ние, 1976, 273.
- 9. Дж. Барлтроп, Дж. Койл, Возбужденные состояния в органической химии, Мир, Москва, 1978, 448.
- 10. Н. Турро, Молекулярная фотохимия, Мир, Москва, 1967, 208.
- 11. J. Michl, V. Bonačic-Koutecky, *Electronic Aspects of Organic Photochemistry*, John Wiley & Sons, Inc., New York, 1990, 475.
- 12. W. M. Horspool, in *Photochemistry*, Ed. A. Gilbert, Specialist Periodical Reports, The Royal Society of Chemistry, Cambridge, UK, 1997, **28**, 537.
- 13. M. C. Zerner, G. H. Loew, R. F. Kirchner, U. T. Mueller-Westerhoff, J. Am. Chem. Soc., 102, 589 (1980).
- 14. B. Klabuhn, D. Spindler, H. Goetz, Spectrochim. Acta, 29A, 1283 (1973).
- 15. L. Antonov, D. Nedeltcheva, Chem. Soc. Rev., 29, 217 (2000).
- 16. Э. А. Кюллик, М. Р. Кальюранд, М. Н. Коэль, *Применение ЭВМ в газовой хромато-графии*, Наука, Москва, 1978, 127.
- 17. ArgusLab 3.0 Program. http://www.planaria-software.com
- 18. JPlot 1-2: http://www.cig.ensmp.fr/~vanderlee
- 19. JMol: http://www.openscience.org/~gezelter

Латвийский институт органического синтеза, Pura LV-1006 e-mail: misha@osi.lv Поступило в редакцию 26.05.2003