Посвящается замечательному гетероциклисту А.Ф. Пожарскому в связи с его 65-летием

А. В. Куркин, В. В. Нестеров, А. В. Карчава, М. А. Юровская

СИНТЕЗ НЕРАЦЕМИЧЕСКОГО 9-(1-МЕТОКСИКАРБОНИЛЭТИЛ)-1,2,3,4-ТЕТРАГИДРОКАРБАЗОЛА

Предложен новый подход к синтезу производных индола, содержащих хиральный заместитель при атоме азота, заключающийся в индолизации по Фишеру фенилгидразонов с хиральным заместителем у α-атома азота. Исходные гидразины получены алкилированием оптически активным эфиром молочной кислоты анилинов с акцепторным заместителем при аминогруппе по реакции Мицунобу с последующим удалением активирующей акцепторной группировки нитрозированием хирального вторичного анилина и восстановлением соответствующего N-нитрозосоединения.

Ключевые слова: N-арил-2,2,2-трихлорэтилкарбаматы, нерацемический 9-(1-метоксикарбонилэтил)-1,2,3,4-тетрагидрокарбазол, N-трифторацетил-, -фенилсульфонил-, -тозиланилины, хиральный N-фенил-N-алкилгидразин, этиловый эфир (*S*)-молочной кислоты, алкилирование по Мицунобу, десульфонилирование, индолизация по Фишеру, удаление активирующей группы.

Целый ряд производных индола, представляющих интерес для медицины и биохимии, содержит хотя бы один асимметрический атом углерода. Большая часть стереоселективных методов синтеза хиральных производных индола основана на использовании природного триптофана. Возможный альтернативный подход к различным хиральным производным индола, на наш взгляд, может быть основан на использовании N-алкиланилинов, содержащих хиральный заместитель при атоме азота. Примеры синтеза производных индола, содержащих хиральный заместитель при атоме азота, крайне малочисленны. Так, например, такие соединения индольного ряда могут быть получены в результате трансформации солей 1-алкил-3-нитропиридиния под действием ацетониминов хиральных первичных аминов [1], однако данная реакция позволяет получать производные индола, содержащие алкильные (чаще всего метильные) группы в положении 2 индола. Второй подход основан на прямом введении хирального заместителя к атому азота индола в результате алкилирования оптически активными спиртами в условиях реакции Мицунобу [2, 3], но это возможно только при наличии акцепторных групп в положениях 2 и 3 индола, что обеспечивает повышенную по сравнению с незамещенным индолом NH-кислотность таких соединений.

Наши исследования в последние годы связаны с поиском универсального подхода к синтезу производных индола, содержащих хиральный заместитель при атоме азота. В качестве исходных соединений для получения N-алкилиндолов широко используются N-алкиланилины. Превращение последних в соответствующие производные индола может быть осуществлено различными способами [4, 5]. Таким образом, хиральные N-алкиланилины могут быть использованы в качестве универсальных синтетических предшественников производных индола, содержащих хиральный заместитель при атоме азота.

Недавно мы предложили метод синтеза рацемических производных 2-(индол-1-ил)пропионовых кислот, основанный на циклизации по Фишеру соответствующих арилалкилгидразонов [6]. Базируясь на этих исследованиях, мы разработали модифицированный вариант этого метода, позволяющий получать нерацемические производные индола:

1 a R = H, b $R = NO_2$, c R = MeO; 2, 3 a-c R = H, d, e $R = NO_2$, f R = OMe; a $Z = COCF_3$; b $Z = SO_2Ph$; c $Z = SO_2CH_2CCl_3$; d $Z = COCF_3$; e, f Z = Ts; 4 a R = H, R' = Me; b R = R' = H; c $R = NO_2$, R' = Me; d R = OMe, R' = H

Согласно приведенной схеме, предшественниками производных индола, содержащих хиральный заместитель при атоме азота, могут служить гидразоны хиральных N-алкил-N-арилгидразинов. Соответствующие гидразины, в свою очередь, могут быть получены из хиральных N-алкиланилинов в результате нитрозирования и последующего восстановления. Таким образом, исходными соединениями в синтезе индолов с хиральным заместителем при атоме азота с применением метода Фишера служат хиральные N-алкиланилины. Современные подходы к синтезу нерацемических N-алкиланилинов с хиральным заместителем при атоме азота связаны с асимметрическим гидрированием иминов с использованием хиральных катализаторов [7], либо с асимметрическим присоединением к иминам металлоорганических реагентов, катализируемым хиральными катализаторами [8, 9]. Несмотря на широкие возможности этих каталитических методов, далеко не всегда они позволяют получать оптически активные соединения с высокой энантиомерной чистотой.

Один из наиболее удобных методов синтеза оптически активных аминов, применяемых в современной синтетической практике, основан на алкилировании субстрата, содержащего подвижный атом водорода, с использованием стереоспецифической реакции Мицунобу, спиртами при участии окислительно-восстановительной системы трифенилфосфин—эфир азодикарбоновой кислоты. Для реакции Мицунобу характерно одно существенное ограничение – используемый субстрат должен обладать повышенной кислотностью (р K_a >15). В последнее время были разработаны некоторые модификации реакции Мицунобу, позволяющие вовлечь в процесс алкилирования спиртами субстраты с более высокими значениями р K_a . Так, было предложено использовать следующие системы: дипиперидид азодикарбоновой кислоты—трибутилфосфин [10], цианометилентрибутилфосфоран [11], N,N,N',N'-тетраметиламид азодикарбоновой кислоты [12].

NH-Кислотность анилинов недостаточна для того, чтобы их можно было алкилировать в условиях реакции Мицунобу. В связи с этим нами были использованы анилины, содержащие трифторацетильную, 2,2,2-трихлорэтоксикарбонильную, фенилсульфонильную и тозильную акцепторные активирующие группы при атоме азота. Известны случаи алкилирования в условиях реакции Мицунобу сульфамидов, трифторацетанилидов [10] и 2,2,2-трихлорэтоксикарбаматов [13]. Трифторацетанилиды 2a,d и 2,2,2-трихлорэтилфенилкарбамат 2c были получены прямым ацилированием соответствующих анилинов с выходами более 90%. N-Арилсульфониланилиды 2b,e,f были синтезированы взаимодействием соответствующих сульфонилхлоридов с исходными анилинами. Тозилирование проводили двумя способами: 1. В ТГФ при использовании эквимолярного количества триэтиламина при комнатной температуре; 2. В пиридине в присутствии 5% (молярных) 4-(N,N-диметиламино)пиридина при нагревании. При использовании первого метода были получены N-тозиланилины 2b,f, сульфониламид 2e в этих условиях не образуется, был выделен только дизамещенный продукт – N,N-бис(*p*-толилсульфонил)-4-нитроанилин. Применение второго метода привело к получению анилида 2е с выходом 73%.

Все полученные анилиды были использованы в качестве субстратов в реакции Мицунобу с коммерчески доступным этиловым эфиром (*S*)гидроксипропионовой (молочной) кислоты. Мы исследовали для всех субстратов применение в реакции Мицунобу различных окислительновосстановительных систем: диизопропиловый эфир азодикарбоновой кислоты трифенилфосфин (**A**), дипиперидид азодикарбоновой кислоты трибутилфосфин (**Б**), цианометилентрибутилфосфоран (**9**) (**B**).

Условия алкилирования различных анилидов 2a-f и выходы продуктов алкилирования приведены в табл. 1. Согласно данным таблицы, выходы продуктов алкилирования 3a - e субстратов 2a - f с использованием системы Б несущественно превышают выходы продуктов алкилирования при использовании окислительно-восстановительной системы А. Кроме того, можно сделать вывод, что активация анилинов арилсульфонильной группой более эффективна в силу большей NH-кислотности арилсульфониланилидов. Так, при переходе от анилидов с активирующей группой $Z = CF_3CO$ и $Z = Cl_3CCH_2CO_2$ (соединения **3a**,**c**) к фенилсульфониланидидам $Z = PhSO_2$ (соединение **3b**) выходы увеличиваются с 30–60 до 68-80%. Свидетельством тому, что степень NH-кислотности является решающим фактором, обеспечивающим успех алкилирования, служит тот факт, что введение в ароматическое кольцо нитрогруппы значительно увеличивает выход продуктов алкилирования (до 87%, соединение 3е), тогда как введение электронодонорной метоксигруппы приводит к его снижению (до 77%, соединение 3f).

При использовании системы В все субстраты вступают в реакцию Мицунобу с высоким выходом, однако, трудная доступность и нестабильность фосфорана 9 в значительной мере затрудняют его использование. Максимальный выход продуктов алкилирования был достигнут при использовании эквимолярных количеств всех реагентов. Увеличение используемого количества трифторацетанилида и окислительно-восстановительной системы в 1.2 и 1.5 раз по отношению к спирту не привело к повышению выхода продукта алкилирования За, а только крайне затруднило его хроматографическое выделение из-за наличия в реакционной смеси большого количества непрореагировавших реагентов. Изучение влияния природы растворителя (бензол, ТГФ и ДМФА) и времени проведения реакции на процесс алкилирования по Мицунобу показало (табл. 1), что для системы А при выдерживании реакционной смеси при комнатной температуре 24 ч наиболее эффективным растворителем служит ТГФ (выход соединения 3d 77%). В свою очередь для систем Б и В оптимальным является кипячение в течение 24 ч в бензоле (выход соединения 3d 81 и 87% соответственно). С учетом всех изложенных выше факторов в экспериментальной части приведена методика с использованием наиболее удобной системы А.

Известно, что реакция Мицунобу сопровождается полным обращением конфигурации исходного спирта при образовании продукта алкилирования [3]. Поскольку мы использовали в качестве алкилирующего агента спирт (S)-конфигурации, то полученные производные 2-аминопропионовой кислоты должны обладать (R)-конфигурацией. Для подтверждения (R)-конфигурации полученных продуктов алкилирования 3a-e было выполнено рентгеноструктурное исследование соединения 3b, которое полностью подтвердило ожидаемую конфигурацию. На рисунке представлен общий вид молекулы 3b.

Пространственная модель молекулы соединения 3b

Следующий этап нашей работы был связан с изучением возможности удаления активирующих групп. Превращение трифторацетанилидов в соответствующие анилины легко осуществляется различными способами, например, КОН/ЕtOH или K₂CO₃/MeOH–H₂O, NaBH₄/EtOH [14, 15]. Превращение 2,2,2-трихлорэтиларилкарбаматов в N-алкиланилины также происходит в мягких условиях – с использованием системы Zn/NaH₂PO₄– TГФ [13].

Как известно, фенил- и толилсульфонильная группы достаточно трудно удаляются с атома азота, и это требует обычно весьма жестких условий, например, использования систем Na-жидкий аммиак, Na-нафталин, конц. H_2SO_4 , причем выходы обычно не превышают 60% [16]. Использование таких условий обычно неприменимо для производных 2-аминопропионовой кислоты из-за наличия способных к восстановлению групп, более того, такие условия могут привести к рацемизации продуктов алкилирования хиральными спиртами. Известно также удаление сульфонильных групп действием магния в метаноле при ультразвуковом облучении [17]. Этот метод позволил нам получить из соответствующих N-арилсульфониламидов **3** метиловые эфиры (*R*)-N-фенил-2-аминопропионовой кислоты **4** с высокими выходами:

$$3b,d,e \xrightarrow{Mg/MeOH} 4b,d$$

Удаление сульфонильной группы действием магния в метаноле при ультразвуковом облучении оказалось непригодным для субстрата **3**е, содержащего нитрогруппу – реакция приводила к образованию смеси неидентифицируемых соединений. Была предпринята попытка удаления 1669

тозильной группы с использованием триметилиодсилана [18], однако, из реакционной смеси был выделен исключительно исходный сульфониланилин. Поэтому единственным способом получения соединения **4**с явился мягкий гидролиз субстрата **3d** в системе K₂CO₃/MeOH–H₂O.

Образование метиловых эфиров в условиях десульфонилирования согласуется с сообщением о сопутствующей переэтерификации под действием магния и ультразвукового облучения [17].

При анализе методом ВЭЖХ на хиральном носителе полученного этим методом анилина **4b** мы обнаружили, что он содержит примесь (*S*)-изомера (25%), что говорит о частичной рацемизации продукта реакции Мицунобу в ходе удаления активирующей группы. В свою очередь, специальное исследование диастереомеров метилового эфира N-фенилаланина **4b** с (*S*)-1,1-бинафтолом (соотношение 1:1) с помощью спектроскопии ЯМР ¹Н четко показывает для сигналов протонов групп ОСН₃ в области 3.14 м. д. наличие двух синглетов (*R*)- и (*S*)-изомеров в соотношении 4:1.

Все полученные нами эфиры 2-амино-N-арилпропионовых кислот обнаружили оптическую активность.

Дальнейшая последовательность превращений от оптически активных алкиланилинов 4 к индолам, содержащим хиральный заместитель при атоме азота, была отработана на примере метилового эфира (R)-2-(Nфениламино)пропионовой кислоты (4b) и включает синтез метилового эфира (*R*)-2-(N-нитрозо-N-фениламино)пропионовой кислоты (5), его последующее восстановление в соответствующий гидразин 6, получение его гидразона 7 с циклогексаноном и циклизацию его в целевой 9-(1-метоксикарбонилэтил)-1,2,3,4-тетрагидрокарбазол (8). Нитрозирование анилина 4b этилнитритом с количественным выходом приводит к нитрозоамину 5. По данным спектров $ЯМP^{-1}H$, соединение 5 существует в виде смеси геометрических изомеров. Для восстановления нитрозоамина 5 в соответствующий гидразин 6 мы использовали систему цинк-соляная кислота-метанол при -78 °C [6], применение которой практически не приводит к побочному процессу разрыва связи N-N. Из-за нестабильности полученный в результате восстановления гидразин 6 без дальнейшей очистки превращали в гидразон 7, который также без выделения и очистки циклизовали в тетрагидрокарбазол 8. Индолизация гидразона циклогексанона 7 протекает чрезвычайно легко и образование заметных количеств индольного производного 8 наблюдается уже при перемешивании гидразина 6 с циклогексаноном в присутствии каталитических количеств п-толуолсульфокислоты.

Определение энантиомерного состава индола **8** методом ВЭЖХ с применением хиральной подвижной фазы показало наличие обоих (*S*)- и (*R*)-энантиомеров в соотношении 1:3. 97 (~75% *ee*).

Таким образом, полученные нами результаты позволяют предположить, что частичная рацемизация происходит лишь на стадии десульфонилирования. Соотношение энантиомеров остается близким на всех остальных стадиях превращения гидразина в индол.

Про-	Суб-	Выход продуктов реакции, %								
дукт реак-	страт	Α			Б			В		
ции		ΤΓΦ	C ₆ H ₆	ДМФА	ΤΓΦ	$\mathrm{C_6H_6}$		ΤΓΦ	$\mathrm{C_6H_6}$	
3 a	2a	47	31	-	38	52	-	34	61	-
3d	2d	51	37	-	32	57	-	31	70	_
3c	2c	11	-	-	27	42	-	56	83	_
3b	2b	68	54	12	60	78	-	54	80	_
3e	2e	77	58	18	74	81	-	75	87	_
3f	2f	65	59	6	60	69	-	64	77	-

Выходы продуктов алкилирования (S)-этиловым эфиром гидроксипропионовой кислоты 3 в условиях реакции Мицунобу

Таблица 2

Валентные углы	(ω) в	структуре	3b
----------------	-------	-----------	----

Угол ω, град.		Угол	ω, град.	Угол	ω, град.
O(2)–S(1)–O(1)	120.8(1)	C(2)–C(1)–S(1)	119.9(2)	C(10)–C(9)–C(8)	120.0(2)
O(2)–S(1)–N(1)	106.8(1)	C(6)–C(1)–S(1)	119.0(2)	C(11)-C(10)-C(9)	119.9(2)
O(1)-S(1)-N(1)	106.5(1)	C(3)–C(2)–C(1)	119.3(2)	C(10)-C(11)-C(12)	120.6(2)
O(2)–S(1)–C(1)	107.7(1)	C(2)–C(3)–C(4)	120.3(2)	C(7)–C(12)–C(11)	119.5(2)
O(1)–S(1)–C(1)	107.3(1)	C(5)–C(4)–C(3)	120.2(2)	N(1)-C(13)-C(14)	114.7(2)
N(1)-S(1)-C(1)	107.1(1)	C(4)–C(5)–C(6)	120.3(2)	N(1)-C(13)-C(15)	111.4(2)
C(15)-O(4)-C(16)	116.5(2)	C(5)-C(6)-C(1)	118.9(2)	C(14)-C(13)-C(15)	110.2(2)
C(7)–N(1)–C(13)	120.0(2)	C(12)–C(7)–C(8)	120.4(2)	O(3)-C(15)-O(4)	124.1(2)
C(7)–N(1)–S(1)	118.0(1)	C(12)-C(7)-N(1)	118.3(2)	O(3)-C(15)-C(13)	123.1(2)
C(13)–N(1)–S(1)	120.6(2)	C(8)–C(7)–N(1)	121.3(2)	O(4)-C(15)-C(13)	112.7(2)
C(2)–C(1)–C(6)	121.1(2)	C(7)–C(8)–C(9)	119.5(2)	O(4)–C(16)–C(17)	111.8(2)

Таблица З

Длины	связей (а	<i>d</i>) в	структуре 3b	
	(.			

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	d, Å
S(1)–O(2)	1.437(2)	N(1)–C(13)	1.473(3)	C(7)–C(8)	1.394(3)
S(1)–O(1)	1.437(2)	C(1)–C(2)	1.397(3)	C(8)–C(9)	1.400(3)
S(1)–N(1)	1.638(2)	C(1)–C(6)	1.398(3)	C(9)–C(10)	1.394(3)
S(1)–C(1)	1.765(2)	C(2)–C(3)	1.384(4)	C(10)–C(11)	1.379(4)
O(3)–C(15)	1.205(3)	C(3)–C(4)	1.400(3)	C(11)–C(12)	1.396(3)
O(4)–C(15)	1.331(3)	C(4)–C(5)	1.389(4)	C(13)–C(14)	1.515(4)
O(4)–C(16)	1.464(3)	C(5)–C(6)	1.396(3)	C(13)–C(15)	1.533(3)
N(1)–C(7)	1.447(3)	C(7)–C(12)	1.388(3)	C(16)–C(17)	1.506(4)

Атом	x	У	Z	U
S(1)	2202(1)	5042(1)	1581(1)	19(1)
O(1)	3086(2)	6696(3)	2233(1)	24(1)
O(2)	1093(2)	5570(3)	565(1)	25(1)
O(3)	-1403(2)	2152(3)	2634(2)	31(1)
O(4)	-550(1)	5460(3)	2689(1)	25(1)
N(1)	1615(2)	3856(3)	2443(2)	19(1)
C(1)	3159(2)	3107(4)	1216(2)	19(1)
C(2)	2542(2)	1567(5)	379(2)	25(1)
C(3)	3299(2)	8(5)	134(2)	28(1)
C(4)	4669(2)	-11(5)	710(2)	26(1)
C(5)	5278(2)	1545(4)	1530(2)	24(1)
C(6)	4526(2)	3117(4)	1795(2)	23(1)
C(7)	2464(2)	3682(4)	3631(2)	19(1)
C(8)	3300(2)	1917(4)	4039(2)	21(1)
C(9)	4102(2)	1804(4)	5196(2)	24(1)
C(10)	4057(2)	3446(4)	5932(2)	23(1)
C(11)	3242(2)	5201(5)	5514(2)	23(1)
C(12)	2437(2)	5333(4)	4361(2)	24(1)
C(13)	388(2)	2589(4)	1989(2)	23(1)
C(14)	576(2)	167(5)	2120(2)	25(1)
C(15)	-611(2)	3344(4)	2489(2)	20(1)
C(16)	-1442(2)	6313(5)	3202(2)	30(1)
C(17)	-1025(3)	5655(5)	4430(2)	33(1)
H(2)	1590(30)	1580(50)	-10(20)	28(7)
H(3)	2870(30)	-1000(60)	-420(30)	29(8)
H(4)	5110(30)	-1110(50)	540(30)	26(7)
H(5)	6220(30)	1620(50)	1880(20)	22(6)
H(6)	4960(20)	4240(40)	2400(20)	11(6)
H(8)	3420(30)	860(50)	3600(20)	18(6)
H(9)	4600(30)	560(50)	5470(20)	23(7)
H(10)	4530(30)	3260(50)	6710(20)	22(7)
H(11)	3250(30)	6520(50)	6010(20)	24(7)
H(12)	1950(20)	6560(40)	4046(19)	17(5)
H(13)	-21(19)	3010(40)	1210(18)	10(4)
H(141)	980(30)	-130(60)	2940(20)	28(7)
H(142)	1220(40)	-170(90)	1730(30)	68(12)
H(143)	-200(30)	-590(50)	1690(20)	18(7)
H(161)	-2360(30)	5570(60)	2780(30)	33(8)
H(162)	-1410(30)	7690(70)	3010(30)	38(9)
H(171)	-50(40)	6090(60)	4820(30)	44(9)
H(172)	-1560(30)	6700(70)	4750(30)	43(9)
H(173)	-1220(30)	4070(60)	4550(30)	32(8)

Координаты атомов (×10⁴) и их изотропные эквивалентные (для Н изотропные) тепловые параметры (*U*) в структуре 3b

1672

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получали на приборе UR-20 для суспензий в вазелиновом масле или чистых соединений. Хромато-масс-спектральные исследования реакционных смесей и выделенных соединений проводили с использованием газожидкостного хроматографа Carlo Erba/Kratos Fractovap Series 4200, колонка Ultra-1, Hewlett Packard, 25 м × 0.2 мм, толщина слоя фазы 0.33 мкм, газ-носитель гелий (1мл/мин), делитель потока 1:10, температура испарителя 280 °C, градиент температуры от 150 до 280 °C (5 °C/мин), масс-спектральный детектор ITD-700 (Finnigan MAT), ионизация – электронный удар, 70 эВ, диапазон масс m/z 45–400. Спектры ЯМР ¹Н и ¹³С получали на спектрометре Bruker AMX-400 (400 и 100 МГц соответственно) в ДМСО-d₆, если не указан другой растворитель, внутренний стандарт ТМС. Удельное вращение измеряли на поляриметре Jasco DIP-360 (589 нм). Температуры плавления измеряли в открытых капиллярах, приведенные значения не исправляли. Контроль за ходом реакций и чистотой выделяемых соединений осуществляли методами TCX на пластинках Silufol UV-254 и газовой хроматографии с масс-спектральным детектором.

Рентгеноструктурные исследования. В молекуле **3b** двугранный угол между плоскостями бензольных циклов C(1)–C(2)–C(3)–C(4)–C(5)–C(6) и C(7)–C(8)–C(9)–C(10)–C(11)–C(12) равен 138.3°. Остальные геометрические параметры в исследованной молекуле имеют обычные значения [19]. Бесцветные кристаллы соединения **3b** моноклинные, при –163 °C: a = 10.962(4), b = 6.191(2), c = 12.699(5) Å, $\beta = 112.23(1)^\circ$, V = 798(1) Å³, $d_{выч} = 1.388$ г/см³, Z = 2, пространственная группа P2(1). Параметры ячейки и интенсивности 4308 независимых отражений измеряли на дифрактометре SMART 1000 CCD (λ (Мо K_{α}) = 0.71073 Å, графитовый монохроматор, ω -сканирование с шагом 0.3°, время экспозиции 10 с). Структура расшифрована прямым методом, выявившим все неводородные атомы, и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода объективно выявлены разностными Фурье-синтезами и уточнены изотропно. Окончательные значения факторов расходимости $R_1 = 0.05$ по 3910 отражениям с $I > 2\sigma$ и $R_w = 0.131$ по 4308 отражениям. Все расчеты проведены по программам SAINT [20] и SHELXTL-97 [21] (версия PC). Валентные углы и длины связей для соединения **3b** приведены в табл. 2 и 3.

Трифторацетанилид (2а) [22], **4-нитротрифторацетанилид (2d)** [23] были получены согласно описанным методикам. Температуры плавления и спектральные характеристики совпадают с литературными данными.

N-Фенилсульфониланилин (2b). К раствору 10.22 г (110 ммоль) анилина в 150 мл ТГФ прибавляют по каплям 11.11 г (110 ммоль) триэтиламина, перемешивают 15 мин при охлаждении на ледяной бане, затем прибавляют по каплям 19.38 г (110 ммоль) бензолсульфонилхлорида, перемешивают 6 ч при комнатной температуре. Выливают реакционную смесь в 120 мл воды со льдом, образовавшееся масло экстрагируют хлороформом (3 × 100 мл), органический слой промывают 200 мл 5% раствора соляной кислоты, водой (3 × 100 мл) и сушат безводным сульфатом натрия. После удаления летучих компонентов в вакууме и выдерживания в эксикаторе над P_2O_5 остаток перекристаллизовывают из смеси бензол–гексан. Получают 22.1 г (86%) белых кристаллов, т. пл. 105 °C (из бензола). По данным работы [24], т. пл. 103 °C. Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 7.19 (2H, д. т, *J* = 7.0, *J* = 2.0, Ar); 7.25–7.35 (3H, м); 7.42 (2H, т. т, *J* = 7.0, *J* = 2.0, Ar); 7.70 (2H, д. т, *J* = 7.0, *J* = 2.0, Ar); 11.10 (1H, уш. с, NH).

4-Метокси-N-(4-толилсульфонил)анилин (2f) получают аналогично. Выход 96%, т. пл. 110–112 °С (из смеси бензол–гексан). По данным работы [25], т. пл. 110–112 °С. Спектр ЯМР ¹Н, δ, м. д. (*J*, Гц): 2.32 (3H, с, СН₃); 3.31 (3H, с, СН₃O); 7.09 (2H, д, *J* = 8.7, Ar); 7.39 (2H, д, *J* = 8.1, Ar); 7.76 (2H, д, *J* = 8.1, Ar); 8.13, 7.09 (2H, д, *J* = 8.7, Ar); 9.40 (1H, уш. с, NH).

N,N-Бис(4-толилсульфонил)-4-нитроанилин. Выход 80%, т. пл. 224–226 °С (из этанола). Спектр ЯМР ¹Н, б, м. д. (*J*, Гц): 2.46 (6H, с, CH₃); 7.32 (2H, д, *J* = 8.8); 7.51 (4H, д, *J* = 8.1); 7.71 (4H, д, *J* = 8.1); 8.30 (2H, д, *J* = 8.8).

4-Нитро-N-(4-толилсульфонил)анилин (2е). Растворяют 6.9 г (50 ммоль) *n*-нитроанилина в 30 мл пиридина, добавляют 0.3 г (2.5 ммоль) 4-(N,N-диметиламино)пиридина и 9.53 г (50 ммоль) *n*-толуолсульфохлорида, перемешивают при комнатной температуре

15 мин, затем 5 ч при 90–100 °С. Реакционную смесь выливают в смесь 40 мл конц. HCl со льдом, выпавший осадок отфильтровывают, промывают на фильтре ледяной водой, сушат на воздухе, перекристаллизовывают из этанола. Получают 10.5 г (73%) светло-желтого кристаллического вещества, т. пл. 189–190 °С (из этанола). По данным работы [26], т. пл. 189–190 °С. ИК спектр, v, см⁻¹: 3340 (NH), 1170, 1350 (SO₂), 1320, 1520 (NO₂). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 2.33 (3H, с, CH₃); 7.30 (2H, д, *J* = 9.0); 7.39 (2H, д, *J* = 8.1); 7.76 (2H, д, *J* = 8.1); 8.13 (2H, д, *J* = 9.0); 11.24 (1H, с, NH).

N-Фенил-2,2,2-трихлорэтилфенилкарбамат (2с) получают согласно методике [27]. Температура плавления и спектральные характеристики совпадают с литературными данными.

Хлорид цианометилтрибутилфосфония [11], цианометилентрибутилфосфоран [11] и дипиперидиндиамид азодикарбоновой кислоты [28] получают согласно описанным методикам. Температуры плавления и спектральные характеристики совпадают с литературными данными.

Этиловые эфиры N-арил-N-ацилаланинов (общие методики). А. Раствор 2.61 г (13 ммоль) диизопропилового эфира азодикарбоновой кислоты в 5 мл свежеперегнанного ТГФ добавляют по каплям к смеси 3.36 г (13 ммоль) трифенилфосфина, 13 ммоль субстрата и 13 ммоль этилового эфира (S)-молочной кислоты в 50 мл ТГФ при охлаждении льдом и водой и перемешивании. Реакционную смесь оставляют при комнатной температуре на 24 ч, после чего растворитель удаляют при пониженном давлении, остаток хроматографируют на колонке с силикагелем в системе растворителей этилацетатпетролейный эфир, 1:5.

Б. К раствору 1 ммоль этилового эфира (*S*)-молочной кислоты и 1.5 ммоль субстрата в 3 мл сухого бензола при перемешивании в атмосфере аргона прибавляют смесь 1.5 ммоль трибутилфосфина и 1.5 ммоль дипиперидида азодикарбоновой кислоты. Реакционную смесь выдерживают 24 ч при 100 °С, растворитель удаляют при пониженном давлении, остаток хроматографируют на колонке с силикагелем в системе растворителей этилацетат– петролейный эфир, 1:5.

В. К раствору 1 ммоль этилового эфира (S)-молочной кислоты и 1.5 ммоль субстрата в 10 мл сухого бензола при перемешивании в атмосфере аргона прибавляют 0.36 г (1.5 ммоль) цианометилентрибутилфосфорана. Реакционную смесь выдерживают 24 ч при 100 °С, растворитель удаляют при пониженном давлении, остаток хроматографируют на колонке с силикагелем в системе растворителей этилацетат–петролейный эфир, 1:5.

Этиловый эфир (*R*)-2-амино-N-трифторацетил-N-фенилпропионовой кислоты (3а). Выход 61% (В). Вязкая жидкость. ИК спектр, v, см⁻¹: 1730 (С=О). Масс-спектр, *m/z* (*I*, %): 193 [M⁺–COCF₃] (13), 120 (100), 77 (10). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.16 (3H, т, *J* = 7.1, CH₂<u>CH</u>₃); 1.37 (3H, д, *J* = 7.1, CH<u>CH</u>₃); 4.03 (1H, к, *J* = 7.1, <u>CH</u>CH₃); 4.09 (2H, к, *J* = 7.1, CH₃<u>CH</u>₂); 6.52–6.60 (3H, м, Ar); 7.08 (2H, т, *J* = 7.8, Ar). Спектр ЯМР ¹³С, δ, м. д.: 15.01 (CH₃CH₂); 18.88 (CH₃CH); 52.25 (CH); 61.21 (CH₂CH₃); 113.7 (2C, CH); 116.07 (CF₃, к, *J* = 289); 117.81 (C, CH); 129.85 (2C, CH); 148.06 (C); 159.30 (COCF₃, к, *J* = 38); 175.15 (C=O). Найдено, %: C 53.41; H 5.18; N 4.46. C₁₃H₁₄F₃NO₃. Вычислено, %: C 53.98; H 4.88; N 4.84. [α]²³_D 2.5 (CHCl₃, *c* 0.03).

Этиловый эфир (*R*)-2-амино-N-фенилсульфонил-N-фенилпропионовой кислоты (3b). Выход 80% (B), т. пл. 55 °С (из этанола). ИК спектр, v, см⁻¹: 1140, 1340 (SO₂), 1730 (С=О). Масс-спектр, *m/z* (*I*, %): 333 [M]⁺ (5), 260 [M⁺–PhSO₂] (70), 119 (100). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.20 (3H, т, *J* = 7.0, <u>CH</u>₃CH₂); 1.28 (3H, д, *J* = 7.0, CH₃); 4.10 (2H, к, *J* = 7.0, CH₃<u>CH₂</u>); 5.09 (1H, к, *J* = 7.0, CH); 7.19 (2H, д. т, *J* = 7.0, *J* = 2.0); 7.25–7.35 (3H, м); 7.42 (2H, т. т, *J* = 7.0, *J* = 2.0); 7.53 (1H, т. т, *J* = 7.0, *J* = 2.0); 7.70 (2H, д. т, *J* = 7.0, *J* = 2.0). Спектр ЯМР ¹³С (CDCl₃), δ , м. д.: 16.03 (CH₃CH₂); 19.27 (CH₃); 59.34 (CH); 63.68 (CH₂); 130.13 (2C, CH); 130.81 (2C, CH); 131.21 (2C, CH); 134.24 (2C, CH); 134.80 (CH); 134.90 (CH); 138.07 (C); 142.45 (C); 173.68 (C=O). Найдено, %: C 61.31; H 6.00; N 4.08. C₁₇H₁₉NO₄S. Вычислено, %: C 61.23; H 5.76, N 4.20. [α]²¹_D –15.2 (CH₃OH, *c* 1.2).

Этиловый эфир (*R*)-2-амино-N-(2,2,2-трихлорэтоксикарбонил)-N-фенилпропионовой кислоты (3c). Выход 83% (B). Вязкая жидкость. Масс-спектр, *m/z* (*I*, %): 298 (16), 296 (43), 294 [M⁺-CO₂Et] (44), 192 (7), 133 (33), 131 (35), 120 (95), 119 (99), 104 (81), 95 (35), 77 (100), 61 (24), 51 (45), 44 (26). Спектр ЯМР ¹Н, δ , м. д. (*J*, Γ ц): 1.21 (3H, т, *J* = 7.0, <u>CH</u>₃CH₂); 1.33 (3H, м); 4.15 (2H, к, *J* = 7.0, CH₃<u>CH</u>₂); 4.69 (1H, к, *J* = 7.0, CH); 4.77–4.89 (2H, м, CH₂CCl₃); 7.31–7.37 (3H, м, Ar); 7.39–7.46 (2H, м, Ar). Спектр ЯМР ¹³С, δ , м. д.: 14.51 (CH₃CH₂); 16.06 (CH₃); 58.12 (CH₂); 61.43 (CHN); 75.12 (CH₂CCl₃); 96.23 (CCl₃); 128.16 (CH); 128.88 (2C, CH); 129.39 (2C, CH); 140.09 (C); 153.48 (CO₂CH₂CCl₃); 171.45 (C=O). Найдено, %: C 45.82; H 4.43; N 3.86. C₁₄H₁₆Cl₃NO₄. Вычислено, %: C 45.61; H 4.37; N 3.80. [α]²²_D 2.1 (CHCl₃, *c* 0.09).

Этиловый эфир (*R*)-2-амино-N-(4-нитрофенил)-N-трифторацетилпропионовой кисслоты (3d). Выход 70% (B). Вязкая жидкость. Масс-спектр, *m/z* (*I*, %): 334 [M⁺] (17), 289 (13), 260 [M⁺–CO₂Et] (43), 234 (43), 217 (59), 204 (11), 171 (14), 165 (28), 122 (27), 101 (53), 73 (100). Спектр ЯМР ¹H (CDCl₃), δ , м. д. (*J*, Гц): 1.88 (3H, т, *J* = 7.0, <u>CH</u>₃CH₂); 2.25 (3H, д. *J* = 7.0, CH₃); 4.85 (2H, к. *J* = 7.0, CH₃<u>CH</u>₂); 5.80 (1H, к. *J* = 7.0, CH); 7.47 (2H, д. *J* = 9.0); 8.77 (2H, д. *J* = 9.0). Спектр ЯМР ¹³С, δ , м. д.: 14.90 (CH₃CH₂); 17.53 (CH₃CH); 62.24 (CH); 73.56 (CH₂CH₃); 116.51 (CF₃, к. *J* = 287); 121.05 (2C, CH); 125.87 (2C, CH); 144.69 (COCF₃, к. *J* = 36); 144.83 (C); 150.39 (C); 170.16 (C=O). Найдено, %: C 46.81; H 3.94; N 8.40. C₁₃H₁₃F₃N₂O₅. Вычислено, %: C 46.71; H 3.92; N 8.38. [α]²²_D 1.7 (CHCl₃, *c* 0.5).

Этиловый эфир (*R*)-2-амино-N-(4-метоксифенил)-N-(4-толилсульфонил)пропионовой кислоты (3f). Выход 77% (B), т. пл. 69 °C (из смеси этанол–гексан). ИК спектр, v, см⁻¹: 1160, 1340 (SO₂), 1605 (Ar), 1750 (C=O). Масс-спектр, *m/z* (*I*, %): 377 [M⁺–H] (2), 304 (10), 187 (45), 174 (42), 149 (65), 128 (85), 105 (95), 101 (100), 91 (100). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.10–1.20 (6H, м); 2.09 (3H, с, CH₃); 3.74 (3H, с, OCH₃); 4.03 (2H, к, *J* = 7.0, CH₃<u>CH₂</u>); 4.99 (1H, к, *J* = 7.0, CH); 6.88 (2H, д, *J* = 7.0); 6.99 (2H, д, *J* = 7.0); 7.37 (2H, д, *J* = 7.0); 7.55 (2H, д, *J* = 7.0). Спектр ЯМР ¹³С, δ , м. д.: 13.83 (CH₃CH₂); 16.72 (CH₃); 20.99 (CH₃Ts); 55.26 (CH₃O); 56.78 (CH); 60.88 (CH₃CH₂); 114.08 (2C); 127.33 (2C); 127.79, 129.45 (2C); 132.80 (2C); 137.20, 143.23, 159.25, 170.97 (C=O). Найдено, %: C 60.39; H 6.26. C₁₉H₂₃NO₅S. Вычислено, %: C 60.46; H 6.14. [α]²¹_D 13.0 (CHCl₃, *c* 4.6).

Этиловый эфир (*R*)-**2-амино-N-(4-нитрофенил)-N-(4-толилсульфонил)пропионовой** кислоты (**3e**). Выход 87% (B), т. пл. 81 °C (из смеси этилацетат–гексан). ИК спектр, v, см⁻¹: 1320, 1520, 1168, 1350 (SO₂), 1750 (C=O). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.15 (3H, т, *J* = 7.2, <u>CH</u>₃CH₂); 1.23 (3H, д, *J* = 7.2, <u>CH</u>₃CH); 2.40 (3H, с, <u>CH</u>₃Ts); 4.08 (2H, т, *J* = 7.2, CH₃<u>CH</u>₂); 5.07 (1H, к, *J* = 7.2, CH₃<u>CH</u>); 7.40 (2H, д, *J* = 7.8); 7.44 (2H, д, *J* = 9.0); 7.61 (2H, д, *J* = 8.1); 8.24 (2H, д, *J* = 9.3). Спектр ЯМР ¹³С, δ, м. д.: 13.82 (CH₃CH₂); 16.78 (CH₃); 21.02 (CH₃Ts); 57.36 (CH); 61.22 (CH₃CH₂); 124.31 (2C); 127.37 (2C); 129.77 (2C); 131.82 (2C); 136.44, 142.44, 143.94, 146.86, 170.79 (C=O). Найдено, %: C 55.05; H 5.06; N 6.99. C₁₈H₂₀N₂O₆S. Вычислено, %: C 55.09; H 5.14; N 7.14. [α]²¹_D 20.5 (CHCl₃, *c* 4.6).

Гидрохлорид этилового эфира (*R*)-N-фенилаланина (4а). К раствору 1.47 г (4 ммоль) 2,2,2-трихлорэтилфенилкарбамата 3с в 40 мл ТГФ при охлаждении до -10 °С в атмосфере аргона прибавляют при интенсивном перемешивании 4 г (62 ммоль) цинковой пыли и, далее по каплям, 8 мл 1 моль/л водного раствора NaH₂PO₄. Реакционную смесь интенсивно перемешивают 6-8 ч при температуре 15 °C в атмосфере аргона. Полноту прохождения реакции контролируют по ТСХ (силикагель, этилацетат-петролейный эфир, 1:3). Избыток цинка отфильтровывают, осадок промывают 20 мл ТГФ, фильтрат упаривают в вакууме, растворяют 50 мл диэтилового эфира, промывают 100 мл 0.2 моль/л водного раствора лимонной кислоты, 50 мл 1 моль/л водного раствора NaHCO₃ и 30 мл насыщенного раствора хлорида натрия, сушат безводным Na₂SO₄. После удаления растворителя в вакууме получают 0.65 г (84%) белого кристаллического порошка с т. пл. 175-176 °С (из этанола). ИК спектр, v, см⁻¹: 1730 (С=О). Масс-спектр, *m/z* (*I*, %): 193 [M⁺] (15), 120 [M⁺-CO₂Et] (100), 77 (12). Спектр ЯМР ¹H, δ, м. д. (J, Γų): 1.15 (3H, τ, J = 7.0, CH₃CH₂); 1.37 (3H, д, J = 7.2, CH₃); 4.06 (2H, к, J = 7.0, CH₃CH₂); 4.17 (1H, к, J = 7.2, CH); 6.81 (3H, м, Ph); 7.19 (2H, т, *J* = 8.1, Ph); 8.09 (3H, уш. с, NH₃⁺). Спектр ЯМР ¹³С, δ, м. д.: 14.43 (CH₃CH₂); 18.22 (CH₃CH); 52.58 (CH); 60.78 (CH₂CH₃); 114.33 (2C, CH); 118.28 (CH); 129.29 (2C, CH); 148.12 (С); 174.65 (С=О). Найдено, %: С 57.61; Н 7.18; N 6.36. С₁₁Н₁₆СІNО₂. Вычислено, %: C 57.52; H 7.02; N 6.10. $[\alpha]_{D}^{22}$ 5.9 (CHCl₃, *c* 0.09).

Этиловый эфир (*R*)-2-амино-N-(4-нитрофенил)пропионовой кислоты (4c). К раствору 0.3 г (9 ммоль) соединения 3d в 10 мл абсолютного этанола при охлаждении до 5 °C в атмосфере аргона прибавляют при интенсивном перемешивании 0.3 г (7.2 ммоль) NaBH₄. Реакционную смесь интенсивно перемешивают 4 ч при комнатной температуре в атмосфере аргона. Полноту прохождения реакции контролируют по TCX (силикагель, этилацетат–петролейный эфир, 1:3). Реакционную смесь выливают в воду со льдом, добавляют по каплям раствор 5 моль/л HCl до pH ~4. Экстрагируют хлористым метиленом (2 × 100 мл). Органический экстракт сушат безводным Na₂SO₄. После удаления летучих компонентов в вакууме и выдерживания в эксикаторе над P_2O_5 , остаток перекристаллизовывают. Выход 85%, т. пл. 147 °C (из этанола). ИК спектр, v, см⁻¹: 1605 (Ar), 1750

(C=O). Macc-cnewrp, m/z (I, %): 238 [M⁺] (9), 165 [M⁺–CO₂Et] (100), 149 (5), 119 (38). Cnewrp AMP ¹H, δ , M. μ . (J, $\Gamma\mu$): 1.15 (3H, τ , J = 7.0, CH₃CH₂); 1.23 (3H, μ , J = 7.0, CH₃); 4.07 (2H, κ , J = 7.0, CH₃CH₂); 5.06 (1H, κ , J = 7.0, CH); 7.44 (2H, μ , J = 9.0); 8.24 (2H, μ , J = 9.0); 8.87 (NH). [α]²¹_D 3.7 (CHCl₃, c 0.1).

Удаление N-(4-толил)сульфонильной активирующей группы (общая методика). К раствору 10 ммоль субстрата в 50 мл абсолютного метанола прибавляют 4.80 г (200 ммоль) магниевой пыли, реакционную смесь помещают в ультразвуковую баню, выдерживают при облучении ультрозвуком 30 мин, остатки магния отфильтровывают, магний промывают 50 мл метанола. Раствор концентрируют в вакууме, выливают в 100 мл насыщенного раствора хлорида аммония, экстрагируют эфиром, промывают 30 мл насыщенного раствора карбоната аммония, 50 мл насыщенного раствора хлорида натрия, сушат безводным Na₂SO₄. Растворитель удаляют при пониженном давлении, остаток раствора в эфире, растворитель удаляют в вакууме, остаток перекристаллизовывают из смеси метанол–эфир. Выпавший при охлаждении осадок отфильтровывают, сушат в вакууме над щелочью и пентаоксидом фосфора.

Гидрохлорид метилового эфира (*R*)-N-фенилаланина (4b). Выход 64.2%, т. пл. 135–137 °С. ИК спектр, v, см⁻¹: 750 (Ph), 1740 (C=O), 2200–2600 (NH₂⁺). Масс-спектр, *m/z* (*I*, %): 179 [M⁺] (45), 148 (46), 120 (100), 91 (40), 76 (45). Спектр ЯМР ¹Н, δ , м. д. (*J*, Гц): 1.38 (3H, д, *J* = 7.0); 3.57 (3H, с, CH₃O); 4.21 (1H, к, *J* = 7.0, CH); 6.80 (2H, д, *J* = 7.0); 7.00 (NH); 7.10–7.25 (3H, м). [α]²¹_D–1.0 (CH₃OH, *c* 0.48).

Гидрохлорид метилового эфира (*R*)-**N**-(4-метоксифенил)аланина (4d). Выход 86%, т. пл. 129–130 °С. ИК спектр, v, см⁻¹: 750 (Ph), 1740 (С=О), 2200–2600 (NH₂⁺). Масс-спектр, *m/z* (*I*, %): 209 [M⁺] (61), 150 (100), 134 (63), 123 (11), 119 (34), 108 (43), 92 (31), 77 (34), 63 (19). Спектр ЯМР ¹H (D₂O), δ, м. д. (*J*, Гц): 1.24 (3H, д, *J* = 7.2, <u>CH</u>₃CH); 3.54 (3H, с, CH₃O); 3.56 (3H, с, <u>CH</u>₃O₂C); 4.21 (1H, к, *J* = 7.0, CH₃<u>CH</u>); 6.83 (2H, д, *J* = 8.7); 7.10 (2H, д, *J* = 8.7). Спектр ЯМР ¹³С, δ, м. д.: 15.79 (CH₃CH); 51.76 (CH); 54.99 (CH₃O₂C); 55.22 (CH₃O); 114.47 (2C, CH); 119.64 (2C, CH); 140.14 (C); 155.43 (C); 171.42 (C=O). Найдено, %: C 55.61; H 7.14; N 5.56. C₁₂H₁₈CINO₃. Вычислено, %: C 55.49; H 6.99; N 5.39. [α]²¹_D –1.0 (CH₃OH, *c* 5.82).

Метиловый эфир (*R*)-**N**-нитрозо-**N**-фенилаланина (5). К раствору 1.12 г (5.2 ммоль) соединения 4b в 20 мл воды при охлаждении и интенсивном перемешивании прибавляют в один прием 50 мл холодного водного раствора 0.29 г (5.2 ммоль) гидроксида калия. Амин экстрагируют эфиром (3 × 50 мл), промывают водой, насыщенным раствором хлорида натрия, экстракт сушат безводным Na₂SO₄. Растворитель удаляют при пониженном давлении, остаток (1 г) растворяют в 10 мл безводного ТГФ, к полученному раствору при охлаждении и перемешивании порциями прибавляют 4.5 мл 14% раствора этилнитрита в спирте (~7.2 ммоль). Реакционную смесь выдерживают 12 ч при комнатной температуре в темноте. Летучие компоненты удаляют в вакууме при температуре бани 40 °C, получают 1.08 г (99%) желтоватой маслянистой жидкости. Соединение используют в дальнейших превращениях без дополнительной очистки. ИК спектр, v, см⁻¹: 1730 (C=O), 1430 (N=O). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 1.41 (3H, д, *J* = 7.1, CH₃); 3.63 (3H, с, CH₃O); 5.15 (1H, к, *J* = 7.1, CH); 7.31–7.60 (5H, м, Ph). Масс-спектр, *m/z* (*I*, %): 208 [M⁺] (7), 178 [M⁺–N=O] (23), 120 (100), 104 (38), 91 (7), 77 (32).

Метиловый эфир (*R*)-2-(1-фенилгидразино)пропионовой кислоты (6). К раствору 9 ммоль нитрозамина **5** в 100 мл абсолютного метанола при охлаждении до -80 °C в атмосфере аргона прибавляют 6 мл (72 ммоль) конц. HCl и порциями, при интенсивном перемешивании, 4.68 г цинковой пыли. Реакционную смесь интенсивно перемешивают 6-8 ч при температуре от -80 до -70 °C в атмосфере аргона. Полноту прохождения восстановления контролируют по TCX (силикагель, этилацетат–петролейный эфир, 1:3, проявляют спиртовым раствором трихлорида железа). Избыток цинка отфильтровывают, осадок промывают 20 мл метанола, фильтрат упаривают в вакууме при комнатной температуре до объема ~20 мл, выливают в 100 мл воды со льдом и подщелачивают, добавляя 20 мл 24% водного раствора аммиака (pH ~12). Экстрагируют хлористым метиленом (4 × 50 мл), экстракт промывают 30 мл насыщенного раствора хлорида натрия, сушат безводным Na₂SO₄. После удаления растворителя в вакууме получают 1.65 г (95%) желто-бурого маслообразного вещества, которое используется для получения гидразонов без дополнительной очистки. Масс-спектр, *m/z* (*I*, %): 194 [M⁺] (25), 135 [M⁺–CO₂Me] (100), 118 (26), 104 (20), 91 (18), 77 (45). (*R*)-1-(1-Метоксикарбонилэтил)-2,3,4,5-тетрагидрокарбазол (8). К раствору 0.78 г (4 ммоль) соединения 6 в 10 мл бензола добавляют 0.39 г (4 ммоль) циклогексанона, каталитическое количество *n*-толуолсульфокислоты и кипятят 8 ч с насадкой Дина–Старка. Образование гидразона 7 было подтверждено хромато-масс-спектрометрически (*m/z* (*I*, %): 274 [M⁺] (5), 215 [M⁺–CO₂Me] (100), 118 (50), 104 (15), 96 (80), 77 (63), 69 (18), 55 (30)). Бензол удаляют при пониженном давлении, остаток растворяют в 40 мл толуола, добавляют 2 г Amberlist-15 и интенсивно перемешивают 3 ч при 90–100 °С. Смолу отфильтровывают, промывают 60 мл этилацетата, фильтрат упаривают в вакууме, остаток хроматографируют на колонке с силикагелем, в системе гексан–этилацетат с градиентом концентрации до 5 об.% последнего. Получают 0.63 г (61%) вязкой жидкости. Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 1.59 (3H, д, *J* = 7.2, CH₃CH); 1.73–1.92 (4H, м); 2.54–2.74 (4H, м); 3.64 (3H, с, CH₃O); 5.40 (1H, к, *J* = 7.2, CH₃CH); 6.98 (1H, т, *J* = 7.4); 7.02 (1H, т, *J* = 7.1); 7.22 (1H, д, *J* = 8.1); 7.38 (1H, д, *J* = 7.1). Масс-спектр, *m/z* (*I*, %): 257 [M⁺] (35), 198 [M⁺–CO₂Me] (100), 170 (30), 156 (5), 143 (3), 128 (4), 115 (4), 98 (3), 77 (3). Найдено, %: С 74.73; H 7.50; N 5.35. C₁₆H₁₉NO₂. Вычислено, %: С 74.68; H 7.44; N 5.44. [α]²¹_D 4.2 (CHCl₃, *c* 0.04).

СПИСОК ЛИТЕРАТУРЫ

- A. V. Karchava, M. A. Yurovskaya, T. R. Wagner, B. L. Zybailov, Yu. G. Bundel', *Tetrahedron Asymmetry*, 6, 2895 (1995).
- 2. S. S. Bhagwat, C. Gude, Tetrahedron Lett., 35, 1847 (1994).
- 3. A. Bombrun, G. Casi, *Tetrahedron Lett.*, **43**, 2187 (2002).
- 4. R. J. Sundberg, Indoles, Acad. Press, London, 1996, 175.
- 5. G. W. Gribble, J. Chem. Soc., Perkin Trans 1, 1045 (2000).
- 6. А. В. Куркин, Н. Е. Голанцов, А. В. Карчава, М. А. Юровская, ХГС, 78 (2002).
- 7. R. Sablong, Tetrahedron Asymmetry, 7, 3059 (1996).
- 8. C. A. Jones, I. G. Jones, M. North, C. R. Pool, Tetrahedron Lett., 36, 7885 (1995).
- 9. I. Inoue, M. Shindo, K. Koga, K. Tomioka, Tetrahedron, 50, 4429 (1994).
- 10. T. Tsunoda, T. Yamanya, Tetrahedron Lett., 34, 1639 (1993).
- 11. T. Tsunoda, F. Ozaki, S. Ito, Tetrahedron Lett., 35, 5081 (1994).
- 12. T. Tsunoda, Y. Yamamiya, Y. Kawamura, S. Ito, Tetrahedron Lett., 36, 2529 (1995).
- 13. F. Degerbeck, B. Fransson, L. Grehn, U. Ragnarsson, J. Chem.Soc., Perkin Trans. 1, 245 (1992).
- 14. V. W. Rosso, J. L. Pazdan, J. J. Vent, Org. Proc. Res. & Develop., 5, 294 (2001).
- 15. P. A. Harland, P. Hodge, Synthesis, 941 (1984).
- 16. M. Vlassa, R. Huahg, J. E. Jackson, J. L. Dye, Tetrahedron, 58, 5849 (2002).
- 17. B. Nyasse, L. Grehn, U. Ragnarsson, Chem. Commun., 1017 (1997).
- G. Sabitha, B. V. Subba Reddy, S. Abraham, J. S. Yadav, *Tetrahedron Lett.*, 40, 1569 (1999).
- 19. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. J. Taylor, J. Chem. Soc., Perkin Trans. 2, 1 (1987).
- SMART V5.051 and SAINT V5.00, Area detector control and integration software, Bruker AXS Inc., Madison, WI-53719, USA, 1998.
- 21. G. M. Sheldrick, SHELXTL-97 V5.10, Bruker AXS Inc., Madison, WI-53719, USA (1997).
- 22. P. A. Wender, A. W. White, Tetrahedron Lett., 22, 3767 (1983).
- 23. H. Suzuki, A. Tatsumi, T. Ishibashi, T. Mori, J. Chem. Soc., Perkin Trans. 1, 339 (1995).
- 24. J. Nadvonik, M. Ludwig, Coll., 66, 1380 (2001).
- 25. H. Tokuyama, M. Sato, T. Ueda, T. Fukuyama, Heterocycles, 54, 105 (2001).
- 26. Y. Chengzhi, L. Bin, H. Longqin, J. Org. Chem., 66, 919 (2001).
- 27. W. Willians, J. Chem. Soc., Perkin Trans. 2, 1244 (1973).

28. E. E. Smissman, A. Makriyannis, J. Org. Chem., 38, 1652 (1973).

Московский государственный университет им. М. В. Ломоносова, Москва 119234, Россия e-mail: indolecom@mtu-net.ru Поступило в редакцию 29.05.2003

1677