С. А. Ямашкин, Г. А. Романова, И. С. Романова, М. А. Юровская^а

СИНТЕЗ ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫХ ПИРРОЛО[2,3-g]-И ПИРРОЛО[3,2-f]ХИНОЛИНОВ ИЗ 2-ФЕНИЛ- И 1-МЕТИЛ-2-ФЕНИЛ-5-АМИНОИНДОЛОВ

Изучено поведение 2-фенил- и 1-метил-2-фенил-5-аминоиндолов в реакциях с ацетоуксусным, трифторацетоуксусным и этоксиметиленмалоновым эфирами, приводящих к получению пирроло[2,3-g]- и пирроло[3,2-f]хинолинов с функциональными заместителями.

Ключевые слова: 5-амино-2-фенилиндол, 5-амино-1-метил-2-фенилиндол, ацетоуксусный, трифторацетоуксусный, этоксиметиленмалоновый эфиры, функционально замещенные пирроло[2,3-g]хинолины, функционально замещенные пирроло[3,2-f]хинолины.

Ранее мы обнаружили, что термическая конденсация 2-фенил- (1), 1-метил-2-фенил-5-аминоиндолов (2) с ацетилацетоном и дибензоилметаном приводит к соответствующим енаминокетонам, которые в трифторуксусной кислоте циклизуются в смесь пирролохинолинов углового и линейного строения [1]. Продолжая исследования в этом направлении, мы изучили реакции аминоиндолов 1 и 2 с ацетоуксусным, трифторацетоуксусным, этоксиметиленмалоновым эфирами с целью разработки методов синтеза функционально замещенных пирроло[2,3-g]- и пирроло[3,2-f]хинолинов.

Оказалось, что взаимодействие аминов 1, 2 с перечисленными выше эфирами, как и в случае 1,3-дикетонов, идет только с участием аминогруппы, хотя не исключалась возможность реакции по β -положению пиррольного кольца. Такие реакции известны, например, для производных 2-аминоиндола [2].

При нагревании аминоиндолов 1 и 2 с ацетоуксусным эфиром в абсолютном бензоле с каталитическими количествами ледяной уксусной кислоты получены смеси *E*-, *Z*-изомеров аминокротонатов 3 и 4.

1354

По интегральной интенсивности сигналов характеристических протонов в спектре ЯМР ¹Н соединения **3** (таблица) в растворе ДМСО-d₆ соотношение *Z*- и *E*-форм составляет 3.5 : 1. Отнесение к *Z*- и *E*-формам основано на различиях в химических сдвигах сигналов некоторых протонов. Так, сигнал протона N–H енаминного фрагмента для *Z*-формы из-за взаимодействия с этоксикарбонильной группой смещен на 2 м. д. в слабое поле по сравнению с сигналом этого протона для *E*-формы. Это влияние ощущается и на химических сдвигах протонов этоксигруппы, разница которых для *Z*- и *E*-форм составляет 0.12 м. д. За счет влияния этоксикарбонильной группы в *E*-форме сигнал протонов β-метильной группы сдвинут в слабые поля на 0.45 м. д.

Аналогичная картина наблюдается и для индолиламинокротоната 4, соотношение Z- и E-изомеров для которого, по данным спектров ЯМР ¹H, составляет 3:1. Полученные результаты согласуются с данными для ранее исследованных нами кротонатов, образованных другими аминоиндолами [3, 4].

В отличие от нефторированного аналога трифторацетоуксусный эфир реагирует с аминами 1 и 2 в тех же условиях с участием не только карбонильной, но и этоксикарбонильной группы. При этом выделены соответствующие Z-енамины 5 и 6 и амиды 7 и 8 в соотношении 1:4 (5 и 7), 1:3 (6 и 8). Соответствующие енамины и амиды были разделены хроматографически в толстом слое оксида алюминия. В спектре ЯМР ¹Н индолиламинокротоната 5 наблюдаются сигналы протонов этоксильной группы (1.30 и 4.19), винильного протона (5.2), протонов фенильной группы, ароматических протонов 4-, 6-, 7-Н и протона групп N–Н енаминного (9.81 м. д.) и пиррольного фрагментов. Таким образом, фторированный аминокротонат 5 в отличие от нефторированного енамина 3 в ДМСО-d₆ существует исключительно в Z-форме, что следует из сравнения химических сдвигов протонов этоксигруппы, винильного и аминного протонов. В спектре индолиламинокротоната 6 наблюдаются аналогичные закономерности, что свидетельствует также об его Z-строении.

В масс-спектрах соединений **5**, **6** помимо пика молекулярного иона имеется пик иона [M–46]⁺, который для енамина **6** является самым интенсивным. Потеря молекулы этилового спирта, характерная для большинства индолиламинокротонатов, приводит к образованию молекулярного иона соответствующих пирролохинолонов **17**, **18** (расшифровку структур см. ниже), так как масс-спектральный распад последних и дальнейшая картина распада енаминов **5**, **6** одинаковы. УФ спектры как фторированных, так и не фторированных индолиламинокротонатов **3–6**, содержат одинаковые полосы поглощения, что говорит о подобии их строения.

К сожалению, ИК спектроскопия при изучении строения енаминокарбонильных соединений и амидов индольного ряда оказывается неинформативной. Как было показано нами ранее [5], полоса валентных колебаний сопряженной карбонильной группы в таких системах проявляется в области колебаний сопряженных двойных связей (1600–1620 см⁻¹).

Преимущественное образование амидов при реакциях аминоиндолов 1 и 2 с фторированным ацетоуксусным эфиром, в отличие от самого ацетоуксусного эфира, по-видимому, связано с акцепторным влиянием трифторметильной группы, которое увеличивает активность сложноэфирной группировки. Подтверждением образования амидов 7, 8 является отсутствие в их спектрах ЯМР ¹Н сигналов протонов этоксильной группы. Количество атомов водорода в молекулах полученных амидов соответствует суммарной интегральной интенсивности протонов в спектрах. Четкое отнесение имеющихся сигналов затруднено существованием в растворе (ДМСО-d₆ + CCl₄, 1 : 3) амидов как минимум в трех формах: карбонильной, енольной и в виде продуктов циклизации. Это подтверждается и хроматографическим контролем. В связи с этим амиды, как индивидуальные соединения не охарактеризованы, хотя их молекулярные массы, измеренные масс-спектрометрически, соответствуют расчетным.

Аминоиндолы 1 и 2 реагируют с этоксиметиленмалоновым эфиром при кипячении в этиловом спирте с образованием соответствующих (5-индолиламинометилен)малонатов 9 и 10.

9 R = H, 10 R = Me

В спектрах ЯМР ¹Н малонатов 9, 10 наблюдаются мультиплетные сигналы протонов двух этоксигрупп, синглетные сигналы протонов 1-Н (9), CH₃ (10), протона 3-Н, мультиплет ароматических протонов и два дублета винильного и аминного протонов енаминного фрагмента с КССВ 15 Гц, что однозначно подтверждает их *анти*-расположение в структурах 9 и 10.

При нагревании амидов 7 и 8 в трифторуксусной кислоте происходит образование пирролохинолинов 11–13 с линейным сочленением колец.

11 $R = R^1 = H$, **12** R = Me, $R^1 = H$, **13** R = Me, $R^1 = CF_3CO$

Линейное строение молекул соединений 11–13 однозначно подтверждается спектрами ЯМР ¹Н, в которых наблюдаются синглетные сигналы протонов 1-Н (11), СН₃ (12, 13), 3-Н (11, 12), 4-, 7-, 9-Н. Картина ABC-системы протонов фенильной группы для соединения 13 несколько отличается от остальных (наблюдается наложение двух триплетных сигналов), по-видимому, из-за влияния близко расположенной трифторацетильной группы. Последняя также сдвигает сигнал протона 4-Н в слабые поля на 0.77 м. д. Структура соединения **13** также подтверждается масс-спектром, в котором имеется пик молекулярного иона и самый интенсивный в спектре пик иона [M–69]⁺. Такой характер масс-спектрального распада объясняется наличием в молекуле трифторацетильной группы [6].

Таким образом, амиды индолил-5-трифторацетоуксусной кислоты в условиях кислотного катализа даже при свободном положении β-пиррольного кольца циклизуются с участием положения 6, а не 4, что приводит к линейнопостроенным пирролохинолинам, в отличие от таких же нефторированных амидов, превращающихся в аналогичных условиях преимущественно в пирролохинолины углового строения [3]. Такую аномалию, по-видимому, следует объяснить большими стерическими требованиями трифторметильной группы по сравнению с метильной. И если *пери*заместители (метильный радикал и водород) не создают напряжения в угловом пирролохинолине, то образование последнего с трифторметильной группой и водородом в *пери*-положении оказывается затрудненным.

Соединения 11, 12 под действием диметилсульфата легко превращаются в метилированный по обоим атомам азота пирролохинолин 14.

Спектр ЯМР ¹Н соединения 14 отличается от спектров пирролохинолинов 11, 12 отсутствием сигналов N–H и наличием двух синглетных сигналов протонов N-метильных групп. УФ спектры пирролохинолинов 11, 12, 14 характеризуются 4 полосами поглощения и практически идентичны.

Соединение **13** образуется наряду с пирролохинолином **12** за счет ацилирования последнего трифторуксусной кислотой в β-положение пиррольного кольца, нуклеофильность которого, по-видимому, несколько повышена за счет наличия метильной группы.

Высокотемпературная (250–280 °C) циклизация индолиламинокротонатов **3–6** и индолилметиленмалонатов **9**, **10** приводит к пирролохинолинам углового строения **15–20**.

15 $R = R^2 = H$, $R^1 = Me$, **16** $R = R^1 = Me$, $R^2 = H$, **17** $R = R^2 = H$, $R^1 = CF_3$; **18** R = Me, $R^2 = H$, $R^1 = CF_3$, **19** $R = R^1 = H$, $R^2 = CO_2Et$, **20** R = Me, $R^1 = H$, $R^2 = CO_2Et$

Соеди- нение	Брутто- формула	<u>Найдено, %</u> Вычислено, %			R_{f}	Т. пл, ⁰С		УФ спектр		Вы-
		С	Н	M^+	(сис- тема)	(раство- ритель)	Спектры ЯМР 'Н, б, м. д. (Ј, Гц)	λ _{max,} HM	lg ε	ход, %
1	2	3	4	5	6	7	8	9	10	11
3	$C_{20}H_{20}N_2O_2$	<u>74.75</u>	<u>6.12</u>	<u>320</u>	0.71	160-162	(<i>E</i>) 1.13 (3H, τ , $J = 7$, OCH ₂ <u>CH</u> ₃); 2.37 (3H, c, α -CH ₃);	210	4.19	58
		74.98	6.29	320	(B)	(бензин	3.90 (2H, к, $J = 7$, O <u>CH</u> ₂ CH ₃); 4.75 (1H, с, H вин.); 6.78 (1H, с, 2 H); 7.45 (2H) и 4.6 (7 H, Dh); 8.07 (1H, с)	225	4.32	
						калоша)	(1н, с, 3-н); 7.43 (8н, м, 4-, 6-, 7-н, Рп); 8.07 (1н, с, N–H амин.); 11.36 (1H, с, 1-H)	350	4.48	
4	C ₂₁ H ₂₂ N ₂ O ₂	<u>75.28</u> 75.42	<u>6.75</u> 6.63	<u>334</u> 334	0.84 (B)	139–141 (бензин Калоша)	(Z) 1.25 (3H, T, $J = 7$, OCH ₂ CH ₃); 1.93 (3H, c, α -CH ₃); 4.07 (2H, κ , $J = 7$, OCH ₂ CH ₃); 4.57 (1H, c, H вин.); 6.78 (1H, c, 3-H); 7.45 (8H, м, 4-, 6-, 7-H, Ph); 10.23 (1H, c, N-H амин.); 11.40 (1H, c, 1-H) (<i>E</i>) 1.13 (3H, T, $J = 7$, O-CH ₂ CH ₃); 2.38 (3H, c, α -CH ₃); 3.77 (3H, c, 1-CH ₃); 3.93 (2H, κ , $J = 7$, O- <u>CH₂CH₃</u>); 4.75 (1H, c, H вин.); 6.50 (1H, c, 3-H); 7.28 (8H, м, 4-, 6-, 7-H, Ph); 8.09 (1H, c, N-H амин.)			
5	C ₂₀ H ₁₇ F ₃ N ₂ O ₂	<u>64.26</u> 64.17	<u>4.41</u> 4.58	<u>374</u> 374	0.82 (Б)	175–176 (гептан)	(Z) 1.26 (3H, т, $J = 7$, O–CH ₂ <u>CH</u> ₃); 1.93 (3H, с, α-CH ₃); 3.77 (3H, с, 1-CH ₃); 4.10 (2H, к, $J = 7$, O <u>CH₂</u> CH ₃); 4.58 (1H, с, H вин.); 6.50 (1H, с, 3-H); 7.27 (8H, м, 4-, 6-, 7-H, Ph); 10.26 (1H, с, N–H амин.) (Z) 1.30 (3H, т, $J = 7$, OCH ₂ – <u>CH</u> ₃); 4.19 (2H, к, $J = 7$, O– <u>CH</u> ₂ CH ₃); 5.20 (1H, с, H вин.); 6.74 (1H, с, 3-H); 6.93 (1H, д, $J = 8$, 7-H); 7.28 (1H, т, $J = 8$, p -H, Ph); 7.35 (1H, с, 4-H); 7.35 (1H, д, $J = 8$, 6-H); 7.41 (2H, т, m -H, Ph); 7.80 (2H, д, o -H, Ph); 9.81 (1H, с, N–H амин.); 11.42 (1H, с, 1-H)	210 230 315	4.47 4.37 4.58	15*

Физико-химические и спектральные характеристики полученных соединений

1358

6	$C_{21}H_{19}F_3N_2O_2$	<u>64.71</u>	<u>4.70</u>	<u>388</u>	0.71	128-129	(Z) 1.33 (3H, T, J = 7, O-CH ₂ <u>CH₃</u>); 3.80 (3H, c, 1-CH ₃);	210	4.36	13**
		64.94	4.93	388	(A)	(гептан)	4.20 (2H, к, <i>J</i> = 7, O <u>CH</u> ₂ –CH ₃); 5.22 (1H, с, H вин.); 6.48 (1H, с, 3-H); 7.04 (1H, д, <i>J</i> = 8, 7-H); 7.36 (1H, д, <i>J</i> = 8, 6-H); 7.40 (1H, с, 4-H); 7.40 (1H, т, <i>J</i> = 8, <i>p</i> -H, Ph); 7.48	225 300	4.40 4.50	
							(2H, т, <i>J</i> = 8, <i>m</i> -H, Ph); 7.53 (2H, д, <i>J</i> = 8, <i>o</i> -H, Ph); 9.83			
9	CaaHaaNaO4	69 90	5.61	378	0.46	163-164	(1H, с, N–H амин.) 1 30 (6H м 2 ОСН-СН-): 4 21 (4H м 2 ОСН-СН-): 6 89	207	4 37	43
,	022112210204	69.83	5.86	378	(Б)	105 104	(1H, c, 3-H); 7.38 (8H, м, 4-, 6-, 7-H, Ph); 8.44 (1H, д,	227	4.30	75
							J = 15, Н вин.); 10.77 (1Н, д, J = 15, Н амин.); 11.49 (1Н,	333	4.51	
							c, 1-H)			
10	$C_{23}H_{24}N_2O_4$	$\frac{70.21}{70.20}$	$\frac{6.31}{6.16}$	$\frac{392}{202}$	0.59	106–108	1.33 (6H, м, 2 OCH ₂ <u>CH</u> ₃); 3.77 (3H, с, 1-CH ₃); 4.22 (4H,	208	4.57	66
		/0.39	6.16	392	(B)		M, 2 O <u>CH</u> ₂ CH ₃); 6.53 (1H, c, 3-H); $/.34$ (8H, M, 4-, 6-, $/-H$, Pb); 8.46 (1H, π , $I = 15$, H pure); 10.02 (1H, π , $I = 15$	225	4.54	
							N-Hамин.)	320	4.05	
11	C ₁₈ H ₁₁ F ₃ N ₂ O	65.92	3.21	328	0.41	> 300	6.73 (1Н, с, 3-Н); 6.84 (1-Н, с, 7-Н); 7.33 (1Н, т,	l		
		65.86	3.38	328	(Γ)		J = 8, p-H, Ph); 7.45 (2H, T, J = 8, m-H, Ph); 7.52 (1H, c,	l		
							4-H); 7.76 (1H, c, 9-H); 7.84 (2H, д, <i>J</i> = 8, <i>o</i> -H, Ph); 11.48			
10		66.45	2.76	2.42	0.42	202 202	(1H, c, 1-H); 11.80 (1H, c, 5-H)	220	1.01	20
12	$C_{19}H_{13}F_{3}N_{2}O$	<u>66.45</u>	$\frac{3.76}{2.92}$	$\frac{342}{342}$	0.42 (E)	282-283	3.84 (3H, c, 1-H); 6.55 (1H, c, 3-H); 6.7 (1H, c, 7-H); 7.45 (1H, r, 7-H); 7.51 (2H, r, 7-8, r, H, Db); 7.56 (1H, r, 7-8, r, H, Db	230	4.61	28
		00.07	5.65	542	(E)	(водн.	$(111, 1, 5 - 6, p-11, FII), 7.51 (211, 1, 5 - 6, m-11, FII), 7.50 (1H c 4-H); 7.58 (2H \pi J = 8 o-H Ph); 7.64 (1H c$	364	4.70	
						empr)	9-H): 11.93 (1H. c. 1-H)	501	1.52	
13	$C_{21}H_{12}F_6N_2O_2$	57.30	2.85	438	0.68	> 300	3.65 (3H, с, 1-H); 6.86 (1H, с, 7-H); 7.48 (2H, д, <i>о</i> -H, Ph);	220	4.51	22
		57.54	2.76	438	(Ж)	(спирт)	7.57 (3H, м, <i>m</i> -, <i>p</i> -H, Ph); 7.74 (1H, с, 9-H); 8.33 (1H, с,	238	4.43	
							4-H); 12.14 (1H, c, 5-H)	272 (пл)	3.39	
								317	4.35	
14	C. H. F.N.O	67.26	4.10	356	0.74	263 264	3 75 (3H c 5 CH-): 3 86 (3H c 1 CH-): 6 68 (1H c 3 H):	230	4.18	56
14	C2011151-31V2O	$\frac{07.20}{67.41}$	$\frac{4.10}{4.24}$	356	0.74 (Ж)	(спирт)	$6.89 (1H \text{ c} 7-\text{H}) \cdot 7.47 (1H \text{ T} J=8 \text{ p-H Ph}) \cdot 7.53 (2H \text{ T}$	250	4.51	50
		07.11	1.21	550	()11)	(empi)	J = 8, m-H, Ph; 7.59 (2H, $J, J = 8, o-H, Ph$); 7.67 (1H, c,	356	4.41	
							4-H); 7.71 (1H, c, 9-H)	l		
15	$C_{18}H_{14}N_2O$	78.65	5.21	274	0.63	>300	2.37 (3H, c, 7-CH ₃); 5.93 (1H, c, 8-H); 7.24 (1H, д, <i>J</i> = 8,	207,	4.32	58
		78.81	5.14	274	(M)	(спирт)	4-H); 7.30 (1H, T, <i>J</i> = 8, <i>p</i> -H, Ph); 7.46 (2H, T, <i>J</i> = 8, <i>m</i> -H,	230	4.36	
							Ph); 7.66 (1H, μ , $J = 8$, 5-H); 7.86 (2H, μ , o -H, Ph); 7.90 (1H, σ , 1H); 11.25 (1H, σ , CH); 11.71 (1H, σ , 2H)	252 (пл)	4.11	
							(1H, C, 1-H); 11.35 (1H, C, 0-H); 11./1 (1H, C, 3-H)	301	4.15	
								300	4.23	
	1				1	1		1	1 .	1

Окончание таблицы

1	2	3	4	5	6	7	8	9	10	11
16	C ₁₉ H ₁₆ N ₂ O	<u>79.21</u> 79.14	<u>5.45</u> 5.59	<u>288</u> 288	0.61 (K)	228–230 (спирт)	2.37 (3H, c, 7-CH ₃); 3.85 (3H, c, 3-CH ₃); 5.93 (1H, c, 8-H); 7.32 (1H, д, <i>J</i> = 8, 4-H); 7.43 (1H, т, <i>J</i> = 8, <i>p</i> -H, Ph); 7.52 (2H, т, <i>J</i> = 8, <i>m</i> -H, Ph); 7.61 (2H, д, <i>J</i> = 8, <i>o</i> -H Ph); 7.69 (1H, c, 1-H); 7.77 (1H, д, <i>J</i> = 8, 5-H); 11.36 (1H, c, 6-H)	208 223 254 294 345	4.46 4.45 4.26 4.18 4.26	43
17	C ₁₈ H ₁₁ F ₃ N ₂ O	<u>65.38</u> 65.86	<u>3.42</u> 3.38	<u>328</u> 328	0.44 (Д)	>300 (спирт)	7.19 (1H, c, 8-H); 7.26 (1H, т, <i>J</i> = 8, <i>p</i> -H, Ph); 7.43 (2H, т, <i>J</i> = 8, <i>m</i> -H, Ph); 7.64 (1H, д, <i>J</i> = 8, 4-H); 7.71 (1H, c, 1-H); 7.86 (1H, д, <i>J</i> = 8, 5-H); 7.89 (2H, д, <i>J</i> = 8, <i>o</i> -H, Ph); 11.40 (1H, c, 6-H); 11.90 (1H, c, 3-H)	209 226 280 350	4.40 4.29 4.14 4.10	80
18	C ₁₉ H ₁₃ F ₃ N ₂ O	<u>66.38</u> 66.67	<u>3.75</u> 3.83	<u>342</u> 342	0.69 (Д)	282–283 (водн. спирт)	3.97 (3H, c, 3-CH ₃); 7.22 (1H, c, 8-H); 7.40 (1H, τ , $J = 8, p$ -H, Ph); 7.45 (1H, c, 1-H); 7.50 (2H, τ , $J = 8, m$ -H, Ph); 7.61 (2H, π , $J = 8, o$ -H, Ph); 7.76 (1H, π , $J = 8, 4$ -H); 7.91 (1H, π , $J = 8, 5$ -H); 11.43 (1H, c, 6-H)	210 227 274 345	4.42 4.39 4.37 4.18	93
19	$C_{20}H_{16}N_2O_3$	<u>71.95</u> 72.28	<u>4.96</u> 4.85	<u>332</u> 332	0.38 (Л)	> 300 (спирт)	1.31 (3H, τ , $J = 7$, OCH ₂ CH ₃); 4.28 (2H, κ , $J = 7$, OCH ₂ CH ₃); 7.36 (1H, π , $J = 8$, 4-H); 7.60 (5H, κ , <i>o</i> -H, Ph); 7.80 (1H, π , $J = 8$, 5-H); 8.04 (1H, c, 1-H); 8.44 (1H, c, 7-H); 11.90 (1H, c, 3-H); 12.25 (1H, c, 9-OH)	207 228 276 (пл) 303 370	4.24 4.23 4.05 4.10 4.03	56
20	$C_{21}H_{18}N_2O_3$	<u>72.61</u> 72.82	<u>5.31</u> 5.24	<u>346</u> 346	0.20 (3)	263–265 (спирт)	1.32 (3H, τ , $J = 7$, OCH ₂ CH ₃); 3.87 (3H, c , 3-CH ₃); 4.26 (2H, κ , $J = 7$, OCH ₂ CH ₃); 7.41 (1H, μ , $J = 8$, 4-H); 7.46 (1H, τ , $J = 8$, p -H, Ph); 7.54 (2H, τ , $J = 8$, m -H, Ph); 7.63 (2H, μ , $J = 8$, o -H, Ph); 7.73 (1H, c , 1-H); 7.88 (1H, μ , $J = 8$, 5-H); 8.43 (1H, c , 7-H); 12.15 (1H, c , 9-OH)	206 227 267 303 357	4.23 4.32 4.04 4.23 4.18	48

* Суммарный выход енамина и амида 82%. ** Суммарный выход енамина и амида 56%.

Так, при кипячениии соединений **3** и **4** в дифениле образуются пирролохинолоны **15** и **16**, продукта альтернативной циклизации по положению 6 не обнаружено. Угловое сочленение колец в соединениях **15** и **16** подтверждает наличие в спектрах ЯМР ¹Н двух дублетов протонов 4- и 5-Н (J = 8 Гц), а также слабопольное положение сигнала протона 1-Н (для соединения **15**), находящегося в *пери*-положении к γ -атому кислорода пиридонового кольца. Пирролохинолоны **15** и **16** устойчивы к электронному удару, поэтому в их масс-спектрах самыми интенсивными являются пики молекулярных ионов с m/z 274 и 288 соответственно. Наличие пиков ионов [M–CO]⁺ говорит в пользу γ -хинолоновой структуры исследуемых соединений. Ультрафиолетовые спектры соединений **15**, **16** практически идентичны, что подтверждает их одинаковую структуру.

Аналогично кротонатам **3**, **4** их фторированные аналоги **5**, **6** при кипячении в дифениле превращаются в соответствующие трифторметилзамещенные ангулярные пирролохинолины **17**, **18**. В спектральных характеристиках последних наблюдаются те же закономерности, что и для соединений **15**, **16**.

Термическая циклизация индолилмалонатов в даутерме (250 °C) также приводит к образованию угловых пирролохинолинов **19**, **20**. Это подтверждается наличием в спектре ЯМР ¹Н полученных соединений сигналов протонов этоксигруппы, синглетных сигналов протонов 3-Н (соединение **19**), 3-CH₃ (соединение **20**), протонов 1-, 7-Н, 9-ОН. В отличие от соединений **15–18**, пирролохинолины **19**, **20** находятся в γ -гидроксихинолиновой форме, что подтверждается наличием синглетного сигнала α -пиридинового протона (7-Н), а также характером масс-спектрального распада. В масс-спектрах пирролохинолинов **19**, **20** самым интенсивным сигналом является пик [М–46]⁺, что соответствует отщеплению молекулы спирта от молекулярного иона. Такая фрагментация характерна для *о*-этоксикарбонилфенолов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР записаны на приборе Bruker DRX 500 (500 МГц), Bruker AM-300 (300 МГц) в ДМСО-d₆ (соединения **3**, **4**, **9**, **10**, **15**, **16**, **19**, **20**), ДМСО-d₆–ССl₄, 1:3 (соединения **5–8**, **11–14**, **17**, **18**), внутренний стандарт ТМС. Масс-спектры получены на масс-спектрометре Finnigan MAT INCOS-50 с прямым вводом образца в ионный источник при энергии ионизации 70 эВ. Электронные спектры зарегистрированы на спектрофотометре Specord в этаноле. Очистку продуктов реакции проводили методом колоночной хроматографии, а также препаративно на пластинках с Al₂O₃ (нейтральная, I и II ст. акт. по Брокману). Контроль за ходом реакции и чистотой полученных соединений осуществляли ТСХ на пластинках Silufol UV-254 в системах бензол (A), бензол–этилацетат, 8:1 (Б), 5:1 (B), 3:2 (Г), 3:1 (Д), 1:1 (Е), 2:1 (Ж), этилацетат (З), этилацетат–метанол, 5:2 (И), 3:1 (К), 5:1 (Л). Физико-химические и спектральные характеристики полученных соединений приведены в таблице. Получение исходных аминоиндолов **1**, **2** описано в работе [1].

Этиловый эфир (*E*,*Z*)-3-[(2-фенил-1Н-индолил-5)амино]-2-бутеновой кислоты (3). Раствор 0.57 г (2.74 ммоль) 2-фенил-5-аминоиндола 1 и 0.3579 г (2.75 ммоль) ацетоуксусного эфира в 100 мл абсолютного бензола в присутствии следов ледяной уксусной кислоты нагревают 28 ч с насадкой Дина–Старка. По окончании реакции (контроль TCX) бензол отгоняют. Полученное соединение очищают пропусканием кипящего бензольного раствора через слой (2–3 см) оксида алюминия. Выход 0.51 г. Этиловый эфир (*E*,*Z*)-3-[(1-метил-2-фенил-1Н-индолил-5)амино]-2-бутеновой кислоты (4) получают аналогично из 1.04 г (4.68 ммоль) 5-амино-1-метил-2-фенилиндола (2) и 0.634 г (4.88 ммоль) ацетоуксусного эфира, нагревая 19–20 ч. Выход 0.8 г.

Этиловый эфир 4,4,4-трифтор-3-[(2-фенил-1Н-индолил-5)амино]бутеновой кислоты (5) и N-(2-фенил-1Н-индолил-5)амид 4,4,4-трифтор-3-оксобутановой кислоты (7). Раствор 0.79 г (3.8 ммоль) соединения 1 и 0.85 г (4.62 ммоль) трифторацетоуксусного эфира в абсолютном бензоле в присутствии каталитических количеств ледяной уксусной кислоты кипятят 40 ч (хроматографический контроль) с насадкой Дина–Старка. По окончании реакции бензол отгоняют. Твердый остаток (смесь енамина 5 и амида 7) массой 1.233 г кипятят в гептане. Горячий раствор енамина 5 отфильтровывают от нерастворившегося осадка и пропускают через слой оксида алюминия (1 см). Выход 0.22 г. Не растворившийся в гептане осадок является амидом 7 (выход 0.874 г), очищают перекристаллизацией из спирта с активированным углем. Полученное соединение, согласно данным хроматографического анализа, не индивидуально. Суммарная интегральная интенсивность протонов в спектре ЯМР ¹Н соответствует амидной структуре. Масс-спектр: найдено 346 [M]⁺; вычислено: М = 346.

Этиловый эфир 4,4,4-трифтор-3-[(1-метил-2-фенил-1Н-индолил-5)амино]бутеновой кислоты (6) и N-(1-метил-2-фенил-1Н-индолил-5)амид 4,4,4-трифтор-3-оксобутановой кислоты (8) получают аналогично из 1.14 г (5.14 ммоль) соединения 2 и 1.1 г (5.98 ммоль) трифторацетоуксусного эфира, но нагревание ведут в течение 50 ч. Аминокротонат 6 очищают пропусканием нагретого до кипения раствора в смеси гексана с бензолом через слой оксида алюминия (1 см). Выход 0.265 г. Не растворившийся в гептане осадок является амидом 8. Вещество очищают пропусканием нагретого до кипения раствора в смеси бензола с гептаном через слой оксида алюминия (1 см). Перекристаллизовывают из гептана. Выход 0.68 г. Суммарная интегральная интенсивность протонов в спектре ЯМР ¹Н соответствует амидной структуре. Масс-спектр: найдено 360 [M]⁺; вычислено: M = 360.

Диэтиловый эфир 2-[(2-фенил-1Н-индолил-5)аминометилен]малоновой кислоты (9). Смесь 0.468 г (2.25 ммоль) соединения 1 и 0.52 г (2.4 ммоль) этоксиметиленмалонового эфира в 5 мл этилового спирта кипятят 1 ч 30 мин. Выпавший после охлаждения осадок отфильтровывают, промывают холодным спиртом. Выход 0.37 г.

Диэтиловый эфир 2-[(1-метил-2-фенил-1Н-индолил-5)аминометилен]малоновой кислоты (10) получают аналогично из 0.5 г (2.25 ммоль) соединения 2 и 0.52 г (2.4 ммоль) этоксиметиленмалонового эфира. Выход 0.58 г.

8-Трифторметил-2-фенил-5,6-дигидро-1Н-пирроло[2,3-g]хинолин-6-он (11). Кипятят 0.3 г (0.87 ммоль) амида 7 в 5 мл трифторуксусной кислоты 3 ч. Затем реакционную массу выливают в 12% водный аммиак со льдом. Выпавший осадок отфильтровывают и многократно промывают водой. Вещество очищают в толстом незакрепленном слое оксида алюминия в этилацетате. Выход 0.216 г.

1-Метил-8-трифторметил-2-фенил-5,6-дигидро-1Н-пирроло[2,3-g]хинолин-6-он (12) и 1-метил-3-трифторацетил-8-трифторметил-2-фенил-5,6-дигидро-1Н-пирроло[2,3-g]хинолин-6-он (13) получают аналогично из 0.292 г (0.811 ммоль) амида 8, но нагревание ведут 5 ч. Полученную смесь веществ 12 и 13 делят в толстом незакрепленном слое оксида алюминия в системе бензол-этилацетат, 1:2. Выход пирролохинолина 12 0.077 г. Выход пирролохинолина 13 0.077 г.

1,5-Диметил-8-трифторметил-2-фенил-5,6-дигидро-1Н-пирроло[2,3-*g*]хинолин-6-он (14). А. Раствор 0.15 г (0.457 ммоль) пирролохинолина 11, избытка диметилсульфата и гидроксида калия в ацетоне нагревают 1 ч. По окончании реакции ацетон отгоняют, реакционную массу разбавляют водой. Выпавший осадок отфильтровывают. Выход 0.09 г.

Б. Получают аналогично из пирролохинолина 12, нагревая 2 ч.

7-Метил-2-фенил-6,9-дигидро-3H-пирроло[3,2-f]хинолин-9-он (15). Кипятят 0.64 г (2 ммоль) аминокротоната 3 в дифениле 30 мин. Охлажденную реакционную смесь выливают в петролейный эфир. Выпавший осадок отфильтровывают, промывают горячим гексаном. Выход 0.32 г.

3,7-Диметил-2-фенил-6,9-дигидро-3Н-пирроло[3,2-*f*]хинолин-9-он (16) получают аналогично из 0.67 г (2 ммоль) аминокротоната **4**. Выход 0.25 г.

7-Трифторметил-2-фенил-6,9-дигидро-3H-пирроло[3,2-f]хинолин-9-он (17) получают аналогично из 0.188 г (0.503 ммоль) аминокротоната 5, нагревают 15 мин. Выход 0.133 г. Полученное вещество очищают в незакрепленном толстом слое оксида алюминия в смеси бензол-этилацетат, 3:1.

3-Метил-7-трифторметил-2-фенил-6,9-дигидро-3Н-пирроло[3,2-*f***]хинолин-9-он** (18) получают аналогично из 0.13 г (0.335 ммоль) аминокротоната 6. Выход 0.103 г.

Этиловый эфир 9-гидрокси-2-фенил-3H-пирроло[3,2-/]хинолин-8-карбоновой кислоты (19). Раствор 0.57 г (1.5 ммоль) аминометиленмалоната 9 в даутерме кипятят 30 мин. Охлажденную реакционную смесь выливают в петролейный эфир. Выпавший осадок отфильтровывают и промывают многократно горячим гексаном. Выделяют 0.28 г пирролохинолина.

Этиловый эфир 9-гидрокси-3-метил-2-фенил-3Н-пирроло[3,2-*f*]хинолин-8-карбоновой кислоты (20) получают аналогично из 0.59 г (1.5 ммоль) аминометиленмалоната 10. Выход 0.25 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. А. Ямашкин, ХГС, 1520 (1992).
- 2. Р. С. Сагиттулин, Т. В. Мельникова, А. Н. Кост, В. Ф. Снегирев, Е. Н. Френкель, *XГС*, 1043 (1973).
- 3. С. А. Ямашкин, Л. Г. Юдин, А. Н. Кост, ХГС, 493 (1983).
- 4. С. А. Ямашкин, М. А. Юровская, ХГС, 1336 (1999).
- 5. С. А. Ямашкин, И. А. Батанов, ХГС, 58 (1995).
- S. H. H. Chaston, S. E. Livingston, T. H. Lockyer, V. A. Pickles, J. S. Shannon, Austr. J. Chem., 18, 673 (1965).

Мордовский государственный педагогический институт, Саранск 430007, Россия e-mail: mgpi@si.moris.ru Поступило в редакцию 20.12.2002

^аМосковский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: yumar@org.chem.msu.ru