В. М. Полосин, А. А. Астахов, М. А. Ряшенцева^а

СИНТЕЗ И ПРЕВРАЩЕНИЯ 2,4,4,7-ТЕТРАМЕТИЛ-4-СИЛАНАФТО[3,2-*b*]ТИОФЕН-9-ОНА

Каталитической дегидроциклизацией диметил(5-метилтиенил-2)(2,4-диметилфенил)силана, сопровождающейся скелетной изомеризацией получен 2,4,4,7-тетраметил-4,9-дигидро-4-силанафто[3,2-*b*]тиофен, окисленный до 2,4,4,7-тетраметил-4-силанафто[3,2-*b*]тиофен-9-она, структура которого установлена методом РСА. Осуществлены химические превращения синтезированного кетона: радикальное бромирование бромсукцинимидом, конденсация с фурфуролом в присутствии КОН, восстановление LiAlH₄ и нитрование ацетилнитратом.

Ключевые слова: алюмохромовый катализатор, 2,4,4,7-тетраметил-4силанафто[3,2-*b*]тиофен-9-он, бромирование, восстановление, дегидроциклоизомеризация, конденсация, нитрование.

Ранее [1] была показана возможность применения алюмохромового катализатора для высокотемпературных превращений кремнийзамещенных тиофенов. Изучение этих превращений позволило осуществить синтез новых конденсированных кремнийорганических гетероциклов с различными функциональными группами [2, 3].

В настоящей работе на промышленном алюмохромовом катализаторе марки ИМ-2204 при 560-570 °C осуществлена сопровождающаяся скелетной изомеризацией дегидроциклизация диметил(5-метилтиенил-2)(2,4-диметилфенил)силана (1), полученного последовательной обработкой 2-метилтиофена бутиллитием и диметил(2,4-диметилфенил)хлорсиланом. Выход жидкого катализата в опытах составил 85-90%. Продуктом реакции дегидроциклоизомеризации исходного силана 1 является 2,4,4,7-тетраметил-4,9-дигидро-4-силанафто[3,2-b]тиофен (2). Состав и строение последнего, как и продуктов описанных ниже дальнейших его превращений, хорошо согласуются с результатами элементного анализа и спектральными данными (см. экспериментальную часть). Окислением соединения 2 $KMnO_4$ в ацетоне синтезирован кетон **3** (полоса $v_{C=0}$ в ИК спектре находится при 1630 см⁻¹). Рентгеноструктурное исследование* соединения 3 однозначно подтверждает строение продукта дегидроциклизации. Общий вид молекулы 3 показан на рисунке. Молекула занимает частное положение на кристаллографической плоскости "m". Координаты атомов и изотропные тепловые параметры, валентные углы и длины связей приведены в табл. 1-3. Данные табл. 2, 3 свидетельствуют о том, что длины связей и валентные углы в кетоне 3 имеют обычные значения [4].

^{*} Исследование проведено В. А. Тафеенко, за что авторы выражают ему глубокую благодарность.

Трициклическая конденсированная система кетона **3**, включающая тиофеновый и содержащий карбонильную группу силанафталиновый фрагменты, имеет несколько потенциальных реакционных центров и представляет поэтому интерес как основа для построения разнообразных новых соединений.

Нами были изучены радикальное бромирование, конденсация с фурфуролом, восстановление карбонильной группы и нитрование кетона **3**.

В результате бромирования соединения **3** 2 моль бромсукцинимида в CCl₄ в присутствии каталитического количества пероксида бензоила с выходом 26% был получен дибромид **4**.

Молекулярная структура соединения 3

В его масс-спектре зарегистрирован соответствующий брутто-формуле пик молекулярного иона с m/z 430, для которого характерны два направления распада. Первое связано с элиминированием атома брома и образованием иона с m/z 351 (28%), второе – с отщеплением метильного радикала и образованием иона [M–CH₃]⁺ с m/z 415 (8%). В ИК спектре соединения 4 при 1625 см⁻¹ имеется интесивная полоса поглощения карбонильной группы, а интенсивные полосы в области 530–510 см⁻¹ следует отнести к валентным колебаниям связи С–Вг. В спектре ЯМР ¹Н вместо трехпротонного синглета группы 2-CH₃ (при 2.54 м. д.) присутствует однопротонный синглет группы 2-CHBr₂ (при 4.76 м. д.).

Взаимодействие кетона **3** с фурфуролом в этаноле в присутствии КОН происходит по типу альдольной конденсации [5]. Фурфурилиденовое производное **5** получено с выходом 36%. В его масс-спектре имеется пик молекулярного иона с *m/z* 350 (*I* 40%). В ИК спектре соединения **5** присутствует полоса $v_{C=0}$ 1630, а в области 3045 см⁻¹ наблюдаются полосы поглощения валентных колебаний группы –СН=СН– [4]. Методом ЯМР ¹Н установлено, что соединение **5** имеет *транс*-конфигурацию заместителей по двойной связи (КССВ $J_{\alpha\beta} = 16.0 \Gamma$ ц) [6].

Довольно необычную реакционную способность в описанных выше превращениях метильной группы кетона **3**, находящейся в α -положении тиофенового фрагмента, можно объяснить –*I*-эффектом атома серы и влиянием близкорасположенной карбонильной группы, способствующим делокализации неспаренного электрона, возникающего при бромировании α -тиенильного радикала, и стабилизации карбаниона, образующегося в условиях основного катализа при реакции с фурфуролом.

Таблица 1

Атом	x	У	Z	<i>B</i> , Å ²
S	4277.7(8)	2500	189(2)	4.44(3)
Si	5893.8(9)	2500	-2597(2)	3.87(3)
0	5258(2)	2500	2394(5)	5.4(1)
C(2)	5023(3)	2500	-259(7)	3.6(1)
C(3)	5127(3)	2500	-1844(7)	3.7(1)
C(4)	4578(3)	2500	-2663(8)	4.7(1)
C(5)	4093(3)	2500	-1745(8)	4.3(1)
C(6)	6101(3)	2500	750(7)	3.4(1)
C(7)	6350(3)	2500	-771(7)	3.6(1)
C(8)	6964(3)	2500	-849(8)	5.1(2)
C(9)	7314(3)	2500	438(9)	5.2(2)
C(10)	7078(3)	2500	1920(8)	4.3(1)
C(11)	6468(3)	2500	2061(7)	3.8(1)
C(12)	5444(3)	2500	1055(7)	3.7(1)
C(13)	6036(3)	446(7)	-3806(5)	5.6(1)
C(14)	3444(3)	2500	-2210(1)	6.4(2)
C(15)	7500	2500	3353(9)	6.2(2)

Координаты неводородных атомов (×10⁴) и тепловые параметры в структуре 3

Восстановление кетона **3** LiAlH₄ в абсолютном эфире при 20 °C приводит к образованию 2,4,4,7-тетраметил-4,9-дигидро-4-силанафто[3,2-*b*]тиофен-9-ола (**6**) с выходом 75%. В масс-спектре соединения **6** зарегистрирован пик молекулярного иона с m/z 274, отвечающий его бруттоформуле. Максимальным по интенсивности является пик иона с m/z 259, соответствующий элиминированию группы CH₃. В ИК спектре спирта **6** полоса поглощения группы OH наблюдается при 3500 см⁻¹.

Нитрование арилсиланов представляет собой сложную задачу вследствие неустойчивости связи Si–C_{арил} к действию кислот. Выход продуктов нитрования зависит от условий реакции и выбора нитрующего агента [7–9]. Кетон **3** был обработан дымящей HNO₃ в Ac₂O при –20 °C. В качестве основного продукта было выделено динитропроизводное 7 с выходом 32%. В его ИК спектре имеются полосы поглощения нитрогрупп в области 1350, 1540 см⁻¹, а также полоса поглощения карбонильной группы при 1640 см⁻¹.

Длины связей (*l*) в молекуле 3

Таблица 2

Связь	<i>l</i> , Å	Связь	l, Å
S-C(2)	1.726(6)	C(5)–C(14)	1.517(10)
S-C(5)	1.705(7)	C(6)–C(7)	1.417(8)
Si-C(3)	1.846(6)	C(6)–C(11)	1.395(8)
Si-C(7)	1.871(6)	C(6)–C(12)	1.506(8)
Si-C(13)	1.859(5)	C(7)–C(8)	1.388(9)
O-C(12)	1.219(7)	C(8)–C(9)	1.354(10)
C(2)–C(3)	1.376(8)	C(9)–C(10)	1.374(10)
C(2)–C(12)	1.470(9)	C(10)–C(11)	1.382(9)
C(3)–C(4)	1.425(9)	C(10)-C(15)	1.552(9)
C(4)–C(5)	1.347(10)		

Таблица З

	-		
Угол	ω, град.	Угол	ω, град.
C(2)–S–C(5)	91.3(3)	C(7)–C(6)–C(12)	123.4(5)
C(3)–Si–C(7)	103.0(3)	C(11)-C(6)-C(12)	116.5(5)
C(3)-Si-C(13)	110.9(2)	C(6)–C(7)–C(8)	116.2(6)
C(7)-Si-C(13)	111.6(2)	C(7)–C(8)–C(9)	122.9(6)
C(3)-C(2)-C(12)	130.0(6)	C(8)-C(9)-C(10)	121.6(6)
C(2)-C(3)-C(4)	109.6(6)	C(9)-C(10)-C(11)	117.8(6)
C(3)–C(4)–C(5)	114.9(6)	C(9)-C(10)-C(15)	119.4(6)
C(4)-C(5)-C(14)	129.2(7)	C(11)-C(10)-C(15)	122.8(6)
C(7)–C(6)–C(11)	120.0(5)	C(6)-C(11)-C(10)	121.5(6)
O-C(12)-C(2)	119.7(6)	O-C(12)-C(6)	120.1(5)
C(2)-C(12)-C(6)	120.2(5)		

Валентные углы (ω) в молекуле 3

Направление замещения атомов водорода в положениях 3 и 8 при электрофильной атаке связано с электронодонорным эффектом двух метильных групп и электроакцепторным – карбонильной группы. Отсутствие сигналов протонов при атомах $C_{(3)}$ и $C_{(8)}$ в спектре ЯМР ¹Н подтверждает положение нитрогрупп.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Масс-спектры снимали на приборе MS-25 RFA. ИК спектры регистрировали на приборах UR-20 и IR-435 в таблетках КВг и в пленке. Спектры ЯМР ¹Н получали на приборах WP-80 и WM-400 (400 МГц) в CDCl₃, внутренний стандарт ТМС. ТСХ проводили на пластинках Silufol UV-254 с закрепленным слоем.

Рентгеноструктурное исследование молекулы 3. Монокристаллы исследованы на четырехкружном автоматическом дифрактометре CAD-4 фирмы Enraf Nonius (λ MoK_{α}, графитовый монохроматор, ω - $\theta/2\theta$ -сканирование). Основные кристаллографические данные: a = 22.573(8), b = 7.355(3), c = 8.551(3) Å, V = 1419.6 Å³. Федоровская группа *Pnma*, Z = 4. В области $\theta \le 28^{\circ}$ обнаружено 1517 ненулевых отражений, из которых 1266 с $I > 3 \sigma$ (I) использовались для уточнения позиционных и тепловых параметров молекулы, мотив которой найден с использованием прямых методов, реализованных в программе MULTAN, комплекса программ SDP. Уточнение позиционных и тепловых параметров неводородных атомов проведено в анизотропном полноматричном приближении. Атомы водорода локализованы из синтезов Фурье и уточнены в изотропном приближении. Окончательный R = 5.4%.

Диметил(5-метилтиенил-2)(2,4-диметилфенил)силан (1). К раствору 20 г (0.2 моль) 2-метилтиофена в 150 мл абсолютного эфира в токе азота при температуре –5–0 °С в течение 20 мин прибавляют 12.9 г (0.2 моль) бутиллития в 120 мл гексана. Полученную смесь перемешивают при той же температуре 30 мин, затем охлаждают до –20 °С и прибавляют к ней раствор 40 г (0.2 моль) диметил(2,4-диметилфенил)хлорсилана в 50 мл эфира. Реакционную массу перемешивают 5 ч при той же температуре, выдерживают 12 ч при комнатной температуре и разлагают водным раствором NH₄Cl (100 мл). Органический слой отделяют, сушат MgSO₄. Остаток после отгонки растворителя фракционируют. Получают 31.5 г (60%) соединения 1 с т. кип. 153–156 °С (6 мм рт. ст.), n_D^{20} 1.5630; R_f 0.73 (Silufol UV-254, гексан–этилацетат, 5 : 1). ИК спектр, v, см⁻¹: 820, 1250 (Si(CH₃)₂). Массспектр, m/z ($I_{0тн}$, %), [M]⁺ 260 (100), [M–15]⁺ 245 (65). Найдено, %: С 69.31; Н 7.52; S 12.15. С₁₅H₂₀SSi. Вычислено, %: С 69.23; Н 7.69; S 12.30.

2,4,4,7-Тетрамстил-4,9-дигидро-4-силанафто[3,2-*b***]тиофен (2). Раствор 5 г (20 ммоль) соединения 1** в 10 мл бензола пропускают через кварцевый реактор с 10 г катализатора со скоростью 0.5–0.7 ч⁻¹ при 560–570 °С, после чего пропускают 10 мл бензола. Остаток (4.1 г) после отгонки бензола от катализата кристаллизуют из этанола. Получают 1.1 г (22%) соединения **2** в виде бесцветных кристаллов с т. пл. 106–107 °С; R_f 0.72 (гексан–этилацетат, 5 : 1). ИК спектр, v, см⁻¹: 800, 1260 (Si(CH₃)₂). Масс-спектр, *m/z* ($I_{\text{отн}}$, %), [M]⁺ 258 (100), [M–15]⁺ 243 (30). Спектр ЯМР ¹Н, δ , м. д. (J, Гц): 0.35 (6H, с, Si(CH₃)₂); 2.35 (3H, с, 7-CH₃); 2.47 (3H, с, 2-CH₃); 4.26 (2H, с, 9,9-H₂); 6.74 (1H, с, 3-H); 7.50 (1H, д, J = 7.5, 5-H); 7.12 (1H, м, 6-H). Найдено, %: С 69.71; Н 6.90; S 12.55. С₁₅Н₁₈SSi. Вычислено, %: С 69.76; Н 6.97; S 12.40.

2,4,4,7-Тетраметил-4-силанафто[3,2-*b***]тиофен-9-он (3)**. К раствору 0.4 г (1.7 ммоль) соединения **2** в 50 мл ацетона прибавляют небольшими порциями КМпО₄ до появления устойчивой розовой окраски раствора. Осадок МпО₂ отфильтровывают, ацетон упаривают, остаток кристаллизуют из гексана. Получают 0.32 г (90%) кетона **3** в виде желтых кристаллов, т. пл. 129–130 °С; R_f 0.5 (гексан–этилацетат, 4 : 1). ИК спектр, ν , см⁻¹: 1630 (С=О). Масс-спектр, m/z ($I_{\text{отн}}$, %): [М]⁺ 272 (42), [М–15]⁺ 257 (100). Спектр ЯМР ¹Н, δ , м. д. (J, Гц): 0.42 (6H, с, Si(CH₃)₂); 2.40 (3H, с, 7-CH₃); 2.54 (3H, с, 2-CH₃); 6.98 (1H, с, 3-H); 7.56 (1H, д, J = 7.5, 5-H); 7.39 (1H, д, J = 7.5, 6-H); 8.27 (1H, с, 8-H). Найдено, %: С 66.21; H 5.81. С₁₅H₁₆OSSi. Вычислено, %: С 66.17; H 5.88.

2-(Дибромметил)-4,4,7-триметил-4-силанафто[3,2-*b***]тиофен-9-он** (4). К раствору 0.4 г (1.47 ммоль) соединения 3 в 50 мл CCl₄ прибавляют 0.5 г (3 ммоль) бромсукцинимида и каталитическое количество пероксида бензоила. Смесь при освещении лампой накаливания (мощность 500 Вт) кипятят 15 мин, затем перемешивают 20 мин при 20 °C. Осадок сукцинимида отфильтровывают, от фильтрата отгоняют растворитель, остаток хроматографируют на колонке с силикагелем (элюент гексан–этилацетат, 7 : 1). Выделяют 0.16 г (26%) соединения 4, бесцветные кристаллы, т. пл. 166–168 °C (из гексана); R_f 0.68 (гексан–этилацетат, 3:1). ИК спектр, v, см⁻¹: 510, 530 (C–Br), 1625 (C=O). Масс-спектр, *m/z* ($I_{отн}$, %): [M]⁺ 430 (30), [M–15]⁺ 415 (8), [M–Bг]⁺ 351 (28). Спектр ЯМР ¹H, δ , м. д. (*J*, Гц): 0.47 (6H, с, Si(CH₃)₂); 2.42 (3H, с, 7-CH₃); 4.76 (1H, с, 2-CHBr₂); 6.94 (1H, с, 3-H); 7.42 (1H, д, *J* = 7.0, 6-H); 7.59 (1H, д, *J* = 7.0, 5-H). Найдено, %: C 41.81; H 3.31; Br 37.09; S 7.52. C₁₅H₁₄Br₂OSSi. Вычислено, %: C 41.88; H 3.28; Br 37.15; S 7.45.

2-(Φурфурилиденметил)-4,4,7-триметил-4-силанафто[3,2-*b***]тиофен-9-он** (5). Смесь 0.2 г (0.74 ммоль) кетона **3**, 0.23 г (2.39 ммоль) фурфурола и 0.01 г (0.17 ммоль) КОН кипятят в 50 мл этанола в течение 2 ч. Спирт отгоняют, остаток хроматографирую (силикагель, элюент гексан–этилацетат, 10 : 1). Получают 0.1 г (39%) желтых кристаллов соединения **5**, т. пл. 162–163 °C (из гептана); R_f 0.48 (гексан–этилацетат, 5 : 1). ИК спектр, v, см⁻¹: 1255 (Si(CH₃)₂), 1630 (C=O), 3045 (–CH=CH– (*mpanc*)). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): [M]⁺ 350 (40), [M–15]⁺ 335 (28), [M–93]⁺ 257 (100). Спектр ЯМР ¹H, δ, м. д. (*J*, Гц): 0.47 (6H, с, Si(CH₃)₂); 2.46 (3H, с, 7-CH₃); 6.45 (2H, д, *J* = 3.6, 3'-H); 6.94 (1H, д, *J* = 16, β-H); 7.17 (1H, д, *J* = 16, α-H); 7.23 (1H, с, 3-H); 7.34 (1H, д, *J* = 1.8, 5'-H); 7.42 (1H, д, $J_{6,5}$ = 7.5, $J_{6,8}$ = 1.7, 6-H); 7.57 (1H, д, $J_{5,6}$ = 7.5, $J_{5,8}$ = 0.5, 5-H). Найдено, %: C 68.41; H 5.22; S 9.25. C₂₀H₁₈O₂SSi. Вычислено, %: C 68.57; H 5.14, S 9.14.

2,4,4,7-Тетраметил-4-силанафто[3,2-*b***]тиофен-9-ол (6)**. К раствору 0.4 г (1.4 ммоль) соединения **3** в 10 мл абсолютного эфира добавляют 0.1 г (2.6 ммоль) LiAlH₄. Реакционную смесь перемешивают при 20 °С до исчезновения соединения **3** (ТСХ). Далее избыток LiAlH₄ разлагают водой, эфирный слой отделяют, сушат MgSO₄. Остаток после отгонки эфира кристаллизуют из гексана. Получают 0.3 г (75%) соединения **6**, бесцветные кристаллы, т. пл. 124–125 °С. R_f 0.43 (гексан–этилацетат, 4 : 1). ИК спектр, v, см⁻¹: 3500 (O–H). Масс-спектр, найдено: m/z ($I_{отн}$, %): [M]⁺ 274 (70), [M–17]⁺ 257 (55), [M–15]⁺ 259 (100). Найдено, %: С 65.52; Н 6.63; S 11.71. С₁₅Н₁₈OSSi. Вычислено, %: С 65.69; Н 6.57; S 11.68.

2,4,4,7-Тетраметил-3,8-динитро-4-силанафто[3,2-*b***]тиофен-9-он** (7). К смеси 2 мл дымящей HNO₃ (d = 1.51) и 10 мл Ac₂O, охлажденной до -20 °C, прибавляют раствор 0.5 г (1.8 ммоль) соединения **3** в 10 мл Ac₂O. Полученную смесь выдерживают при той же температуре 30 мин, затем выливают на лед. Выпавший осадок отфильтровывают,

промывают водой, перекристаллизовывают из этилацетата. Получают 0.21 г (32%) соединения 7, светло-желтые кристаллы, т. пл. 279–281 °С. ИК спектр, v, см⁻¹: (C=O), 1540, 1350 (NO₂). Масс-спектр, *m/z* ($I_{\text{отн}}$, %): [M–1]⁺, 363 (30), [M–47]⁺ 315 (100), [M–15]⁺ 347 (15). Спектр ЯМР ¹Н, δ , м. д. (J, Гц): 0.62 (6H, с, Si(CH₃)₂); 2.36 (3H, с, 7-CH₃); 2.93 (3H, с, 2-CH₃); 7.63 (1H, д, J = 7.4, 6-H); 7.73 (1H, д, J = 7.4, 5-H). Найдено, %: C 68.70; H 5.34; N 10.68. C₁₅H₁₄N₂O₅SSi. Вычислено, %: C 68.72; H 5.36; N 10.71.

СПИСОК ЛИТЕРАТУРЫ

- 1. 1. В. М. Полосин, А. А. Астахов, А. В. Иващенко, М. А. Ряшенцева, Е. П. Беланова, А. С. Шашков, Х. М. Миначев, *ХГС*, 419 (1989).
- 2. В. М. Полосин, А. А. Астахов, В. А. Тафеенко, А. В. Иващенко, *ЖОХ*, **60**, 1580 (1990).
- 3. В. М. Полосин, А. А. Астахов, В. А. Тафеенко, А. В. Иващенко, *Металлоорган. химия*, **3**, 650 (1990).
- 4. А. Гордон, Р. Форд. Спутник химика, Мир, Москва, 1976, 541.
- 5. А. Терней, Современная органическая химия, Мир, Москва, 1981, 2, 651.
- 6. М. М. Сергеев, Спектроскопия ЯМР, МГУ, Москва, 1981, 279.
- 7. Н. С. Простаков, Ислам Назрул, А. В. Варламов, ХГС, 1528 (1985).
- 8. R. A. Benkeser, P. E. Brumfield, J. Am. Chem. Soc., 73, 4770 (1951).
- 9. В. М. Полосин, А. А. Астахов, В. А. Тафеенко, А. В. Иващенко, *ЖОХ*, **62**, 367 (1992).

Федеральное государственное унитарное предприятие "ИРЕА", Москва 107076, Россия Поступило в редакцию 24.05.2001 После доработки 08.10.2001

^аИнститут органической химии им. Н. Д. Зелинского РАН, Москва 119991 e-mail: secretary@ioc.ru