# А. Д. Дяченко, Э. Б. Русанов<sup>а</sup>, В. Д. Дяченко, А. Н. Чернега<sup>а</sup>, С. М. Десенко<sup>б</sup>

### 2,3-ДИГИДРО-5,6-ТЕТРАМЕТИЛЕНСПИРО(ЦИКЛОГЕКСАН-2-ТИЕНО[2,3-*d*]ПИРИМИДИН)-4(1Н)-ТИОН.

НОВЫЙ ПУТЬ СИНТЕЗА И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА

Самоконденсацией циклогексилиденцианотиоацетамида получен 2,3-дигидро-5,6-тетраметиленспиро(циклогексан-2-тиено[2,3-*d*]пиримидин)-4(1H)тион, строение которого доказано методом РСА. Предложен механизм его образования и изучено алкилирование.

Ключевые слова: 2,3-дигидро-5,6-тетраметиленспиро(циклогексан-2тиено[2,3-*d*]пиримидин)-4(1Н)-тион, тиазолы, циклогексилиденцианотиоацетамид, алкилирование, механизм реакции, РСА, самоконденсация.

Известна работа по синтезу 2,3-дигидро-5,6-тетраметиленспиро(циклогексан-2-тиено[2,3-*d*]пиримидин)-4(1Н)-тиона (**1a**) – новой потенциально биологически активной спирозамещенной гетероциклической системы [1]. Строение этого соединения было подтверждено только данными элементного анализа. Предложенный метод получения тиона **1a**, выход которого составил 39%, заключался в конденсации цианотиоацетамида с серой и циклогексаноном. Продолжая исследования по синтезу спирозамещенных ди- и тетрагидропиридинов на основе циклоалкилиденцианотиоацетамидов **2** [2–5], мы обнаружили, что последние легко самоконденсируются в присутствии аминов в спирте при 20 °C в спирозамещенные пиримидинтионы **1** (см. схему 1).

Это превращение включает, по-видимому, образование в ходе реакции соответствующих циклоалкилиденмалононитрилов **3** и сероводорода как результат обратимости взаимодействия последнего с нитрилами в основной среде [6]. В дальнейшем сероводород присоединяется по цианогруппе алкена **2а–с**, образуя амид **4а–с**, который через таутомер **5а–с** циклизуется в 2-амино-3-тиокарбамоил-4,5-олигометилентиофен **6а–с**. Последний конденсируется с алкеном **3а–с** и при этом получается спирозамещенный тиенопиримидин **1а–с**. Отметим, что образование интермедиата **6** постулировалось в работе [7]. В случае тиоацетамида **2а** введение нами в реакционную смесь фенацилбромидов **7а,b** привело к образованию замещенных тиазолов **8а,b** – как результата реакции Ганча. При том же исходном **2а** конденсацией с промежуточным тиоацетамидом **6а** циклоалканонов **9** и **10** были получены соответствующие продукты **11** и **12**. Это дополнительно подтверждает приведенный выше механизм димеризации соединений **2** в гетероциклические системы **1**.

Схема 1



В = N-метилморфолин; **1**, **2** а n = 2, R = H; **b** n = 1, R = H; **c** n = 2, R = Ph; **7**, **8** а  $\mathbb{R}^1 = \operatorname{Me}$ , **b**  $\mathbb{R}^1 = \operatorname{Br}$ 

S

N Н 11 Алкилирование тиенопиримидинтиона **1a** этилиодидом в ДМФА привело к образованию иодида 4-этилтиозамещенного тетрагидропиримидиния **13**. В то же время алкилирование тиона α-хлорацетанилидом протекает только в присутствии КОН и приводит к сульфиду **14** 



Строение соединения 1а доказано методом РСА. Общий вид молекулы 1а показан на рис. 1, основные геометрические параметры приведены в табл. 3. Трициклическая система S<sub>(2)</sub>N<sub>(1)</sub>N<sub>(2)</sub>C<sub>(1-10)</sub> плоская лишь в первом приближении: отклонения атомов от среднеквадратичной плоскости достигают 0.41 Å. С планарной (в пределах 0.01 Å) центральной тиофеновой системой циклы C<sub>(4-9)</sub> и N<sub>(1)</sub>N<sub>(2)</sub>C<sub>(1-3,10)</sub> образуют двугранные углы 1.2 и 9.0°. При этом оба шестичленных кольца заметно неплоские (отклонения атомов от соответствующих среднеквадратичных плоскостей достигают 0.11 и 0.26 Å). Цикл С<sub>(4-9)</sub> несколько искажен в сторону конформации полукресла: атомы C<sub>(4-6,9)</sub> копланарны в пределах 0.006 Å, а атомы С(7) и С(8) отклонены в разные стороны от этой плоскости, соответственно, на 0.13 и 0.12 А. Угол "скручивания" (псевдоторсионный угол между связями C<sub>(4)</sub>-C<sub>(5)</sub> и C<sub>(7)</sub>-C<sub>(8)</sub>) составляет 11.0°. В гетероцикле N<sub>(1)</sub>N<sub>(2)</sub>C<sub>(1-3,10)</sub> атомы N<sub>(1)</sub>N<sub>(2)</sub>C<sub>(1-3)</sub> копланарны в пределах 0.06 Å, а атом С<sub>(10)</sub> выходит из этой плоскости на 0.54 Å. Следует отметить, что связь  $S_{(1)}=C_{(1)}$  1.690(5) Å заметно удлинена по сравнению с интервалом 1.60–1.63 Å, характерным для двойной связи  $S=C(sp^2)$  [8]. Наряду с этим межатомное расстояние С(1)-N(1) 1.331(5) сильно укорочено по сравнению с интервалом 1.43-1.45 Å, характерным для одинарных связей  $N(sp^2)$ - $C(sp^2)$  [9, 10]. Очевидно, такое распределение длин связей в молекуле 1а обусловлено эффективным сопряжением между НЭП атома N<sub>(1)</sub> и π-системой двойной связи S<sub>(1)</sub>=C<sub>(1)</sub>. Действительно, конформация молекулы 1а весьма благоприятна для такого взаимодействия: разворот между указанными электронными системами составляет лишь 6-7°. Атом плоскотригональную, а атом N<sub>(2)</sub> – пирамидальную N<sub>(1)</sub> имеет конфигурацию связей (сумма валентных углов составляет соответственно 358 и 343°). Циклогексановое кольцо имеет конформацию кресло (см. рис. 1). "Уголки"  $C_{(10,11,15)}$  и  $C_{(12-14)}$  образуют с плоскостью С(11,12,14,15) двугранные углы 48.6 и 50.1°. Эндоциклические длины связей С-С (1.510-1.523(6), средн. 1.517 Å) и валентные углы (110.8-112.1(3), средн. 111.5°) в пределах ошибки эксперимента совпадают с соответствующими значениями, найденными в молекуле незамещенного циклогексана (С-С 1.510-1.528(11), средн. 1.523 Å; С-С-С 110.4-112.3(4), средн. 111.3°) [11].

1556



*Рис. 1.* Общий вид молекулы **1** а с нумерацией атомов. Из атомов водорода показаны лишь атомы  $H_{(1)}$  и  $H_{(2)}$ 

Молекулы соединения **1a** объединены в кристалле силами ван-дер-Ваальса; укороченные межмолекулярные контакты не наблюдаются. Кристаллическая упаковка этого соединения показана на рис. 2.



Рис. 2. Кристаллическая упаковка (проекция ас) соединения 1а

| Соеди-     | Брутто-<br>формула          | <u>Найдено, %</u><br>Вычислено, % |                     |                       | Т. пл.,°С * | Выход, |
|------------|-----------------------------|-----------------------------------|---------------------|-----------------------|-------------|--------|
| нение      |                             | С                                 | Н                   | Ν                     |             | %      |
| <b>1</b> a | $C_{15}H_{20}N_{2}S_{2} \\$ | <u>61.48</u><br>61.60             | <u>6.72</u><br>6.81 | <u>9.67</u><br>9.58   | 255–256     | 66     |
| 1b         | $C_{13}H_{16}N_2S_2$        | $\frac{58.84}{59.05}$             | <u>5.91</u><br>6.10 | $\frac{10.45}{10.60}$ | 227–229     | 58     |
| 1c         | $C_{27}H_{28}N_2S_2$        | <u>73.11</u><br>72.93             | <u>6.42</u><br>6.35 | <u>6.14</u><br>6.30   | 237–239     | 52     |
| 8a         | $C_{18}H_{18}N_2S_2 \\$     | <u>66.01</u><br>66.22             | <u>5.70</u><br>5.56 | $\frac{8.43}{8.58}$   | 197–199     | 28     |
| 8b         | $C_{17}H_{15}BrN_2S_2$      | <u>51.88</u><br>52.17             | <u>3.64</u><br>3.86 | <u>7.30</u><br>7.16   | 243–245     | 31     |
| 11         | $C_{14}H_{18}N_2S_2 \\$     | <u>60.22</u><br>60.39             | <u>6.43</u><br>6.52 | <u>9.79</u><br>10.06  | 137–139     | 68     |
| 12         | $C_{16}H_{22}N_2S_2$        | <u>62.59</u><br>62.70             | <u>7.11</u><br>7.24 | <u>9.25</u><br>9.14   | 221–223     | 72     |
| 13         | $C_{17}H_{25}IN_2S_2$       | <u>45.30</u><br>45.43             | <u>5.71</u><br>5.83 | <u>6.14</u><br>6.23   | 129–131     | 80     |
| 14         | $C_{23}H_{27}N_3OS_2$       | <u>64.72</u><br>64.91             | <u>6.48</u><br>6.39 | <u>9.69</u><br>9.87   | 221–223     | 59     |

Характеристики соединений 1а-с, 8а,b, 11-14

\* Кристаллизовали соединения 1а,с, 8а, 11, 12 и 14 – из ДМФА, 1b, 13 – из ЕtOH, 8b – из ДМФА–ВиOH, 1:1.

Таблица 2

| Соели | Спектр ЯМР <sup>1</sup> Н, б, м. д.                                                                                                                                                                                                                                  |              | Macc-chektp $m/7$ ( $L_{mu}$ %)                                          |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------|--|--|
| нение |                                                                                                                                                                                                                                                                      |              | Прочие фрагменты                                                         |  |  |
| 1a    | 8.60 (1H, уш. с, NH); 7.80 (1H, уш. с, NH); 2.90 (2H, м, CH <sub>2</sub> ); 1.90 (2H, м, CH <sub>2</sub> ); 1.10–1.80 (14H, м, 7CH <sub>2</sub> )                                                                                                                    | 292<br>(84)  | 259 (36), 249 (100),<br>236 (41), 167 (19), 81<br>(45), 53 (38), 41 (62) |  |  |
| 1b    | 8.90 (1H, уш. с, NH); 7.90 (1H, уш. с, NH); 2.90 (2H, т, CH <sub>2</sub> ); 2.30 (2H, к, CH <sub>2</sub> ); 1.10–1.80 (10H, м, 5CH <sub>2</sub> )                                                                                                                    | _            | -                                                                        |  |  |
| 1c    | 8.70 (1H, уш. с, NH); 7.90 (1H, уш. с, NH);<br>7.10–7.40 (10H, м, 2Ph); 0.90–3.00 (16H, м, 8CH <sub>2</sub> )                                                                                                                                                        | 444<br>(35)  | 325 (100), 312 (50),<br>208 (17), 91 (69)                                |  |  |
| 8a    | 7.57 (2H, д, H <sub>Ar</sub> ); 7.55 (1H, с, тиазолил); 7.52 (2H,<br>уш. с, NH <sub>2</sub> ); 7.27 (2H, д, H <sub>Ar</sub> ); 2.54 (2H, м, CH <sub>2</sub> );<br>2.51 (2H, м, CH <sub>2</sub> ); 2.35 (3H, с, CH <sub>3</sub> ); 1.80 (4H, м,<br>2CH <sub>2</sub> ) | 326<br>(100) | 298 (20), 265 (11), 147<br>(26), 115 (15), 91 (10)                       |  |  |
| 8b    | 7.92 (2H, д, H <sub>Ar</sub> ); 7.68 (1H, с, H <sub>Het</sub> ); 7.65 (2H, д,<br>H <sub>Ar</sub> ); 7.50 (2H, уш. с, NH <sub>2</sub> ); 2.75 (2H, м, CH <sub>2</sub> ); 2.55<br>(2H, м, CH <sub>2</sub> ); 1.80 (4H, м, 2CH <sub>2</sub> )                           | 391<br>(98)  | 390 (100), 362 (22),<br>150 (18), 134 (40), 89<br>(52), 45 (19)          |  |  |
| 11    | 9.09 (1H, уш. с, NH); 8.06 (1H, уш. с, NH); 2.92 (2H, м, CH <sub>2</sub> ); 2.51 (2H, м, CH <sub>2</sub> ); 1.48–2.00 (12H, м, 6CH <sub>2</sub> )                                                                                                                    | 278<br>(82)  | 249 (100), 245 (48),<br>236 (96), 195 (53), 167<br>(50), 41 (57)         |  |  |
| 12    | 8.85 (1H, уш. с, NH); 7.91 (1H, уш. с, NH); 2.92 (2H, м, CH <sub>2</sub> ); 2.05 (2H, м, CH <sub>2</sub> ); 1.13–1.88 (13H, м, CH и 6CH <sub>2</sub> ); 0.83 (3H, д, <i>J</i> = 3.5 Гц, CH <sub>3</sub> )                                                            | 306<br>(100) | 263 (64), 249 (76), 236<br>(37), 195 (26), 163<br>(30), 41 (45)          |  |  |
| 13    | 9.72 (1H, ym. c, NH); 8.88 (1H, ym. c, NH); 3.40 (2H,                                                                                                                                                                                                                | 320<br>(46)  | 291 (22), 277 (100),<br>264 (11), 128 (6)                                |  |  |
| 14    | 10.45 (1H, уш. с, NHCO); 8.36 (1H, уш. с, NH); 7.59<br>(2H, м, H <sub>Ph</sub> ); 7.35 (2H, м, H <sub>Ph</sub> ); 7.11 (1H, м, H <sub>Ph</sub> );<br>3.92 (2H, с, SCH <sub>2</sub> ); 1.15–2.20 (18H, м, 9CH <sub>2</sub> )                                          | 425<br>(3)   | 351 (12), 325 (43), 167<br>(60), 93 (10), 77 (49),<br>55 (90), 39 (63)   |  |  |

Спектральные характеристики соединений 1а-с, 8а,b, 11-14

1558

## Таблица З

| Связь                              | <i>d</i> , Å | Угол                                                 | ω, град. |
|------------------------------------|--------------|------------------------------------------------------|----------|
| $S_{(1)}-C_{(1)}$                  | 1.691(4)     | C(3)-S(2)-C(4)                                       | 90.9(2)  |
| S(2)-C(3)                          | 1.711(4)     | $C_{(1)}-N_{(1)}-C_{(10)}$                           | 124.9(4) |
| S(2)-C(4)                          | 1.739(4)     | $C_{(3)}-N_{(2)}-C_{(10)}$                           | 114.9(3) |
| N(1)-C(1)                          | 1.327(5)     | $S_{(1)}-C_{(1)}-N_{(1)}$                            | 120.0(3) |
| N(1)-C(10)                         | 1.464(5)     | $S_{(1)}-C_{(1)}-C_{(2)}$                            | 124.6(3) |
| N(2)-C(3)                          | 1.371(5)     | $N_{(1)}-C_{(1)}-C_{(2)}$                            | 115.3(4) |
| N(2)-C(10)                         | 1.465(5)     | $C_{(1)} - C_{(2)} - C_{(3)}$                        | 117.0(3) |
| C(1)-C(2)                          | 1.443(5)     | $C_{(1)} - C_{(2)} - C_{(5)}$                        | 130.3(4) |
| C <sub>(2)</sub> -C <sub>(3)</sub> | 1.370(5)     | $C_{(3)} - C_{(2)} - C_{(5)}$                        | 111.7(4) |
| C(2)-C(5)                          | 1.450(5)     | $S_{(2)} - C_{(3)} - C_{(2)}$                        | 112.9(3) |
| C(4)-C(5)                          | 1.351(6)     | N <sub>(2)</sub> -C <sub>(3)</sub> -C <sub>(2)</sub> | 125.0(4) |
| C <sub>(4)</sub> -C <sub>(9)</sub> | 1.507(6)     | $S_{(2)} - C_{(4)} - C_{(5)}$                        | 112.8(3) |
| C(5)-C(6)                          | 1.496(5)     | $C_{(5)}-C_{(4)}-C_{(9)}$                            | 126.4(4) |
| C <sub>(6)</sub> –C <sub>(7)</sub> | 1.501(7)     | $C_{(2)} - C_{(5)} - C_{(4)}$                        | 111.8(4) |
| C(7)-C(8)                          | 1.303(9)     | $C_{(2)} - C_{(5)} - C_{(6)}$                        | 127.6(4) |
| C <sub>(8)</sub> –C <sub>(9)</sub> | 1.481(8)     | $C_{(5)} - C_{(6)} - C_{(7)}$                        | 112.2(4) |
|                                    |              | $C_{(6)} - C_{(7)} - C_{(8)}$                        | 122.7(5) |
|                                    |              | $C_{(7)} - C_{(8)} - C_{(9)}$                        | 124.3(6) |
|                                    |              | $C_{(4)} - C_{(9)} - C_{(8)}$                        | 109.2(4) |
|                                    |              | $N_{(1)}-C_{(10)}-N_{(2)}$                           | 107.8(3) |

Основные длины связей (d) и валентные углы (w) в молекуле соединения 1а

Таблица 4

# Координаты атомов (x, y, z) и эквивалентные изотропные тепловые параметры ( $U_{_{3KB}}$ ) в структуре 1а

| Атом                    | x          | У            | z            | $U_{ m _{3KB}},{ m \AA}^2$ |
|-------------------------|------------|--------------|--------------|----------------------------|
| <b>S</b> <sub>(1)</sub> | 0.23824(7) | -0.10434(15) | -0.08915(5)  | 0.0469                     |
| S <sub>(2)</sub>        | 0.39875(8) | 0.50621(17)  | -0.04959(5)  | 0.0635                     |
| N(1)                    | 0.3056(2)  | -0.0016(5)   | 0.01509(14)  | 0.0393                     |
| N(2)                    | 0.3730(2)  | 0.2748(5)    | 0.04032(15)  | 0.0397                     |
| C <sub>(1)</sub>        | 0.2975(2)  | 0.0265(5)    | -0.04366(16) | 0.0336                     |
| C(2)                    | 0.3377(2)  | 0.1818(5)    | -0.06332(16) | 0.0348                     |
| C <sub>(3)</sub>        | 0.3675(2)  | 0.3051(5)    | -0.02023(17) | 0.0379                     |
| C <sub>(4)</sub>        | 0.3729(3)  | 0.4239(7)    | -0.12196(18) | 0.0526                     |
| C(5)                    | 0.3422(2)  | 0.2518(6)    | -0.12314(17) | 0.0386                     |
| C <sub>(6)</sub>        | 0.3186(3)  | 0.1547(6)    | -0.18139(17) | 0.0486                     |
| C <sub>(7)</sub>        | 0.3257(5)  | 0.2786(9)    | -0.2342(2)   | 0.1258                     |
| C <sub>(8)</sub>        | 0.3667(5)  | 0.4268(12)   | -0.2306(3)   | 0.1588                     |
| C <sub>(9)</sub>        | 0.3859(3)  | 0.5398(8)    | -0.1755(2)   | 0.0775                     |
| C(10)                   | 0.3629(2)  | 0.0786(6)    | 0.05775(16)  | 0.0343                     |
| C <sub>(11)</sub>       | 0.4308(2)  | -0.0331(6)   | 0.05502(16)  | 0.0434                     |
| C(12)                   | 0.4912(2)  | 0.0324(8)    | 0.10170(19)  | 0.0607                     |
| C(13)                   | 0.4699(3)  | 0.0259(8)    | 0.16382(18)  | 0.0616                     |
| C(14)                   | 0.4031(2)  | 0.1389(6)    | 0.16743(17)  | 0.0495                     |
| C(15)                   | 0.3423(2)  | 0.0745(6)    | 0.12062(17)  | 0.0421                     |
| H <sub>(1)</sub>        | 0.283(2)   | -0.094(6)    | 0.0280(17)   | 0.039(13)                  |
| H <sub>(2)</sub>        | 0.350(2)   | 0.356(6)     | 0.0587(17)   | 0.043(14)                  |

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений записывали на приборе ИКС 29 (в вазелиновом масле). Спектры ЯМР <sup>1</sup>Н регистрировали на приборах Bruker WP-100 SY (100 МГц) (для соединения **1b**), Bruker WM-250 (250 МГц) (для соединений **1a,c**), Bruker AM-300 (300 МГц) (для соединений **11–13**) и Bruker DRX 500 (500 МГц) (для соединений **8a,b**, **14**) в ДМСО-d<sub>6</sub>, внутренний стандарт Me<sub>4</sub>Si. Масс-спектры снимали на спектрометре Kratos MS-890 (70 эВ). Температуры плавления определяли на блоке Кофлера. Контроль за ходом реакции осуществляли методом TCX (Silufol UV-254, ацетон–гексан, 3:5, проявитель – пары иода). Характеристики синтезированных соединений приведены в табл. 1, 2.

Рентгеноструктурное исследование монокристалла соединения 1а с линейными размерами  $0.25 \times 0.31 \times 0.51$  мм проведено при 18 °C на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (Мо $K_{\alpha}$ -излучение, отношение скоростей сканирования  $\omega/2\theta = 1.2, \theta_{\text{max}} = 24^{\circ}$ , сегмент сферы  $0 \le h \le 22, 0 \le k \le 9, -26 \le l \le 26$ ). Всего было собрано 1902 отражения, из которых 1647 являются симметрически независимыми ( $R_{int} = 0.014$ ). Кристаллы соединения 1a моноклинные, a = 18.966(3), b = 7.090(1), c = 22.538(4) Å,  $\beta = 97.86(1)^{\circ}, V = 3002.2 \text{ Å}^3, M = 290.44, Z = 8, d_{\text{bbiy}} = 1.29 \text{ g/cm}^3, \mu = 3.29 \text{ cm}^{-1},$ пространственная группа с2/с. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [12]. В уточнении использовано 1125 отражений с I > 3(I) (180 уточняемых параметров, число отражений на параметр 6.3). Большинство (80%) атомов Н выявлено из разностного синтеза электронной плотности, положения остальных рассчитаны геометрически. В расчет атомы Н были включены с фиксированными позиционными и тепловыми параметрами. Только атомы H<sub>(1)</sub> и H<sub>(2)</sub>, связанные, соответственно, с атомами  $N_{(1)}$  и  $N_{(2)}$ , уточнены изотропно. При уточнении была использована весовая схема Чебышева [13] с параметрами 0.69, 0.51, 0.60, 0.17 и 0.17. Окончательные значения факторов расходимости R = 0.041 и  $R_W = 0.043$ , GOF = 1.166. Остаточная электронная плотность из разностного ряда Фурье составляет 0.29 и -0.23 e/Å<sup>3</sup>. Координаты атомов приведены в табл. 4.

2,3-Дигидро-5,6-тетраметиленспиро(циклогексан-2-тиено[2,3-d]пиримидин)-4(1Н)тион) (1а), 2,3-дигидро-5,6-триметиленспиро(циклогептан-2-тиено[2,3-d]пиримидин)-4(1Н)-тион (1b) и 2,3-дигидро-5,6-тетраметиленспиро(4-фенилциклогексан-2-тиено-[2,3-d]пиримидин)-4(1Н)-тион (1c). Смесь 10 ммоль соответствующего циклоалкилиденцианотиоацетамида 2 и 1.1 мл (10 ммоль) N-метилморфолина в 15 мл этанола при 20 °С перемешивают 2 ч и далее выдерживают 1 сут при той же температуре. Осадок продукта 1а-с отфильтровывают, промывают спиртом и гексаном.

**2-(2'-Амино-4',5'-тетраметилентиенил-2')-4-(4'-метилфенил)тиазол (8а)** и **2-(2'-амино-4',5'-тетраметилентиенил-2')-4-(4'-бромфенил)тиазол (8b)**. Смесь 1.8 г (10 ммоль) амида **2a** и 1–2 капли N-метилморфолина в 15 мл спирта перемешивают 2 ч при 20 °C. Затем в реакционную массу добавляют 10 ммоль соответствующего фенацилбромида **7** и перемешивают 4 ч, после чего выдерживают при комнатной температуре 1 сут. Осадок продукта **8а,b** отфильтровывают, промывают водой, спиртом и гексаном.

2,3-Дигидро-5,6-тетраметиленспиро(циклопентан-2-тиено[2,3-d]пиримидин)-4(1Н)тион (11) и 2,3-дигидро-5,6-тетраметиленспиро(3'-метилциклогексан-2-тиено[2,3-d]пиримидин)-4(1Н)-тион (12). Смесь 1.8 г (10 ммоль) ацетамида 2а, 1.1 мл (10 ммоль) N-метилморфолина и 10 ммоль кетона 9 или 10 в 20 мл спирта перемешивают 2 ч при 20 °С, после чего нагревают до кипения и фильтруют через складчатый фильтр. Образовавшийся в фильтрате через 48 ч осадок продукта 9 или 10 отфильтровывают, промывают спиртом и гексаном.

Иодид 2,3-дигидро-5,6-тетраметилен-4-этилтиоспиро(циклогексан-2-тиено[2,3-*d*]пиримидиния) (13). Смесь 1.5 г (5 ммоль) пиримидинтиона 1а и 0.4 мл (5 ммоль) ЕtI в 10 мл ДМФА перемешивают 4 ч при 20 °С и выдерживают при той же температуре 1 сут. Образовавшийся осадок соли отфильтровывают, промывают спиртом и гексаном.

2,3-Дигидро-5,6-тетраметилен-4-фенилкарбамоилметилтиоспиро(циклогексан-2тиено[2,3-*d*]пиримидин) (14). К суспензии 2.9 г (10 ммоль) тиона 1а в 10 мл ДМФА при 20 °С и перемешивании последовательно прибавляют 5.6 мл (10 ммоль) 10% водного раствора КОН и 1.7 г (10 ммоль) α-хлорацетанилида, после чего перемешивают еще 4 ч. Затем реакционную смесь разбавляют 10 мл H<sub>2</sub>O. Образовавшийся осадок продукта 14 отфильтровывают, промывают водой, спиртом и гексаном. 1560

### СПИСОК ЛИТЕРАТУРЫ

- 1. В. В. Кузнецов, Хим.-фарм. журн., № 7, 61 (1991).
- 2. В. Д. Дяченко, В. П. Литвинов, ХГС, 208 (1998).
- 3. В. Д. Дяченко, С. Г. Кривоколыско, В. Н. Нестеров, В. П. Литвинов, *ЖОрХ*, **33**, 1580 (1997).
- 4. В. Д. Дяченко, С. Г. Кривоколыско, В. П. Литвинов, Изв. АН, Сер. хим., 1849 (1997).
- 5. В. Д. Дяченко, С. Г. Кривоколыско, В. П. Литвинов, ХГС, 1533 (1997).
- 6. Е. Н. Зильберман, Реакции нитрилов, Химия, Москва, 1972.
- 7. K. Gewald, R. Schindler, J. Prakt. Chem., 332, 223 (1990).
- 8. И. Харгиттан, Структурная химия соединений серы, Наука, Москва, 1986.
- 9. R. W. Alder, N. C. King, T. J. Mellor, B. W. Miller, J. Chem. Soc., Chem. Commun., 173 (1976).
- 10. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3246 (1976).
- 11. R. Kahn, R. Fourme, D. Andre, M. Renaud, Acta Crystallogr., B29, 131 (1973).
- 12. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS Issue 10*, *Chemical Crystallography Laboratory*, Univ. of Oxford, 1996.
- 13. J. R. Carruthers, D. J. Watkin, Acta Crystallogr., A35, 698 (1979).

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: kgb@lgpi.lugansk.ua

<sup>а</sup>Институт органической химии НАН Украины, Киев 02094 e-mail: iochkiev@ukrpack.net

<sup>6</sup>Харьковский национальный университет им. В. Н. Каразина, Харьков 61077, Украина e-mail: desenko@univer.kharkov.ua Поступило в редакцию 03.07.2000