Посвящается профессору А. Ф. Пожарскому в связи с его 65-летием

И. Иовель, Л. Голомба, С. Беляков, Ю. Попелис, Э. Лукевиц

СИНТЕЗ И СТРУКТУРА НЕКОТОРЫХ N-[3-((ГЕТ)АРИЛ)-2-ПРОПЕНИЛИДЕН]ТРИФТОРМЕТИЛАНИЛИНОВ

Изучены реакции 4-нитрокоричного альдегида, а также ряда фурилакролеинов с трифторметиланилинами в присутствии молекулярных сит и синтезирована серия новых ароматических и гетероциклических альдиминов. Молекулярная и кристаллическая структура некоторых из них определена методом PCA.

Ключевые слова: нитрокоричный альдегид, основания Шиффа, трифторметиланилин, фурилакролеин, молекулярные сита.

Нами разработан эффективный метод [1–5] синтеза широкого ряда иминов конденсациями ароматических и гетероциклических альдегидов с анилинами в присутствии молекулярных сит. Последние играют в этих процессах не только роль дегидратирующего агента, но и оптимального кислотного катализатора, активного во многих случаях уже при комнатной температуре и не приводящего (в отличие от большинства гомогенных систем) к осмолению ацидофобных субстратов. С использованием этого метода в настоящей работе осуществлен ряд синтезов и получены (гетеро)ароматические альдимины с трифторметильным заместителем, являющиеся потенциально биологически активными соединениями [6], а также привлекательные перспективные синтоны.

2, **3** положение CF₃: **a** 2', **b** 3', **c** 4'; **4**, **5 a** R = H, **b** R = Me, **c** R = NO₂

1640

В присутствии молекулярных сит 4А изучены реакции 4-нитрокоричного альдегида (1а) с 2-, 3- и 4-трифторметиланилинами 2а-с, а также фурилакролеина и его 5-метил- и 5-нитропроизводных 4а-с с 4-трифторметиланилином. Конденсации фурилакролеинов с 2- и 3-трифторметиланилинами исследованы нами ранее [1, 5]. В качестве растворителя использовался бензол. Реакции протекали при комнатной температуре, лишь 2-трифторметиланилин 2а реагировал при нагревании (80 °C). По-видимому, группа CF₃ в ближайшем к атому азота ароматического амина положении создает препятствия для конденсации. Максимальная реакционная способность характерна для 4-трифторметиланилина. Эти данные согласуются с результатами [1-5], полученными при исследовании реакций других альдегидов с 2-, 3- и 4-трифторметиланилинами. При конденсациях фурилакролеинов наиболее активным оказалось нитропроизводное, а наименее реакционноспособным – 5-метилфурилакролеин, т. е. через систему сопряженных связей акцепторная группа в фурановом кольце способствует реакции, а донорная затрудняет ее. Такой характер протекания процессов свидетельствует, что, как и в случае синтеза азометинов, реакции акриловых альдегидов протекают через нуклеофильную атаку основания (амина) по карбонильному атому углерода. При этом, очевидно, кислотные центры молекулярных сит активируют альдегиды, но не протонируют необратимо основания. Последнее препятствовало бы протеканию конденсации. В результате данной работы соответствующие имины – N-[((гет)арил)пропенилиден]трифторметиланилины За-с и 5а-с были синтезированы с выходом 54-82% (табл. 1). Все полученные соединения - кристаллические вещества желтого цвета, их спектральные данные (табл. 2 и 3) и элементный анализ (табл. 1) соответствуют структуре целевых иминов.

Илан	Условия реакции		Брутто-	<u>Найдено, %</u> Вычислено, %			T == °C*	Выход,
ИМИН	T, ⁰C	Время, ч	формула (M _{выч})	С	Н	Ν	1. III., C [.]	%
3 a	80	6	$\begin{array}{c} C_{16}H_{11}F_{3}N_{2}O_{2}\\ (320.27)\end{array}$	<u>59.85</u> 60.00	$\frac{3.35}{3.46}$	<u>8.65</u> 8.75	93–95	60
3b	20	36	$\begin{array}{c} C_{16}H_{11}F_{3}N_{2}O_{2}\\ (320.27)\end{array}$	<u>59.90</u> 60.00	<u>3.40</u> 3.46	<u>8.57</u> 8.75	127–129	55
3c	20	24	$\begin{array}{c} C_{16}H_{11}F_{3}N_{2}O_{2}\\ (320.27)\end{array}$	$\frac{59.88}{60.00}$	$\frac{3.32}{3.46}$	<u>8.64</u> 8.75	136–138	54
5a	20	24	C ₁₄ H ₁₀ F ₃ NO (265.24)	<u>63.17</u> 63.40	<u>3.72</u> 3.80	<u>5.14</u> 5.28	93–94	65
5b	20	25	C ₁₅ H ₁₂ F ₃ NO (279.26)	<u>64.49</u> 64.52	<u>4.32</u> 4.33	<u>4.89</u> 5.02	116–118	56
5c	20	24	C ₁₄ H ₉ F ₃ N ₂ O ₃ (310.23)	<u>54.17</u> 54.20	<u>2.79</u> 2.92	<u>8.92</u> 9.03	102-103	82

Характеристики реакций и синтезированных соединений

* Растворители для перекристаллизации: этилацетат-гексан (соединения **3а-с**, **5с**) и гексан (соединения **5а**,**b**).

Таблица 1

Соеди-		Химически	е сдвиги, δ, м.д. (КССВ, <i>J</i> , Гц)
нение	CH=N	CH=CH	Протоны колец
3a	8.17	7.24	6.98 (1H, д, J = 7.8, H-3'); 7.30 (1H, т, J = 7.8, H-5');
	(д. д, J = 1.2,	(м, J = 1.2,	7.55 (1Н, т, <i>J</i> = 7.8, Н-4'); 7.67 (1Н, д, <i>J</i> = 7.8,
	J = 5.0)	J = 5.0)	H-6'); 7.69 (2H, M, $J = 1.8$, $J = 8.6$, H-2, H-6);
			8.26 (2H, M, J = 1.8, J = 8.6, H-3, H-5)
3b	8.30	7.24	7.3–7.4 (2H, m, H-4', H-5'); 7.5–7.6 (2H, m, H-2', H-6');
	(д. д, J = 2.2,	(M, J = 2.2,	7.69 (2H, M, J = 8.8, H-2, H-6); 8.27 (2H, M, J = 8.8, H-2, H-6); 8.27 (2H, M, J = 8.8, H-2, H-6); 9.27 (2H, M, J = 8.8, H-2); 9.27 (
	J = 6.0)	J = 6.0)	н-э, н-э)
3c	8.27	7.2-7.3	7.2–7.3 (2H, м, <i>J</i> = 8.0, H-3', H-5'); 7.6–7.75 (4H, м,
	(д. д, J = 2.0,	(M, J = 2.0,	<i>J</i> = 8.0, <i>J</i> = 8.6, H-2', H-6', H-2, H-6); 8.2–8.35 (2H, м,
	J = 6.6)	J = 6.6)	J = 8.6, H-3, H-5)
5a	8.14	6.96	6.49 (1H, д. д, <i>J</i> = 2.0, 3.6, H-4); 6.60 (1H, д, <i>J</i> = 3.6,
	(д. д, J=4.4)	(M, J = 4.4)	H-3); 7.19 (2H, м, <i>J</i> = 8.4, H-3', H-5'); 7.51 (1H, м,
			<i>J</i> = 2.0, H-5); 7.61 (2H, д, <i>J</i> = 8.4, H-2', H-6')
5b*	8.12	6.88	6.09 (1H, д, <i>J</i> = 3.8, H-4); 6.49 (1H, д, <i>J</i> = 3.8, H-3);
	(д. д, J = 4.0)	(M, J = 4.0)	7.18 (2H, м, <i>J</i> = 8.2, H-3', H-5'); 7.60 (2H, м, <i>J</i> = 8.2,
			H-2', H-6')
5c	8.22	6.95 (1Н, д,	6.80 (1H, д, J = 4.2, H-3); 7.24 (2H, м, J = 7.8, H-3',
	(д, J = 8.0)	$J = 16.0, H_{\alpha}$; 7.38	H-5'); 7.40 (1H, д, J=4.2, H-4); 7.69 (2H, м, J=7.8,
	** /	(1Н, д. д, J = 8.0,	H-2', H-6')
		$J = 16.0, H_{\beta}$)	

Спектры ЯМР ¹Н синтезированных иминов

* Спектр ЯМР 1Н: б 2.36 м. д. (CH₃, c).

Для установления молекулярной и кристаллической структуры гетероциклических альдиминов **5а-с** были получены и исследованы методом рентгеновской дифракции монокристаллы этих соединений (рис. 1–3, табл. 4–11).

Молекулы соединений **5а,b** имеют *sin-mpaнc-E*-конфигурацию, молекула соединения **5с** – *anti-mpaнc-E*-конфигурацию. В молекулах можно условно выделить три плоских фрагмента: бензольное кольцо, диеновую систему и фурановый цикл. Молекула **5с** почти плоская: двугранные углы между фурановым и диеновым фрагментами, а также между бензольным кольцом и диеном, соответственно, равны 2.3 и 11.2°, данные углы в структурах **5а** и **5b** больше, и составляют 9.9 и 22.7° (**5a**) и 6.4 и 47.6° (**5b**). В кристаллических структурах **5b** и **5с** наблюдается разупорядоченность атомов фтора (рис. 2, 3). Для всех шести атомов F(1), F(2), F(3), F(1'), F(2') и F(3') в обеих структурах фактор заселенности g = 0.5.

При рассмотрении длин связей в центральной цепи атомов C(Fur)–CH=CH–CH=N–C(Ar) видны во всех молекулах заметные различия между одинарными и двойными связями (табл. 5, 7, 9, 11). Так, межатомные расстояния C=N составляют 1.267–1.275, C=C – 1.324–1.336 Å, а длина одинарной связи C–C между центральными атомами цепи заметно превосходит эти значения и составляет 1.426–1.446 Å.

Рис. 1. Пространственная модель молекулы N-[3-(2-фурил)-2-пропенилиден]-4-трифторметиланилина (5а)

Рис. 2. Пространственная модель молекулы N-[3-(5-метил-2-фурил)-2-пропенилиден]-4-трифторметиланилина (**5b**)

Рис. 3. Пространственная модель молекулы N-[3-(5-нитро-2-фурил)-2-пропенилиден]-4-трифторметиланилина (**5c**)

Масс-спектры синтезированных альдиминов

Соеди- нение	<i>m/z (I</i> _{отн.} , %)*
3a	320 (38) $[M^+]$, 319 (52) $[M - H]^+$, 303 (14), 289 (25), 274 (28), 273 (100) $[M-H-NO_2]^+$, 261 (5), 253 (7) $[M-H-NO_2-HF]^+$, 234 (5), 222 (5), 205 (10), 204 (30) $[M-H-NO_2-CF_3]^+$, 178 (5), 172 (6), 152 (7), 145 (42) $[C_6H_4CF_3]^+$, 125 (7), 119 (8), 102 (22), 95 (19), 91 (9), 75 (27), 63 (17), 51 (19)
3b	320 (40) $[M^+]$, 319 (59) $[M-H]^+$, 303 (11), 301 (10) $[M-F]^+$, 290 (9), 289 (32) $[M-H-HF]^+$, 274 (25), 273 (100) $[M-H-NO_2]^+$, 272 (39), 261 (8), 252 (3), 251 (3), 204 (20) $[M-H-NO_2-CF_3]^+$, 172 (8), 145 (54) $[C_6H_4CF_3]^+$, 125 (11), 114 (5), 102 (20), 95 (14), 91 (7), 77 (16), 75 (20), 63 (15), 51 (13)
3c	320 (42) $[M^+]$, 319 (58) $[M-H]^+$, 303 (10), 301 (12) $[M-F]^+$, 290 (15), 289 (35) $[M-H-HF]^+$, 274 (22), 273 (100) $[M-H-NO_2]^+$, 272 (47), 204 (20) $[M-H-NO_2-CF_3]^+$, 172 (10), 145 (60) $[C_6H_4CF_3]^+$, 125 (13), 114 (6), 102 (26), 95 (18), 91 (9), 77 (14), 75 (15), 63 (19), 51 (13)
5a	265 (45) $[M^+]$, 264 (24) $[M-H]^+$, 246 (12) $[M-F]^+$, 237 (23), 236 (100) $[M-HCO]^+$, 224 (30), 211 (32), 196 (5) $[M-CF_3]^+$, 185 (3), 172 (6), 168 (17), 167 (39) $[M-HCO-CF_3]^+$, 145 (49) $[C_6H_4CF_3]^+$, 125 (13), 115 (10), 105 (5), 95 (18), 75 (15), 65 (22), 51 (19)
5b	279 (33) $[M^+]$, 278 (30) $[M-H]^+$, 264 (58) $[M-Me]^+$, 260 (11) $[M-F]^+$, 237 (19), 236 (100) $[M-MeCO]^+$, 216 (10) $[M-MeCO-HF]^+$, 196 (3), 168 (11), 167 (57), 145 (40) $[C_6H_4CF_3]^+$, 125 (11), 107 (6), 95 (17), 77 (18), 69 (7) $[CF_3]^+$, 65 (10), 63 (10), 51 (18)
5c	310 (37) $[M^+]$, 291 (15), $[M-F]^+$, 280 (16), 279 (23), 278 (17), 277 (7), 265 (13), 264 (100) $[M-NO_2]^+$, 250 (13), 249 (20), 236 (25), 235 (38), 198 (46) $[M-O_2NC_4H_2O]^+$, 170 (10), 167 (8), 145 (60) $[C_6H_4CF_3]^+$, 125 (13), 121 (6), 95 (18), 83 (9), 81 (15), 79 (14), 75 (15), 69 (10) $[CF_3]^+$, 63 (19), 55 (13)

* Приведены сигналы характеристичных ионов.

Таблица 4

Характеристика	5a	5b	5c
Цвет	Желтоватый	Желтый	Желтый
Размер кристалла, мм	0.07×0.28×0.59	0.08×0.12×0.45	0.11×0.18×0.37
Кристаллическая сингония	Моноклинная	Моноклинная	Моноклинная
Параметры кристаллической решетки:			
<i>a</i> , Å	29.925(2)	15.6524(8)	12.4594(6)
b, Å	5.3392(5)	8.7722(5)	14.5882(7)
<i>c</i> , Å	16.092(2)	9.9986(5)	7.5985(3)
β, град.	101.733(4)	92.518(3)	95.171(2)
Объем элементарной ячейки, V, Å ³	2517.4(4)	1371.5(1)	1375.5(1)
Пространственная группа	C 2/c	$P 2_1/c$	$P 2_1/c$
Число молекул в элементарной			
ячейке, Z	8	4	4
Плотность, d , г/см ³	1.400	1.352	1.498
Коэффициент поглощения, µ, мм ⁻¹	0.12	0.11	0.13
Максимальный угол дифракции,			
2θ _{max} , град.	50	55	45
Число независимых рефлексов	2565	3559	1845
Число рефлексов с $I > 3\sigma(I)$	956	1575	1300
Число уточняемых параметров	212	256	226
Окончательный фактор			
расходимости, R	0.054	0.050	0.048
Используемые программы	[10, 11]	[10, 11]	[9, 11]

Кристаллографические данные для соединений 5а-с

Соединение 5а		Соедин	ение 5 b	Соедин	Соединение 5с		
Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å		
N(1)-C(8)	1.273(3)	N(1)-C(8)	1.275(4)	O(1)–C(5)	1.367(3)		
N(1)–C(9)	1.418(3)	N(1)-C(9)	1.416(4)	O(1)-C(2)	1.345(3)		
C(13)–C(14)	1.383(4)	O(1)-C(5)	1.377(4)	N(2)–(9)	1.417(3)		
C(13)–C(12)	1.385(4)	O(1)–C(2)	1.377(4)	N(2)–C(8)	1.267(4)		
O(1)–C(2)	1.365(3)	C(8)–C(7)	1.426(4)	C(7)–C(6)	1.325(4)		
O(1)–C(5)	1.375(4)	C(10)–C(11)	1.377(4)	C(7)–C(8)	1.442(4)		
C(7)–C(8)	1.446(4)	C(10)–C(9)	1.381(4)	C(5)–C(6)	1.436(4)		
C(7)–C(6)	1.324(4)	C(14)-C(9)	1.381(4)	C(5)–C(4)	1.365(4)		
C(10)–C(9)	1.381(3)	C(14)–C(13)	1.379(5)	O(3)–N(1)	1.221(4)		
C(10)-C(11)	1.372(4)	C(11)–C(12)	1.384(4)	C(12)–C(11)	1.384(4)		
C(14)–C(9)	1.387(4)	C(7)–C(6)	1.336(5)	C(12)–C(13)	1.365(4)		
C(6)–C(2)	1.428(4)	C(6)–C(2)	1.422(4)	C(12)-C(15)	1.497(5)		
C(2)–C(3)	1.344(4)	C(12)–C(13)	1.378(5)	C(9)–C(10)	1.373(4)		
C(15)-C(12)	1.469(4)	C(12)-C(15)	1.488(4)	C(9)-C(14)	1.394(4)		
C(15)–F(3)	1.306(4)	C(5)–C(4)	1.343(6)	N(1)-C(2)	1.421(4)		
C(15)–F(1)	1.310(4)	C(5)–C(16)	1.478(6)	N(1)-O(2)	1.224(4)		
C(15)–F(2)	1.299(3)	C(15)–F(1)	1.287(10)	C(2)–C(3)	1.339(4)		
C(12)–C(11)	1.377(4)	C(15)–F(2)	1.303(8)	C(10)-C(11)	1.387(4)		
C(3)–C(4)	1.414(5)	C(15)–F(3)	1.303(11)	C(14)-C(13)	1.382(4)		
C(5)–C(4)	1.302(5)	C(15)–F(3')	1.298(10)	C(3)–C(4)	1.410(4)		
C(13)-H(13)	0.84(2)	C(15)–F(1')	1.298(8)	F(2)-C(15)	1.318(15)		
C(7)-H(7)	0.95(2)	C(15)–F(2')	1.271(8)	F(2)-F(1')	1.51(2)		
C(8)–H(8)	0.96(3)	C(2)–C(3)	1.357(5)	F(3)–C(15)	1.301(9)		
C(10)-H(10)	0.96(2)	C(4)–C(3)	1.402(6)	F(3)-F(3')	1.17(3)		
C(14)-H(14)	0.97(3)	F(1)-F(3')	0.94(2)	F(3)-F(2')	1.39(2)		
C(6)-H(6)	0.96(3)	F(1)-F(1')	1.34(2)	F(1)-C(15)	1.273(15)		
C(11)-H(11)	0.99(3)	F(2)-F(1')	1.051(13)	F(1)-F(3')	1.34(3)		
C(3)-H(3)	0.99(3)	F(2)-F(2')	1.44(2)	C(15)-F(3')	1.30(2)		
C(5)-H(5)	1.02(4)	F(3)-F(3')	1.48(2)	C(15)-F(1')	1.286(12)		
C(4)-H(4)	0.94(3)	F(3)-F(2')	0.81(2)	C(15)-F(2')	1.237(13)		
		C(8)-H(8)	0.94(3)	C(7)-H(7)	1.03(3)		
		C(10)-H(10)	0.88(3)	C(6)-H(6)	1.07(3)		
		C(14)-H(14)	0.89(4)	C(10)-H(10)	1.03(3)		
		C(11)-H(11)	1.00(4)	C(8)-H(8)	1.03(3)		
		C(7)-H(7)	0.94(3)	C(14)-H(14)	1.11(4)		
		C(6)-H(6)	0.91(3)	С(11)-Н(11)	1.12(4)		
		С(13)-Н(13)	0.96(4)	C(3)-H(3)	0.96(3)		
		C(4)-H(4)	0.94(4)	C(13)-H(13)	1.09(4)		
		C(3)-H(3)	0.94(5)	C(4)-H(4)	1.08(3)		
		С(16)-Н(16А)	0.98(8)				
		C(16)-H(16B)	0.89(7)				
		C(16)-H(16C)	0.87(8)				

Основные длины связей (d) в молекулах соединений 5а–с $(d_{\min} = 0.70, d_{\max} = 1.60 \text{ Å})$

Таблица б

Атом	x/a	y/b	z/c	Иизо
N(1)	0.47135(12)	0.2371(8)	0.5786(3)	0.073(2)
C(13)	0.34594(16)	0.3078(12)	0.4996(4)	0.081(4)
O(1)	0.62476(11)	0.5355(6)	0.7372(2)	0.086(2)
C(7)	0.53224(15)	0.4795(10)	0.6559(3)	0.067(3)
C(8)	0.48589(17)	0.4486(12)	0.6093(3)	0.070(3)
C(10)	0.41730(17)	0.0110(10)	0.4777(3)	0.071(3)
C(14)	0.38944(17)	0.3593(10)	0.5448(3)	0.075(3)
C(6)	0.54901(16)	0.6903(11)	0.6929(3)	0.073(3)
C(9)	0.42567(14)	0.2100(8)	0.5336(3)	0.061(3
C(2)	0.59460(16)	0.7261(9)	0.7392(3)	0.068(3)
C(15)	0.29077(17)	0.0490(13)	0.4020(4)	0.094(4)
C(12)	0.33792(15)	0.1061(10)	0.4445(3)	0.069(3)
F(3)	0.26734(12)	0.2421(9)	0.3674(3)	0.161(3)
C(11)	0.37405(17)	-0.0411(10)	0.4336(3)	0.073(3)
F(1)	0.28729(12)	-0.1098(9)	0.3390(3)	0.158(3)
F(2)	0.26624(11)	-0.0471(9)	0.4519(2)	0.172(4)
C(3)	0.6160(2)	0.9118(11)	0.7881(4)	0.090(4)
C(5)	0.6657(2)	0.6109(17)	0.7861(4)	0.100(5)
C(4)	0.6616(2)	0.8332(16)	0.8170(4)	0.100(5)

Координаты неводородных атомов и их эквивалентные изотропные тепловые параметры в структуре 5а

Таблица 7

Валентные углы (0) в молекулах соединения 5а

Угол	ө, град	Угол	ө, град
C(8)-N(1)-C(9)	120.4(2)	C(2)-C(3)-C(4)	106.7(3)
C(14)-C(13)-C(12)	120.9(3)	O(1)-C(5)-C(4)	110.2(4)
C(2)-O(1)-C(5)	106.5(3)	C(3)-C(4)-C(5)	107.7(3)
C(8)–C(7)–C(6)	124.5(3)	С(14)-С(13)-Н(13)	120.(2)
N(1)-C(8)-C(7)	121.2(3)	С(12)-С(13)-Н(13)	119.(2)
C(9)-C(10)-C(11)	121.3(3)	C(8)-C(7)-H(7)	114.3(14)
C(13)-C(14)-C(9)	119.6(3)	C(6)-C(7)-H(7)	121.2(14)
C(7)–C(6)–C(2)	125.7(3)	N(1)-C(8)-H(8)	122.(2)
N(1)-C(9)-C(10)	116.1(2)	C(7)–C(8)–H(8)	116.(2)
N(1)-C(9)-C(14)	124.9(3)	C(9)-C(10)-H(10)	119.0(14)
C(10)-C(9)-C(14)	118.9(3)	С(11)-С(10)-Н(10)	119.6(14)
O(1)-C(2)-C(6)	117.0(3)	С(13)-С(14)-Н(14)	122.(2)
O(1)-C(2)-C(3)	109.0(3)	C(9)-C(14)-H(14)	118.(2)
C(6)-C(2)-C(3)	134.0(3)	C(7)–C(6)–H(6)	121.(2)
C(12)-C(15)-F(3)	114.6(3)	C(2)-C(6)-H(6)	113.(2)
C(12)-C(15)-F(1)	114.4(3)	C(10)-C(11)-H(11)	119.0(15)
C(12)-C(15)-F(2)	113.8(3)	С(12)-С(11)-Н(11)	120.9(15)
F(3)-C(15)-F(1)	103.2(3)	C(2)-C(3)-H(3)	124.(2)
F(3)-C(15)-F(2)	104.7(3)	C(4)-C(3)-H(3)	129.(2)
F(1)-C(15)-F(2)	104.9(3)	O(1)-C(5)-H(5)	111.(2)
C(13)-C(12)-C(15)	119.0(3)	C(4)-C(5)-H(5)	139.(2)
C(13)-C(12)-C(11)	119.2(3)	C(3)-C(4)-H(4)	130.(2)
C(15)-C(12)-C(11)	121.8(3)	C(5)-C(4)-H(4)	122.(2)
C(10)-C(11)-C(12)	120.1(3)		

$\begin{array}{c ccccc} N(1) & 0.02553(12) & 0.1436(2) & 0.6629(2$	0.0695(10) 0.0712(9) 0.0669(13)
$\begin{array}{c cccc} O(1) & -0.26097(10) & 0.12921(19) & 0.88222(16) \\ C(8) & 0.00292(14) & 0.1474(3) & 0.7838(3) & 0.66000 \\ C(10) & 0.14192(15) & 0.0437(3) & 0.5426(2) & 0.66000 \\ \end{array}$	0.0712(9) 0.0669(13) 0.0666(13)
C(8) $0.00292(14)$ $0.1474(3)$ $0.7838(3)$ (0.600) $C(10)$ $0.14192(15)$ $0.0437(3)$ $0.5426(2)$ (0.600)	0.0669(13) 0.0666(13)
C(10) 0.14192(15) 0.0437(3) 0.5426(2) (0666(13)
C(10) = 0.14192(13) = 0.0437(5) = 0.0420(2)	5.0000(15)
C(14) 0.17166(17) 0.2435(3) 0.6992(3) (0.0760(14)
C(11) 0.22723(15) 0.0349(3) 0.5153(3) (0.0681(13)
C(7) -0.08477(16) 0.1426(3) 0.8169(3) (0.0689(13)
C(9) 0.11368(13) 0.1454(3) 0.6364(2) (0.0608(11)
C(6) -0.11114(16) 0.1339(3) 0.9419(3) (0.0695(13)
C(12) 0.28512(14) 0.1326(3) 0.5795(2) (0.0656(12)
C(13) 0.25688(17) 0.2377(3) 0.6699(3) (0.0769(15)
C(5) -0.33765(17) 0.1140(3) 0.9433(3) (0.0781(14)
C(15) 0.37751(17) 0.1224(4) 0.5514(3) (0.0817(17)
C(2) -0.19714(16) 0.1228(3) 0.9813(2) (0.0691(13)
C(4) -0.3225(2) 0.0982(4) 1.0758(3) (0.0906(18)
C(3) -0.2338(2) 0.1036(3) 1.1007(3) (0.0872(17)
F(1) 0.3934(6) 0.089(3) 0.4296(9)	0.164(9)
C(16) -0.4154(2) 0.1179(6) 0.8539(5)	0.102(2)
F(2) 0.4184(4) 0.0215(15) 0.6253(12)	0.131(5)
F(3) 0.4221(7) 0.2447(12) 0.579(2)	0.182(7)
F(3') 0.3942(6) 0.1951(18) 0.4425(12)	0.138(7)
F(1') 0.4031(4) -0.0152(7) 0.527(2)	0.151(6)
F(2') 0.4263(4) 0.184(2) 0.6407(11)	0.154(6)

Таблица 8 Координаты неводородных атомов и их эквивалентные изотропные тепловые параметры в структуре 5b

Однако, поскольку последние величины несколько меньше классических длин одинарных связей С-С, например в алканах (1.513–1.542 Å [7]), это свидетельствует о наличии сопряжения в указанных цепях атомов.

Рис. 4. Проекция кристаллической структуры соединения 5с на плоскость xz

Таблица 9

Валентные углы (0) в молекулах соединения 5b

Угол	ө, град	Угол	θ, град
C(8)-N(1)-C(9)	119.4(2)	O(1)-C(2)-C(3)	108.5(3)
C(5)-O(1)-C(2)	107.2(3)	C(6)-C(2)-C(3)	133.9(3)
C(9)-C(14)-C(13)	120.2(3)	C(15)-F(1)-F(3')	69.4(10)
C(10)-(11)-C(12)	119.6(3)	C(15)-F(1)-F(1')	59.1(6)
C(8)-C(7)-C(6)	124.0(3)	F(3')-F(1)-F(1')	125.(2)
N(1)-C(9)-C(10)	117.6(2)	C(15)-F(2)-F(1')	65.9(6)
N(1)-C(9)-C(14)	123.2(3)	C(5)-C(4)-C(3)	107.6(4)
C(10)-C(9)-C(14)	119.2(3)	C(2)-C(3)-C(4)	107.6(3)
C(7)-C(6)-C(2)	126.8(3)	C(15)-F(2)-F(2')	54.9(5)
C(11)-C(12)-C(13)	119.7(3)	F(1')-F(2)-F(2')	114.7(10)
C(11)-C(12)-C(15)	119.8(3)	C(15)-F(3)-F(3')	55.1(7)
C(13)-C(12)-C(15)	120.4(3)	C(15)-F(3)-F(2')	69.5(11)
C(14)-C(13)-C(12)	120.3(3)	F(3')-F(3)-F(2')	121.(2)
O(1)-C(5)-C(4)	109.2(3)	C(15)-F(3')-F(1)	68.1(10)
C(14)-C(13)-C(12)	120.3(3)	C(15)-F(3')-F(3)	55.4(6)
O(1)-C(5)-C(4)	109.2(3)	F(1)-F(3')-F(3)	115.(2)
O(1)-C(5)-C(16)	116.1(4)	C(15)-F(1')-F(1)	58.3(6)
C(4)-C(5)-C(16)	134.7(4)	C(15)-F(1')-F(2)	66.5(8)
C(12)-C(15)-F(1)	114.9(6)	F(1)-F(1')-F(2)	118.9(12)
C(12)-C(15)-F(2)	113.0(4)	C(15)-F(2')-F(2)	57.0(6)
C(12)-C(15)-F(3)	115.2(7)	C(15)-F(2')-F(3)	73.8(12)
C(12)-C(15)-F(3')	111.2(6)	F(2)-F(2')-F(3)	124.(2)
C(12)-C(15)-F(3)	115.2(7)	N(1)-C(8)-H(8)	120.(2)
C(12)-C(15)-F(3')	111.2(6)	C(7)-C(8)-H(8)	118.(2)
C(12)-C(15)-F(1')	113.6(4)	C(11)-C(10)-H(10)	119.(2)
C(12)-C(15)-F(2')	113.6(6)	C(9)-C(10)-H(10)	120.(2)
F(1)-C(15)-F(2)	105.9(8)	C(9)-C(14)-H(14)	115.(2)
F(1)-C(15)-F(3)	105.3(10)	C(13)-C(14)-H(14)	124.(2)
F(1)-C(15)F(3')	42.4(7)	C(10)-C(11)-H(11)	119.(2)
F(1)-C(15)-F(1')	62.6(8)	C(12)-C(11)-H(11)	121.(2)
F(1)-C(15)-F(2')	128.8(8)	C(8)-C(7)-H(7)	119.(2)
F(2)–C(15)–F(3)	101.1(9)	C(6)-C(7)-H(7)	117.(2)
F(2)-C(15)-F(3')	134.2(7)	C(7)-C(6)-H(6)	117.(2)
F(2)-C(15)-F(1')	47.7(6)	C(2)-C(6)-H(6)	117.(2)
F(2)-C(15)-F(2')	68.1(8)	C(14)-C(13)-H(13)	121.(2)
F(3)-C(15)-F(3')	69.5(9)	С(12)-С(13)-Н(13)	119.(2)
F(3)-C(15)-F(1')	129.7(7)	C(5)-C(4)-H(4)	122.(2)
F(3)-C(15)-F(2')	36.7(8)	C(3)-C(4)-H(4)	131.(2)
F(3')-C(15)-F(1')	103.0(9)	C(2)-C(3)-H(3)	122.(3)
F(3')-C(15)-F(2')	104.0(8)	C(4)-C(3)-H(3)	130.(3)
F(1')-C(15)-F(2')	110.4(9)	C(5)-C(16)-H(16A)	116.(4)
O(1)-C(2)-C(6)	117.6(3)	C(5)-C(16)-H(16B)	110.(4)
C(5)-C(16)-H(16C)	115.(4)	H(16A)-C(16)-H(16C)	120.(7)
H(16A)-C(16)-H(16B)	93.(5)	H(16B)-C(16)-H(16C)	97.(5)

Таблица 10

Атом	x/a	y/b	z/c	Иизо
O(1)	0.83896(13)	0.95128(12)	0.0315(2)	0.0625(9)
N(2)	0.76870(17)	1.35350(16)	0.0730(3)	0.0637(12)
C(7)	0.8201(2)	1.19683(19)	0.0994(3)	0.0593(14)
C(5)	0.8663(2)	1.03301(17)	0.1115(3)	0.0565(13)
O(3)	0.96041(19)	0.74099(15)	0.1067(3)	0.0979(14)
C(6)	0.8058(2)	1.11116(19)	0.0442(4)	0.0621(15)
C(12)	0.6009(2)	1.57257(19)	-0.1783(3)	0.0614(15)
C(9)	0.7057(2)	1.42464(17)	-0.0108(3)	0.0553(13)
N(1)	0.8969(2)	0.79839(17)	0.0431(4)	0.0753(15)
C(2)	0.9067(2)	0.88911(18)	0.1109(3)	0.0599(14)
C(10)	0.7367(2)	1.5128(2)	0.0317(4)	0.0686(16)
C(8)	0.7561(2)	1.27125(19)	0.0218(3)	0.0582(14)
C(14)	0.6166(2)	1.4115(2)	-0.1328(4)	0.0690(17)
C(11)	0.6864(2)	1.5878(2)	-0.0522(4)	0.0740(17)
C(3)	0.9762(2)	0.9261(2)	0.2358(4)	0.0679(16)
C(13)	0.5654(2)	1.4857(2)	-0.2166(3)	0.0680(16)
C(4)	0.9503(2)	1.0202(2)	0.2373(4)	0.0640(16)
O(2)	0.8268(2)	0.78315(17)	-0.0766(4)	0.1073(17)
F(2)	0.4731(11)	1.6902(10)	-0.188(2)	0.146(9)
F(3)	0.6113(7)	1.7237(6)	-0.2912(19)	0.113(4)
F(1)	0.505(2)	1.6364(8)	-0.4284(15)	0.166(11)
C(15)	0.5493(3)	1.6531(3)	-0.2744(4)	0.082(2)
F(3')	0.6041(12)	1.6715(16)	-0.408(3)	0.209(11)
F(1')	0.4566(8)	1.6327(7)	-0.353(2)	0.131(6)
F(2')	0.529(2)	1.7187(8)	-0.1797(15)	0.189(11)

Координаты неводородных атомов и их эквивалентные изотропные тепловые параметры в структуре 5с

Молекулы всех трех соединений в кристаллах упаковываются на расстояниях, не меньших сумм ван-дер-ваальсовых радиусов контактирующих атомов [8]. На рис. 4 показан фрагмент кристаллической структуры соединения **5с** в проекции на плоскость *xz*.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н исследовали на спектрометре фирмы Varian Mercury (200 МГц) в CDCl₃, внутренний стандарт ТМС. Масс спектры получали на хромато-масс-спектрометре HP 6890 GC/MS, оборудованном капиллярной колонкой HP 5 MS (30.0 м × 250 мкм × \times 0.25 мкм), при программировании температуры от 70 до 260 °C (10 °C/мин).

Бензол перед использованием перегоняли над CaH₂. Использованные в работе амины фирмы Acros применяли без дополнительной очистки. Альдегиды перекристаллизовывали из бензола или очищали вакуумной перегонкой, после чего их свойства соответствовали литературным данным. В работе использовали молекулярные сита 4A (VEB Laborchemie Apolda).

Общая методика синтеза альдиминов 3а-с и 5а-с. В круглодонную колбу с обратным холодильником помещают 10 мл сухого бензола и по 5 ммоль исходных альдегида и амина, затем 5 г свежепрокаленных молекулярных сит. Реакцию проводят в атмосфере аргона при

Таблица 11

– Балентные углы (0) В молскулах соединения.	Валентные углы	(0) в молекулах соединения 5	5c
--	----------------	------------------------------	----

Угол	θ, град	Угол	θ, град
C(5)-O(1)-C(2)	105.5(2)	F(2)-C(15)-F(3')	139.0(12)
C(9)-N(2)-C(8)	120.5(2)	F(2)-C(15)-F(1')	70.6(9)
C(6)-C(7)-C(8)	121.8(2)	F(2)-C(15)-F(2')	36.9(13)
O(1)-C(5)-C(6)	115.6(2)	F(3)-C(15)-F(1)	106.0(10)
O(1)-C(5)-C(4)	109.7(2)	F(3)-C(15)-F(3')	53.2(12)
C(6)-C(5)-C(4)	134.7(3)	F(3)-C(15)-F(1')	130.9(8)
C(7)-C(6)-C(5)	125.8(3)	F(3)-C(15)-F(2')	66.2(11)
C(11)-C(12)-C(13)	120.7(3)	F(1)-C(15)-F(3')	62.6(14)
C(11)-C(12)-C(15)	118.8(3)	F(1)-C(15)-F(1')	39.6(13)
C(13)-C(12)-C(15)	120.5(3)	F(1)-C(15)-F(2')	126.1(12)
N(2)-C(9)-C(10)	116.6(2)	F(3')-C(15)-F(1')	101.5(11)
N(2)-C(9)-C(14)	125.0(2)	F(3')-C(15)-F(2')	116.2(13)
C(10)-C(9)-C(14)	118.4(2)	F(1')-C(15)-F(2')	103.2(12)
O(3)-N(1)-C(2)	117.6(2)	F(1)-F(3')-C(15)	57.7(9)
O(3)-N(1)-O(2)	124.3(3)	F(2)-F(1')-C(15)	55.7(8)
C(2)-N(1)-O(2)	118.1(2)	F(3)-F(3')-F(1)	110.(2)
O(1)-C(2)-N(1)	115.8(2)	F(3)-F(3')-C(15)	63.4(12)
O(1)-C(2)-C(3)	112.7(2)	F(3)-F(2')-C(15)	59.1(9)
N(1)-C(2)-C(3)	131.4(3)	C(6)-C(7)-H(7)	122.(2)
C(9)-C(10)-C(11)	121.6(3)	C(8)-C(7)-H(7)	116.(2)
N(2)-C(8)-C(7)	122.6(2)	C(7)-C(6)-H(6)	118.(2)
C(9)-C(14)-C(13)	120.4(3)	C(5)-C(6)-H(6)	116.(2)
C(12)-C(11)-C(10)	118.6(3)	C(9)-C(10)-H(10)	119.(2)
C(2)-C(3)-C(4)	105.3(3)	C(11)-C(10)-H(10)	119.(2)
C(12)-C(13)-C(14)	120.1(3)	N(2)-C(8)-H(8)	121.(2)
C(5)-C(4)-C(3)	106.8(2)	C(7)–C(8)–H(8)	117.(2)
C(15)-F(2)-F(1')	53.7(7)	C(9)-C(14)-H(14)	121.(2)
C(15)-F(3)-F(3')	63.4(11)	C(13)-C(14)-H(14)	118.(2)
C(15)-F(3)-F(2')	54.7(7)	C(12)-C(11)-H(11)	120.(2)
F(3')-F(3)-F(2')	114.8(12)	C(10)-C(11)-H(11)	120.(2)
C(15)–F(1)–F(3')	59.7(14)	C(2)-C(3)-H(3)	120.(2)
C(12)-C(15)-F(2)	112.2(7)	C(4)-C(3)-H(3)	135.(2)
C(12)-C(15)-F(3)	115.9(5)	С(12)-С(13)-Н(13)	116.(2)
C(12)–C(15)–F(1)	115.5(6)	C(14)-C(13)-H(13)	124.(2)
C(12)-C(15)-F(3')	108.0(10)	C(5)-C(4)-H(4)	124.(2)
C(12)-C(15)-F(1')	111.9(6)	C(3)-C(4)-H(4)	129.(2)
C(12)-C(15)-F(2')	115.1(7)		
F(2)-C(15)-F(3)	100.6(8)		
F(2)-C(15)-F(1)	105.1(13)		

комнатной температуре или нагревают на водяной бане при 80 °C (табл. 1), периодически отбирая пробы и анализируя их методом ТСХ и ГЖХ МС. По окончании реакции сита отфильтровывают, промывают бензолом, фильтрат упаривают при пониженном давлении (40 °C/15 мм рт. ст.) и удаляют незначительные остатки исходных веществ в вакууме (45–50 °C/0.1 мм рт. ст.). Продукты представляют собой кристаллические вещества. Их очищают перекристаллизацией из гексана или его смеси с этилацетатом и регистрируют спектры ЯМР ¹H.

Рентгеноструктурные исследования. Монокристаллы соединений **5а**-с получали медленной кристаллизацией из смеси бензол–гексан, 1:1. Съемку дифракционных картин осуществляли при 20 °C на автоматическом дифрактометре Nonius KappaCCD (MoK_{α} излучение). Структуры соединений **5а**-с расшифровывали прямым методом и уточняли полноматричным МНК в анизотропном приближении. Расчеты выполняли с помощью программ SHELXS 97 [9], SIR 97 [10] и maXus [11].

Авторы благодарны Латвийскому совету по науке за финансирование работы (грант № 181).

СПИСОК ЛИТЕРАТУРЫ

- 1. И. Иовель, Л. Голомба, Ю. Попелис, А. Гаухман, Э. Лукевиц, ХГС, 324 (2000).
- 2. И. Иовель, Л. Голомба, С. Беляков, Э. Лукевиц, ХГС, 778 (2000).
- 3. И. Иовель, Л. Голомба, Ю. Попелис, С. Гринберга, Э. Лукевиц, ХГС, 890 (2000).
- 4. I. Iovel, L. Golomba, S. Belyakov, A. Kemme, E. Lukevics, *Appl. Organometal. Chem.*, **15**, 733 (2001).
- И. Иовель, Л. Голомба, С. Беляков, Ю. Попелис, А. Гаухман, Э. Лукевиц, XTC, 361 (2003).
- 6. И. Иовель, Л. Голомба, Л. Звейниеце, И. Шестакова, Э. Лукевиц, ХГС, 530 (2003).
- 7. F. H. Allen, O. Kennerd, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans 2, No. 12, S1 (1987).
- 8. Ю. В. Зефиров, П. М. Зоркий, Успехи химии, 58, 713 (1989).
- 9. G. M. Sheldrick, *SHELXS 97, Program for Crystal Structure Solution*, Univ. of Göttingen, Göttingen, Germany, 1997.
- A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, R. Spagna, *J. Appl. Cryst.*, **32**, 115 (1999).
- S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, maXus Computer Program for the Solution and Refinement of Crystal Structures. Bruker Nonius, The Netherlands, MacScience, Japan & The Univ. of Glasgow (1999).

Латвийский институт органического синтеза, Pura LV 1006 e-mail: iovel@osi.lv Поступило в редакцию 10.02.2003