В. П. Боровик, М. М. Шакиров, О. П. Шкурко

СПЕКТРЫ ЯМР ¹Н И ¹³С 9Н-ПИРИМИДО[4,5-*b*]ИНДОЛОВ

На основании анализа спектров ЯМР ¹Н и ¹³С 9Н-пиримидо[4,5-*b*]индола и его 4-фенил-2-замещенных сделаны отнесения сигналов атомов ¹Н и ¹³С этих соединений.

Ключевые слова: 9Н-пиримидо[4,5-*b*]индол и его 2,4-замещенные, спектры ЯМР 1 Н и 13 С.

Производные пиримидо[4,5-b]индола представляют значительный интерес в качестве биологически активных соединений [1-4]. Большая серия медицинских препаратов ряда 2,4-диамино-9Н-пиримидо-[4,5-b]индола была создана на основе подуктов взаимодействия 2-бромциклогексанона с замещенными триаминопиримидинами [3, 4]. Ранее одним из нас совместно с соавторами был предложен метод синтеза 2-замещенных 4-фенил-9Н-пиримидо[4,5-b]индолов из фторбората 2-этокси-(3-арилиден)индоленина и амидинов, гуанидина, мочевины, а также тиомочевины [5]. Известны и другие пути получения производных указанной гетероциклической системы [6–17]. Несмотря на использование спектров ЯМР ¹Н для подтверждения структур синтезированных соединений (главным образом, группы NH в индольном фрагменте), в подавляющем числе публикаций не было проведено корректного отнесения сигналов ароматических протонов из-за частичного или полного их перекрывания. Это удалось сделать только в случае 6-замещенных 2,4-диоксо-1,2,3,4тетрагидро-9Н-пиримидо[4,5-*b*]индола [13, 14]. Спектры ЯМР ¹³С в приведенных работах вообще не рассматривались, несмотря на существенно большую информативность по сравнению со спектрами ЯМР ¹Н. Такие данные приведены только для некоторых 9-бензил- и 9-фенилзамещенных пиримидо[4,5-*b*]индолов [18].

В настоящей работе приводятся спектры ЯМР ¹Н и ¹³С незамещенного 9Н-пиримидо[4,5-*b*]индола (1), 2-замещенных 4-фенил-9Н-пиримидо[4,5-*b*]-индолов **2а–с** и 2-метил-4,9-дифенил-9Н-пиримидо[4,5-*b*]индола (3).

1531

В спектрах ЯМР ¹Н не замещенных в положении 9 пиримидо[4,5-*b*]индолов **1**, **2а**–**c** (табл. 1) протоны группы NH проявляются в виде немного уширенных синглетов в области 11.5–12.5 м. д., что характерно для конденсированных систем, включающих индольный фрагмент [1, 8, 9, 11, 13, 19–21]. Наличие заместителей в пиримидиновом кольце молекулы пиримидоиндолов не сказывается существенно на положении этого сигнала, но все же заметно влияние электронных эффектов заместителей на химический сдвиг.

Протоны пиримидинового кольца в незамещенном пиримидоиндоле 1 проявляются в слабом поле в виде двух отдельных синглетов. На основании данных спектров его 2-замещенного [12] и нескольких 4-замещенных [9], самый слабопольный синглет при 9.431 м. д. следует отнести к протону 4-Н, а не к 2-Н, как это было сделано ранее по аналогии со спектрами соединений пиримидинового ряда [7]. Резонанс протонов бензольного кольца в пиримидоиндоле 1 наблюдается в более сильном поле. Отнесение дублетного сигнала при 8.219 м. д. к протону 5-Н не встречает затруднений и проведено нами в соответствии с данными [10, 12, 13, 17]. Остальные три протона бензольного кольца резонируют в достаточно узкой области (7.3-7.6 м. д.) и дают суммарный мультиплетный сигнал. что ранее затрудняло проведение его анализа. Регистрация спектра соединения 1 на спектрометре с частотой 500 МГц позволила нам разделить сигналы протонов 6-, 7- и 8-Н. Сигнал 8-Н проявляется в виде несимметричного дублета с тонкой структурой, а сигналы двух других протонов являются триплетами дублетов, КССВ которых характерны для ароматических протонов (все ${}^{3}J$ укладываются в интервал 7.1–8.1, а ${}^{4}J$ ~1.0 Гц). Сделанные отнесения сигналов подтверждены регистрацией спектра соединения 1 в режиме двойного резонанса с поочередным подавлением этих сигналов.

Спектры ЯМР ¹Н 2-замещенных 4-фенилпиримидоиндолов **2а-с** усложнены наличием сигналов ароматических протонов фенильного заместителя. И хотя сигналы протонов конденсированного бензольного кольца пиримидоиндолов наблюдаются в более сильном поле, чем мультиплеты фенильных групп, они иногда частично перекрываются. Наличие хорошо разрешенных сигналов у аминопроизводного 2с позволило корректно провести анализ спин-спинового взаимодействия для протонов 5-, 6-, 7- и 8-Н в приближении 1-го порядка. При этом учитывался характер такого взаимодействия в пиримидоиндоле 1 и степень искажения симметричности сигналов. Два дублетных сигнала с КССВ ${}^{3}J_{5,6} \sim {}^{3}J_{8,7} \sim 7.7$ Гц при 7.47 и 7.36 м. д. были отнесены к протонам 5- и 8-Н, а два триплетных сигнала с КССВ ${}^{3}J_{6,7} \sim {}^{3}J_{7,8}$ и ${}^{3}J_{5,6} \sim {}^{3}J_{6,7}$ при 7.26 и 6.99 м. д. – к протонам 7- и 6-Н соответственно. Отнесения слабопольного сигнала к протону 5-Н и сильнопольного - к протону 6-Н согласуются с нашими данными для незамещенного пиримидоиндола 1. Кроме того, все эти четыре сигнала обнаруживают тонкую структуру за счет дальнего спин-спинового взаимодействия, причем для обоих триплетных сигналов 6- и 7-Н КССВ ${}^{4}J_{5,7} \sim {}^{4}J_{6,8} \sim 1.1$ Гц.

Спектр метилзамещенного 2a сходен со спектром аминопроизводного 2c, но все сигналы индольных протонов (соединения 2a) смещены на ~0.2 м. д. в слабое поле по сравнению с аналогичными сигналами соединения **2с**. Это приводит к тому, что самый слабопольный сигнал протона 5-Н оказывается между мультиплетными сигналами протонов фенильной группы в положении 4. В спектре 2-фенилзамещенного **2b** сигналы протонов 7- и 8-Н оказываются полностью закрытыми одним из мультиплетов фенильной группы.

Введение N-фенильной группировки в молекулу метилзамещенного 2a (соединение 3) вызывает различное смещение резонансных сигналов индольных протонов. Так, сигналы протонов 5-, 6-, 7-Н смещаются в слабое поле на ~0.1 м. д., тогда как сигнал протона 8-Н сдвигается в сильное поле на 0.16 м. д. (табл. 1). Причиной такого сдвига может являться магнитное экранирование этого протона под влиянием кольцевого тока, индуцируемого в ароматическом кольце N-фенильной группировки, которая по стерическим требованиям развернута таким образом, что протон 8-Н находится над плоскостью этого кольца и попадает в зону диамагнитного экранирования. Можно отметить также, что оба мультиплетных сигнала ароматических протонов самой группировки NPh также сдвигаются в разные стороны спектра: мультиплет, соответствующий резонансу орто-протонов, оказывается в более слабом поле, чем мультиплеты 4-фенильной группировки, тогда как второй мультиплетный сигнал сдвинут в сильное поле и перекрывает сигналы двух индольных протонов. (Спектры ЯМР ¹³С соединений **1–3** приведены в табл. 2).

Детально изучены незамещенный пиримидоиндол 1 и его аминофенилзамещенное 2с и записаны их спектры монорезонанса и спектры с полной развязкой от протонов в режиме Ј-модуляции. Кроме того, корректность отнесения сигналов для соединения 1 была подтверждена посредством регистрации двухмерного гетероядерного спектра COSY $[^{13}C][^{1}H]$ (КССВ для него приведены в табл. 3). В соединении 1 наиболее дезэкранированными оказываются атомы углерода, связанные с двумя гетероциклическими атомами азота - пиримидиновым и индольным (атом С(9а)) и с двумя пиримидиновыми (атом С(2)). Сигналы этих атомов значительно сдвинуты в слабое поле (до 155 м. д.), тогда как сигнал атома С(4), связанного только с одним пиримидиновым атомом азота, сдвинут в область 148 м. д. Сигналы атомов углерода бензольного кольца индольного фрагмента находятся в более сильном поле (111-127 м. д. и более того), химические сдвиги атомов С(5), С(6) и С(8) хорошо согласуются со сдвигами атомов углерода в соответствующих положениях индола [22]. Таким образом, становится возможным прогнозировать изменения в спектрах ЯМР ¹³С под влиянием заместителей в молекуле 9Н-пиримидо[4,5-b]индола независимо для пиримидинового и индольного фрагментов. Этот вывод был использован нами для проверки отнесений в спектрах производных пиримидиноиндола.

Спектр ЯМР ¹³С аминофенилзамещенного **2с** имеет болеее сложную картину, чем спектр самой гетероциклической системы, что объясняется скорее не наличием сигналов фенильного заместителя, а близостью сигналов атомов $C_{(9a)}$, $C_{(2)}$ и $C_{(4)}$, а также $C_{(6)}$ и $C_{(5)}$. Поэтому для этого соединения был дополнительно записан спектр ЯМР ¹³С с наложением частоты

Таблица 1

Данные спектров ЯМР ¹Н 9Н-пиримидо[4,5-*b*]индолов

Соеди- нение	Химический сдвиг, б, м. д. (КССВ, Ј, Гц)											
	5-Н, д	6-H	7-Н	8-Н, д	С ₆ Н ₅ , м	2-R	NH, c					
1*	8.219** (<i>J</i> = 7.8)	7.310 (т. д, <i>J</i> = 7.8, 7.1, 1.1)	7.525 (т. д, J = 8.1, 7.1, 1.2)	7.577** (<i>J</i> = 8.1)			12.317					
2a	7.73 (<i>J</i> = 8.0)	7.14 (т. д, <i>J</i> = 8.0, 7.2, 1.2)	7.46 (т. д, <i>J</i> = 8.0, 7.2, 1.0)	7.56 (<i>J</i> = 8.0)	7.65–7.70 (3H), 7.85–8.00 (2H)	2.73 (c)	12.22					
2b	7.82 (<i>J</i> = 8.0)	7.19 (т, <i>J</i> = 8.0)	_***	_***	7.65–7.75 (3H), 8.00–8.10 (2H)	7.45–7.65 (м, 3H), 8.50–8.65 (м, 2H)	12.51					
2c	7.47 (<i>J</i> = 7.7)	6.99 (т, J = 7.7, 7.3)	7.26 (т, <i>J</i> = 7.7, 7.3)	7.36 (<i>J</i> = 7.7)	7.53–7.67 (3H), 7.75–7.90 (2H)	6.67 (уш. с)	11.66					
3	7.81 (<i>J</i> = 8.0)	7.26 (т. д, J = 8.0, 6.9, 1.2)	7.51 (т. д, J = 7.7, 6.9, 1.0)	7.39 (<i>J</i> = 7.7)	7.56–7.75 (3H), 7.85–7.97 (2H)	2.69 (c)						

* Соединение 1: 8.936 (2-Н, с); 9.431 (4-Н, с).
** Дублет имеет тонкую структуру.
*** Сигнал в области мультиплета 2-фенильной группы (7.45–7.65 м. д.).

Таблица 2

Со- еди- нение	Химические сдвиги, б, м. д.*													
	C ₍₂₎	C ₍₄₎	C _(4a)	C _(4b)	C ₍₅₎	C ₍₆₎	C ₍₇₎	C ₍₈₎	C _(8a)	C _(9a)	C_i/C_i'	C _o /C _o ,	C_m/C_m'	C_p/C_p
1	154.44	148.51	113.86	118.80	121.67	120.93	127.71	111.87	138.44	155.11	_	-	-	-
2a**	163.09	158.90	107.41	118.75	121.53	120.36	126.97	111.74	138.41	156.97	138.41	128.59	128.46	129.67
	[163.1]	[156.7]	[108.9]							[156.4]				
2b	159.10	159.37	108.89	118.80	121.81	120.67	127.43	111.88	138.55	157.19	138.06,	128.78,	128.47,	130.16,
	[159.6]	[157.3]	[111.0]							[156.6]	138.09	128.64	127.61	129.95
2c	161.59	160.37	102.54	120.31	119.82	119.90	124.76	111.02	138.61	159.07	137.75	128.38	128.34	129.50
3***	163.62	159.53	108.14	118.72	121 12	1.73; 1.65	128.30	110.53	139.49	156.59	138.14 / 134.80	128.62 / 129.64	128.62 / 127.58	129.91 / 127.58

Спектры ЯМР ¹³С 9Н-пиримидо[4,5-*b*]индолов

В квадратных скобках приведены значения, рассчитанные по аддитивной схеме.
 ** Сигнал группы CH₃ 25.79 м. д.
 *** Сигнал группы CH₃ 25.92 м. д.

Кон- станта	КССВ, <i>J</i> _{С-Н} , Гц												
	C(2)	C(4)	C _(4a)	C(4b)	C(5)	C(6)	C ₍₇₎	C(8)	C(8a)	C(9a)			
${}^{1}J_{\mathrm{C-H}}$	201.8	181.6	-	-	161.6	160.5	159.8	162.8	-	-			
$^{2}J_{\text{C-H}}$	-	-	-	-	~1	1.9	2.3	~2	3.4	2.1			
${}^{3}J_{C-H}$	10.7	10.3	ш. 7.8	ш. 5.5, 5.5	8.0	7.2	7.8	8.2	8.9, 8.9	5.8, 9.8			

Константы ЈС-н для 9Н-пиримидо[4,5-b]индола (1)

при 8.3 м. д. (¹Н) для селективного подавления протонов. Характерная мультиплетность сигналов, значения КССВ ¹ J_{CH} и наблюдаемые изменения сигналов при таком подавлении протонов позволили идентифицировать сигналы атомов индольного фрагмента и фенильной группы. Сделанное отнесение (табл. 2) для двух сигналов при 119.8–119.9 м. д. к атомам C₍₅₎ и C₍₆₎ основано на большем эффекте Оверхаузера первого из них. Отнесение группы сигналов к протоносвязанным атомам углерода фенильного заместителя основано на их относительной интенсивности ($C_o \sim C_m > C_p$) и большего эффекта Оверхаузера для *орто*-атомов углерода, чем для *мета*-атомов.

Два сигнала при 138.6 и 137.8 м. д. в спектре соединения **2с** примерно равной интенсивности, принадлежащие не связанным с протонами атомам С, отнесены, соответственно, к узловому атому $C_{(8a)}$ гетероцикла и *ипсо*атому фенильной группы, поскольку второй сигнал, в отличие от первого, является симметричным и представляет собой дублет триплетов с характерными дальними КССВ (${}^{2}J_{CH} = 3.7$, ${}^{3}J_{CH} = 8.9 \Gamma$ ц). Отнесения двух мало-интенсивных сигналов – дублета при 102.5 (${}^{3}J_{CH} = 8.9 \Gamma$ ц) и дублета триплетов при 120.3 м. д. (${}^{2}J_{CH} = 3.7$, ${}^{3}J_{CH} = 8.9 \Gamma$ ц) – к узловым атомам С_(4a) и С_(4b), соответственно, согласуются с данными для аналогичных узловых атомов в спектрах упомянутых выше 9-фенилпиримидо[4,5-*b*]индолов [18].

Три слабопольных сигнала в спектре соединения **2с** принадлежат не связанным с протонами атомам С пиримидинового кольца. Самый слабопольный сигнал при 161.6 м. д. является синглетом и отнесен нами к атому $C_{(2)}$, а соседние с ним триплет при 160.4 (${}^{3}J_{CH} = 8.9 \Gamma_{II}$) и дублет при 159.1 м. д. (${}^{2}J_{CH} = 3.0 \Gamma_{II}$) отнесены к атомам $C_{(4)}$ и $C_{(9a)}$ соответственно. Прямое сопоставление спектральных данных соединения **2с** и 4-амино-9-фенилзамещенного изомера [18], по-видимому, некорректно из-за различного влияния 2- и 4-аминогрупп на химические сдвиги атомов С гетероцикла.

Для двух других 2-замещенных пиримидо[4,5-*b*]индолов (соединения **2a** и **2b**) отнесения резонансных сигналов атомов углерода фенильной группы и бензольного кольца индольного фрагмента (табл. 2) проведены на основании данных для соединения **1** с учетом влияния заместителей. При этом использовали аддитивную схему для расчета химических сдвигов атомов $C_{(2)}$, $C_{(4)}$, $C_{(4a)}$ и $C_{(9a)}$, вводя инкременты для метильных и фенильных групп по данным ЯМР ¹³С для соответствующих производных пиримидина [23] и хиназолина [24, 25]. В случае соединения **3** наличие

1536

9-фенильной группировки практически не влияет на положение всех резонансных сигналов гетероциклической системы, а сигналы самой этой группировки согласуются с данными для 4-амино-9-фенилпиримидоиндола [18].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР соединения **1** записывали на спектрометре DRX-500 (500 МГц для ядер ¹H и 125 МГц для ядер ¹³C), спектры соединений **2а–с** и **3** – на спектрометре Bruker AC 200 (200 и 50 МГц), растворитель ДМСО-d₆ (концентрация растворов 1–2%). В качестве внутренних стандартов использовали сигналы растворителя при 2.50 (¹H) и 39.50 м. д. (¹³C). Спектры ЯМР ¹³C регистрировали с полной развязкой от протонов и в режиме *J*-модуляции спада индукции. Соединение **1** получали как описано в работе [26], его производные **2** и **3** – по известной методике [5].

Авторы выражают благодарность В. И. Маматюку за помощь в работе.

СПИСОК ЛИТЕРАТУРЫ

- 1. B. Venugopalan, P. D. Desai, N. J. de Souza, J. Heterocycl. Chem., 25, 1633 (1988).
- 2. C. E. Müller, I. Hide, J. W. Daly, K. Rothenhäusler, K. Eger, J. Med. Chem., 33, 2822 (1990).
- 3. G. L. Bundy, J. R. Palmer, G. L. Weber, WO Pat. 9626941; Chem. Abstr., 125, 275901 (1996).
- 4. G. L. Bundy, J. R. Palmer, US Pat. 5795986; Chem. Abstr., 129, 175648 (1998).
- 5. В. П. Боровик, Л. С. Филатова, В. П. Мамаев, Изв. СО АН СССР. Сер. хим. наук, № 3, 137 (1975)
- 6. S. Senda, K. Hirota, M. Takahashi, J. Chem. Soc., Perkin Trans. 1, 503 (1975).
- 7. J. A. Hyatt, J. S. Swenton, J. Heterocycl. Chem., 9, 409 (1972).
- 8. J. A. Hyatt, J. S. Swenton, J. Org. Chem., 37, 3216 (1972).
- 9. T. Higashino, E. Hayashi, H. Matsuda, T. Katori, *Heterocycles*, 15, 483 (1981).
- J. Bratt, B. Iddon, A. G. Mack, H. Suschitzky, J. A. Taylor, B. J. Wakefield, J. Chem. Soc., Perkin Trans. 1, 648 (1980).
- 11. Y. Kondo, R. Watanabe, T. Sakamoto, H. Yamanaka, Chem. Pharm. Bull., 37, 2933 (1989).
- 12. M. Tielemans, V. Areschka, J. Colomer, R. Promel, W. Langenaeker, P. Geerlings, *Tetrahedron*, **48**, 10575 (1992).
- 13. G. E. Wright, J. Heterocycl. Chem., 13, 539 (1976).
- 14. J.-L. Bernier, J.-P. Henichart, J. Org. Chem., 46, 4197 (1981).
- 15. V. V. Lapachev, W. Stadlbauer, T. Kappe, *Monatsh. Chem.*, **119**, 97 (1988).
- 16. Ю. Н. Портнов, С. Н. Булага, В. Г. Забродняя, Л. Д. Смирнов, ХГС, 400 (1991).
- 17. N. Plé, A. Turck, A. Heynderickx, G. Quéguiner, J. Heterocycl. Chem., 31, 1311 (1994).
- 18. K. Eger, W. Lanzner, K. Rothenhäusler, Liebigs Ann. Chem., 465 (1993).
- 19. Sadtler Standard NMR Spectra, Sadtler Research Lab., Philadelphia, 1986, 78, 43935.
- 20. В. Ф. Седова, В. П. Кривопалов, В. П. Мамаев, ХГС, 986 (1979).
- 21. E. Arzel, P. Rocca, F. Marsais, A. Godard, G. Quéguiner, J. Heterocycl. Chem., 34, 1205 (1997).
- 22. P. Joseph-Nathan, R. E. del Rio, M. S. Morales-Rios, Heterocycles, 27, 377 (1988).
- 23. J. Riand, M.-T. Chenon, N. Lumbroso-Bader, Tetrahedron Lett., 3123 (1974).
- 24. С. Г. Барам, О. П. Шкурко, В. П. Мамаев, Изв. АН СССР. Сер. хим., 686 (1991).
- 25. U. Ewers, H. Günter, L. Jaenicke, Angew. Chem. Int. Ed., 14, 354 (1975).
- 26. K. E. Schulte, J. Reisch, U. Stoess, Arch. Pharm., 305, 523 (1972).

Новосибирский институт органической химии им. Н. Н. Ворожцова СО РАН, Новосибирск 630090 e-mail: oshk@nioch.nsc.ru Поступило в редакцию 27.07.2000

1537