М. Г. Королева, О. В. Дябло, А. Ф. Пожарский, З. А. Старикова^а

N-АМИНОПРОИЗВОДНЫЕ КОНДЕНСИРОВАННЫХ ИМИДАЗОЛЬНЫХ СИСТЕМ

Прямым аминированием ряда конденсированных имидазолов О-пикрилгидроксиламином получены ранее неизвестные 1-амино- и 3-аминонафто-[1,2-d]имидазолы, 1-аминонафто[2,3-d]имидазол, 1-аминофенантро[9,10-d]имидазол и соответствующие им пикраты N-амино-N'-метилимидазолия. Рентгеноструктурное исследование пикрата 1-амино-3-метилнафто[1,2-d]имидазолия показало, что, в отличие от солей 1-аминобензимидазолия, в нем реализуется конформация, в которой атомы водорода группы N–NH₂ направлены в сторону *мезо*-атома углерода.

Ключевые слова: N-аминоазолы, О-пикрилгидроксиламин, конформации N-аминогруппы, PCA, электрофильное аминирование.

Известно, что аминогруппа в N-аминоазолах находится в пирамидальной конфигурации (sp^3 -гибридизация атома азота) и для нее выявлено несколько типов конформаций, различающихся углом поворота относительно связи N–(NH₂) [1, 2]. Например, в 1-аминобензимидазолах аминогруппа обычно развернута таким образом, что неподеленная электронная пара аминного азота лежит строго в плоскости циклической системы и может быть повернута либо в сторону μ -атома углерода (конформация **1A**), либо в направлении бензольного кольца (**1Б**). С помощью РСА было показано, что в твердом виде как для самого 1-аминобензимидазола [2], так и для его четвертичных солей (**2a,b**) [3] реализуется конформация **1A**, которая предположительно стабилизируется электростатическим притяжением между неподеленной парой электронов аминогруппы и сильно позитивированным атомом водорода при 2-Н имидазольного кольца. Интересно, что подобная конформация обнаружена также в кристаллах 9-амино-1-метилксантина (**3**) [4] и 1-аминоперимидина (**4**) [5].

2 a R = Me, **b** $R = NH_2$

Имеется мало достоверной информации о положении равновесия 1А = 1Б в растворе. Однако с помощью дипольных моментов было установлено, что и в растворе форма 1А является предпочтительной [6]. Насколько нам известно, лишь в кристаллах 1-амино-3-метил-2-(1-циано-1-этоксикарбонилметилен)бензимидазолина (5) из-за образования внутримолекулярной водородной связи зафиксирована противоположная ориентация протонов NH [7].

Конфигурация аминогруппы резко изменяется в N-аминоазолах, содержащих при экзоциклическом атоме азота электроноакцепторные заместители, например, CHO и NO. Так, в 1-формиламиноиндазоле (6) [8] и 2-метил-1-(нитрозометиламино)бензимидазоле (7) [9] атом азота замещенной аминогруппы уже полностью уплощен (*sp*²-гибридизация), причем формамидо- и нитрозометиламиногруппы расположены почти перпендикулярно плоскости ароматической системы.

Целью настоящей работы было исследование конформаций аминогруппы в N-аминоимидазолах, конденсированных с нафталиновой **8–10** и фенантреновой **11** системами. Можно было предположить, что в некоторых из этих соединений, особенно **10** и **11**, конформация группы NH_2 из-за стерических причин будет скорее приближаться к типу **1Б**, т. е. отличаться от 1-аминобензимидазола. К сожалению, из-за плохой растворимости исходных имидазолов в водных и водно-спиртовых растворах щелочей провести их аминирование гидроксиламин-О-сульфокислотой не удалось. Поэтому в качестве аминирующего агента мы использовали менее доступный, но позволяющий работать в неводных средах, О-пикрилгидроксиламин [10]. Аминирование фенантро[9,10-*d*]имидазола (12) проводили в растворе ДМФА при комнатной температуре. В реакцию вводили двойной избыток исходного имидазола, так как половина его расходуется на образование пикрата 14. Не выделяя амин, реакционную смесь обрабатывали бензальдегидом и образовавшееся основание Шиффа 13 очищали с помощью колоночной хроматографии. Выход его составил 37%. Гидролитическое расщепление азометина 13 при кипячении в конц. HCl привело к 1-аминофенантро[9,10-*d*]-имидазолу (11) с выходом 94%.

Аминирование нафто[1,2-*d*]имидазола (15) с последующим кипячением реакционной смеси с бензальдегидом приводит к образованию изомерных 1-бензилиденамино- (17) и 3-бензилиденаминонафто[1,2-*d*]имидазолов (18). Выход их составил 8 и 49%, соответственно, что очень близко к соотношению подобных изомеров при метилировании нафто[1,2-*d*]имидазола [11]. Гидролиз азометинов 17 и 18 протекает гладко и дает амины 10 и 9 с хорошим выходом.

1326

Нафто[2,3-*d*]имидазол (**19**) аминируется О-пикрилгидроксиламином несколько хуже: выход азометина **20** не превышает 31%. Кипячение последнего в конц. HCl дает 1-аминонафто[2,3-*d*]имидазол (**8**).

N-Метильные производные имидазолов аминируются О-пикрилгидроксиламином при комнатной температуре в смеси хлороформа и ацетонитрила с образованием солей N-аминоимидазолия **23–26**, выход которых составил 84–99%.

25, 26 a X = PicO, b X = Cl

Анализ спектров ЯМР ¹Н полученных аминов позволяет высказать некоторые суждения об их предпочтительной конформации в растворе. Как видно из табл. 1, химические сдвиги протона 2-Н в основаниях 1, 8–11 (8.12–8.35 м. д.) и солях имидазолия 23–26 (9.61–9.87 м. д.) изменяются мало. Напротив, положение сигнала протонов группы NH₂ варьируется в более широких пределах: от 6.13 для 1-аминобензимидазола до 6.69 и 6.75 м. д., соответственно, для 1-аминонафто[1,2-*d*]имидазола и 1-аминофенантро[9,10-*d*]имидазола. Особенно значительное смещение в слабое поле

Соеди-	Химические сдвиги, δ, м. д. (<i>J</i> , Гц)*					
нение	N-CH3	N–NH ₂	H(2)	CH=N	Другие протоны	
1**	_	6.13	8.07	_	_	
2**	4.04	6.92	9.71	-	_	
8	-	6.22	8.35	-	7.40 (2H, м, 6-, 7-H); 7.99 (1H, с, 9-H); 8.03 (2H, м, 5-, 8-H); 8.18 (1H, с, 4-H)	
9	_	6.34	8.15	_	7.48 (1H, M, 8-H); 7.61 (1H, M, 7-H); 7.74 (2H, M, 6-, 9-H); 8.00 (1H, π , J_{54} = 8.0, 5-H); 8.45 (1H, π , J_{45} = 8.1, 4-H)	
10	_	6.69	8.12	-	7.60 (4H, м, 6-, 7-, 8-, 9-Н); 8.00 (1H, д, <i>J</i> ₅₄ = 8.0, 5-Н); 9.08 (1H, д, <i>J</i> ₄₅ = 8.1, 4-Н)	
11	_	6.75	8.12	_	7.65 (4H, м, 5-, 6-, 9-, 10-H); 8.51 (1H, м, 11-H); 8.83 (2H, м, 7-, 8-H); 9.22 (1H, д, <i>J</i> ₄₅ = 7.5, 4-H)	
13	_	_	8.97	9.30	7.70 (7H, M, 3'-, 4'-, 5'-, 5-, 6-, 9-, 10-H); 8.09 (2H, M, 2'-, 6'-H); 8.59 (1H, M., 11-H); 8.88 (2H, M, 7-, 8-H); 9.09 (1H, M, 4-H)	
17	_	_	8.53	8.87	7.52 (4H, M, 2'-, 3'-, 5'-, 6'-H); 7.67 (1H, M, 4'-H); 7.84 (2H, M, 7-, 8-H); 7.96 (3H, M, 5-, 6-, 9-H); 8.66 (1H, <i>J</i> , <i>J</i> 45 = 8.1, 4-H)	
18	_	_	9.07	9.30	7.58 (4H, м, 2'-, 3'-, 5'-, 6'-H); 7.68 (1H, м, 4'-H); 7.95 (4H, м, 6-, 7-, 8-, 9-H); 8.21 (1H, д, <i>J</i> ₅₄ = 8.2, 5-H); 8.51 (1H, д, <i>J</i> ₄₅ = 8.1, 4-H)	
20	_	_	8.56	8.89	7.46 (2H, м, 3'-, 5'-H); 7.52 (3H, м, 2'-, 4'-, 6'-H); 7.98 (4H, м, 5-, 6-, 7-, 8-H); 8.19 (1H, с, 9-H), 8.30 (1H, с, 4-H)	
23	4.11	6.98	9.87	_	7.66 (2H, м, 6-, 7-H); 8.23 (2H, м, 5-, 8-H); 8.44 (1H, c, 4-H); 8.56 (1H, c, 3-H); 8.57 (2H, c, 3'-, 5'-H)	
24	4.47	7.06	9.70	_	7.83 (2H, M, 7-, 8-H); 7.96 (1H, π , J_{67} = 9.0, 6-H); 8.21 (1H, π , J_{45} = 9.0, 5-H); 8.26 (1H, π , J_{98} = 8.0, 9-H); 8.59 (2H, c, 3'-, 5'-H); 8.64 (1H, π , J_{45} = 9.0, 4-H)	
25a	4.14	7.38	9.61	-	7.79 (2H, м, 7-, 8-H); 8.10 (3H, м, 5-, 6-, 9-H); 8.56 (2H, с, 3'-, 5'-H); 9.12 (1H, д, <i>J</i> ₄₅ = 8.1, 4-H)	
25b	4.17	7.50	9.75	-	7.81 (2H, м, 6-, 7-H); 8.12 (2H, м, 8-, 9-H); 8.24 (1H, д, <i>J</i> ₅₄ = 8.4, 5-H); 9.16 (1H, д, <i>J</i> ₄₅ = 8.4, 4-H)	
26b	4.50	7.48	9.67	-	7.87 (4H, м, 5-, 6-, 9-, 10-H); 8.63 (1H, м, 4-H); 9.02 (2H, м, 7-, 8-H), 9.35 (1H, м, 11-H)	

Данные спектроскопии ЯМР ¹Н синтезированных соединений

* Спектры ЯМР ¹Н снимали в CDCl₃ (соединения 17 и 20) и ДМСО-d₆ (остальные соединения).

** Данные взяты из работы [3] и приведены для сравнения.

сигнала δNH_2 в случае двух последних веществ на наш взгляд логично объяснить тем, что в них протоны NH_2 испытывают влияние димагнитного поля со стороны сразу двух бензольных колец, в то время как для всех остальных аминов такое влияние оказывает лишь одно бензольное кольцо. Косвенно это свидетельствует в пользу реализации конформаций **1А**, поскольку в конформациях типа **1Б** протоны группы NH_2 если и накрываются магнитными силовыми линиями кольцевого тока, то несущественно. Нельзя впрочем исключить и подвижного равновесия между

Кристаллографическая нумерация атомов и молекулярная структура соединения 25а

обоими формами с преобладанием формы **1A**. К сожалению, до сих пор нет сведений о величине барьера вращения аминогруппы в N-аминоазолах вокруг связи N–N, без чего трудно сделать однозначный выбор в пользу той или иной возможности. Данные спектроскопии ЯМР ¹Н для полученных солей N-аминоимидазолия также можно интерпретировать в пользу преобладания в растворе конформаций **1A**.

К сожалению, нам не удалось вырастить кристаллы аминов **8–11**, подходящие для РСА. В то же время, такие кристаллы были получены для пикрата 1-амино-3-метилнафто[1,2-*d*]имидазолия (**25а**). На основании проведенного исследования (см. рис. 1 и табл. 2–5), можно сделать следующие выводы:

1. Нафтимидазольный фрагмент в соли 25а практически плоский;

2. Атом азота N-аминогруппы находится в состоянии sp^3 -гибридизации (сумма валентных углов при аминном азоте 324.4°);

3. Впервые для солей N-аминоимидазолия в кристаллах соединения **25а** обнаружена конформация типа **1Б**, стабилизированная водородными связями с пикрат-анионом (рис. 1). При этом один из протонов NH образует бифуркированную связь с *орто*-нитрогруппой и фенольным кислородом (это наиболее прочная BC с расстоянием 2.13 Å), тогда как второй протон NH – с *пара*-нитрогруппой другого пикрат-аниона. Интересно, что вилочные водородные связи существуют также между атомом 2-Н имидазолиевого цикла и фенолятным кислородом и второй *орто*-нитрогруппой. Остается неясным, является ли реализация конформации **1Б** для соли **25а** следствием невозможности существования формы **1**А из-за стерических препятствий со стороны атома 10-Н, или же это результат энергетически более выгодного образования катион-анионной пары? Существование пикрата 1-амино-3-метилбензимидазолия в твердом виде в форме **1**А [12] косвенно свидетельствует в пользу первого предположения.

Таблица 2

Брутто-формула	$C_{18}H_{14}N_6O_7$
Молекулярный вес	426.35
Тип ячейки	Триклинная
Параметры ячейки	<i>a</i> = 8.366(13) Å; α = 78.04(9) град. <i>b</i> = 9.869(12) Å; β = 84.34(12) град. <i>c</i> = 11.355(12) Å; 74.39(12) град.
Объем ячейки, Å ³	882.4(19)
Z, рассчитанная плотность, мг/м ³	2, 1.605
Коэффициент поглощения, мм ⁻¹	0.127
Размеры кристалла	$0.45 \times 0.30 \times 0.25$
Габитус и цвет	Робоэдр, светло-желтый
Область θ, град.	1.84–30.21
Полнота (комплитность) полученных данных, %	98.8
Метод уточнения	Полноматричный МНК по ${F_{hkl}}^2$
Количество независимых отражений	5016 (Rint = 0.0262)
Число уточняемых параметров	336
Конечные R факторы [для 3241 отражения с $I > 2\sigma(I)$]	$R_1 = 0.0593, wR_2 = 0.1467$
Конечные <i>R</i> факторы для всех независимых отражений	$R_1 = 0.0819, wR_2 = 0.1613$

Кристаллографические данные для соединения 25а

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н регистрировали на спектрометре Bruker-250 (250 МГц), ИК спектры – на спектрометре Specord IR-75 в вазелиновом масле. Контроль за ходом реакций осуществляли методом TCX на Al₂O₃ IV–V ст. акт. по Брокману, элюент хлороформ, проявление парами йода. Температуры плавления измеряли в запаянных стеклянных капиллярах на приборе ПТП и не корректировали.

Исходные соединения синтезировали по следующим методикам: О-пикрилгидроксиламин [10], фенантро[9,10-*d*]имидазол (12) [13], нафто[1,2-*d*]имидазол (15) [14], нафто-[2,3-*d*]имидазол (19) [15], 1-метилнафто- и 3-метилнафто[1,2-*d*]имидазолы [11], 1-метилнафто[2,3-*d*]имидазол [16] и 1-метилфенантро[9,10-*d*]имидазол [17].

Рентгеноструктурное исследование пикрата 1-амино-3-метилнафт[1,2-*d*]имидазолия (25а). Светло-желтые кристаллы 25а получены перекристаллаллизацией из метанольного раствора. Экспериментальный набор (10 319 отражений) получен на дифрактометре Bruker SMART 1000 CCD area detector при 110 К. Обработка данных проведена с помощью программ SAINT [18] и SADABS [19].

Структура решена прямым методом, все неводородные атомы локализованы в разностных синтезах электронной плотности и уточнены в анизотропном приближении; все атомы водорода также локализованы и уточнены в изотропном приближении. Все расчеты проведены по комплексу программ SHELXTL PLUS 5 [20].

Структура депонирована в Кэмбриджском банке структурных данных (Cambridge Crystallograhic Data Centre), регистрационный номер CCDC 174548.

N-Бензилиденаминоимидазолы (общая методика). К раствору 3 ммоль соответствующего имидазола в 16 мл ДМФА при 20 °C прибавляют в течение 5 мин 0.363 г (1.5 ммоль) О-пикрилгидроксиламина в 20 мл ДМФА. Смесь перемешивают 1 ч, затем добавляют 0.3 мл (3 ммоль) бензальдегида и кипятят 1 ч. Растворитель отгоняют досуха под уменьшенным давлением, к остатку добавляют 7 мл CHCl₃ и отфильтровывают желтые кристаллы пикрата соответствующего гетероцикла. 1330

Таблица З

Атом	x	у	Ζ	$U_{ m экb}/U_{ m изo}$
O(1)	0.2537(2)	0.7274(1)	-0.1365(1)	29(1)
O(2)	0.4819(2)	0.8881(2)	-0.1429(1)	39(1)
O(3)	0.5676(2)	0.8464(1)	0.0382(1)	32(1)
O(4)	-0.1328(2)	0.6256(1)	0.0300(1)	31(1)
O(5)	-0.0851(2)	0.7452(2)	-0.1472(1)	34(1)
O(6)	-0.1191(2)	0.9350(1)	0.3218(1)	31(1)
O(7)	0.1248(2)	0.9692(1)	0.3390(1)	29(1)
N(1)	0.5448(2)	0.7973(2)	-0.4373(1)	23(1)
N(2)	0.2999(2)	0.7520(2)	-0.4218(1)	22(1)
N(3)	0.1372(2)	0.7434(2)	-0.3765(2)	27(1)
N(4)	0.4593(2)	0.8596(2)	-0.0330(1)	27(1)
N(5)	-0.0667(2)	0.7119(2)	-0.0380(1)	24(1)
N(6)	0.0270(2)	0.9330(2)	0.2836(1)	23(1)
C(1)	0.4006(2)	0.8082(2)	-0.3732(2)	24(1)
C(2)	0.6862(2)	0.8448(2)	-0.4096(2)	29(1)
C(3)	0.5368(2)	0.7299(2)	-0.5319(2)	22(1)
C(4)	0.6584(2)	0.6920(2)	-0.6230(2)	25(1)
C(5)	0.6167(2)	0.6244(2)	-0.7031(2)	26(1)
C(6)	0.4573(2)	0.5919(2)	-0.6968(2)	24(1)
C(7)	0.4181(2)	0.5222(2)	-0.7833(2)	28(1)
C(8)	0.2673(2)	0.4915(2)	-0.7792(2)	30(1)
C(9)	0.1457(2)	0.5281(2)	-0.6867(2)	28(1)
C(10)	0.1783(2)	0.5943(2)	-0.6000(2)	25(1)
C(11)	0.3335(2)	0.6285(2)	-0.6041(1)	21(1)
C(12)	0.3818(2)	0.6997(2)	-0.5218(1)	20(1)
C(13)	0.2003(2)	0.7815(2)	-0.0460(2)	22(1)
C(14)	0.2946(2)	0.8465(2)	0.0162(1)	21(1)
C(15)	0.2421(2)	0.8930(2)	0.1224(2)	21(1)
C(16)	0.0835(2)	0.8850(2)	0.1728(1)	21(1)
C(17)	-0.0188(2)	0.8266(2)	0.1184(2)	21(1)
C(18)	0.0382(2)	0.97784(2)	0.0144(1)	21(1)
H(1)	0.3740(20)	0.8480(20)	-0.3048(17)	23(5)
H(2A)	0.7880(30)	0.7550(30)	-0.3890(20)	63(8)
H(2B)	0.7210(30)	0.9070(30)	-0.4780(20)	51(7)
H(2C)	0.6590(30)	0.8790(30)	-0.3430(20)	56(7)
H(1N3)	0.0690(30)	0.8280(30)	-0.3999(19)	37(6)
H(2N3)	0.1420(30)	0.7210(30)	-0.2950(20)	47(7)
H(4)	0.7650(30)	0.7170(20)	-0.6226(17)	32(5)
H(5)	0.6960(30)	0.5930(20)	-0.7627(19)	36(6)
H(7)	0.5030(30)	0.4980(20)	-0.8470(20)	40(6)
H(8)	0.2380(30)	0.4450(20)	-0.8461(18)	33(5)
H(9)	0.0410(30)	0.5060(20)	-0.6813(18)	30(5)
H(10)	0.0920(30)	0.6190(20)	-0.5309(19)	32(5)
H(15)	0.3190(20)	0.9360(19)	0.1635(16)	20(4)
H(17)	-0.1380(30)	0.8220(20)	0.1601(18)	32(5)

Координаты атомов и эквивалентные изотропные факторы ($U_{_{3KB}}$), для атомов водорода изотропные ($U_{_{H3O}}$) в молекуле 25а

Некоторые длины связей ((I)) и	валентные углы	(m) в молекуле (25a
Tience i op bie grimmbi ebasen		,	Davientinbie (1010)	100	, D mouthing the	

Связь	l, Å	Угол	ω, град.
O(1)–C(13)	1.244(2)	O(4)-N(5)-C(18)	118.16(16)
O(2)–N(4)	1.229(2)	O(7)–N(6)–O(6)	122.64(17)
O(3)–N(4)	1.236(3)	O(7)–N(6)–C(16)	118.96(17)
O(4)–N(5)	1.234(2)	O(6)–N(6)–C(16)	118.40(17)
O(5)–N(5)	1.230(2)	N(1)-C(1)-N(2)	110.25(18)
O(6)–N(6)	1.252(3)	N(1)-C(1)-H(1)	124.9(12)
O(7)–N(6)	1.243(2)	N(2)-C(1)-H(1)	124.9(12)
N(1)-C(1)	1.336(3)	N(1)-C(3)-C(12)	107.55(18)
N(1)-C(3)	1.391(3)	N(1)-C(3)-C(4)	129.24(17)
N(1)-C(2)	1.467(3)	N(2)-C(12)-C(3)	105.86(17)
N(2)-C(1)	1.338(3)	N(2)-C(12)-C(11)	131.96(16)
N(2)–C(12)	1.387(3)	O(1)-C(13)-C(14)	124.25(17)
N(2)–N(3)	1.425(3)	O(1)-C(13)-C(18)	123.52(18)
N(3)–H(1N3)	0.88(2)	C(14)-C(13)-C(18)	112.12(17)
N(3)–H(2N3)	0.91(3)	C(15)-C(14)-C(13)	124.09(17)
N(4)–C(14)	1.463(3)	C(15)-C(14)-N(4)	116.58(17)
N(5)–C(18)	1.459(3)	C(13)-C(14)-N(4)	119.29(17)
N(6)–C(16)	1.428(3)	C(14)-C(15)-C(16)	118.97(18)
C(1)-H(1)	0.92(2)	C(17)-C(16)-N(6)	118.96(17)
C(3)–C(12)	1.396(3)	C(15)-C(16)-N(6)	119.67(17)
C(3)–C(4)	1.412(3)	C(17)–C(18)–N(5)	117.54(17)
C(4)–C(5)	1.354(3)	C(17)-C(18)-C(13)	125.10(17)
C(5)–C(6)	1.445(3)	N(5)-C(18)-C(13)	117.29(17)
C(6)–C(7)	1.419(3)	C(1)–N(1)–C(3)	107.55(17)
C(6)–C(11)	1.432(3)	C(1)–N(1)–C(2)	125.59(18)
C(7)–C(8)	1.369(3)	C(3)–N(1)–C(2)	126.83(17)
C(8)–C(9)	1.420(3)	C(1)-N(2)-C(12)	108.78(17)
C(9)–C(10)	1.373(3)	C(1)-N(2)-N(3)	125.69(17)
C(10)–C(11)	1.421(3)	C(12)–N(2)–N(3)	125.51(16)
C(11)–C(12)	1.425(3)	N(2)–N(3)–H(1N3)	107.5(14)
C(13)–C(14)	1.450(3)	N(2)-N(3)-H(2N3)	105.9(15)
C(13)–C(18)	1.463(3)	H(1N3)–N(3)–H(2N3)	111(2)
C(14)–C(15)	1.369(3)	O(2)–N(4)–O(3)	123.03(18)
C(15)–C(16)	1.408(3)	O(2)-N(4)-C(14)	118.54(18)
С(15)-Н(15)	1.049(19)	O(3)–N(4)–C(14)	118.38(17)
C(16)–C(17)	1.401(3)	O(5)-N(5)-O(4)	123.49(17)
C(17) - C(18)	1.360(3)	O(5)–N(5)–C(18)	118.35(16)

Таблица 5

Волоролные	связи	лля	соелинения	25a
водородные	CDADA	дэт <i>л</i>	сосдинения	_ 0a

D–H…A	D–H, Å	HA, Å	∠ DHA, град.	DA, Å
N3–H1N3…O7 [- <i>x</i> , - <i>y</i> +2, - <i>z</i>]	0.88(2)	2.39(3)	146(2)	3.162(4)
N3-H2N3O1	0.91(3)	2.13(3)	149(2)	2.943(4)
N3-H2N3O5	0.91(3)	2.41(3)	128(2)	3.047(5)
C1-H1O1	0.92(2)	2.33(2)	119(1)	2.891(4)
C1-H1O2	0.92(2)	2.27(2)	144(2)	3.068(4)
O5H2N3O1	76.3(8)			2.805(3)
O1H1O2	74.3(6)			2.778(3)
H2N3O1H1	70.0(8)			
1332				

	5nyrto-	Найдено, %				
Соединение	формула	С	Вычислено, % Н	N		
		-				
8	$C_{11}H_9N_3$	<u>72.00</u>	<u>4.90</u>	<u>22.70</u>		
		72.11	4.95	22.93		
9	$C_{11}H_9N_3$	72.22	<u>4.98</u>	22.85		
		72.11	4.95	22.93		
10	$C_{19}H_{11}N_3$	72.25	4.87	<u>22.99</u>		
		72.11	4.95	22.93		
11	C15H11N3	77.02	<u>4.77</u>	<u>18.24</u>		
		77.23	4.75	18.01		
13	C22H15N3	82.07	4.81	<u>13.25</u>		
		82.22	4.70	13.07		
17	C18H13N3	<u>79.51</u>	<u>4.79</u>	<u>15.40</u>		
		79.68	4.82	15.49		
18	C18H13N3	<u>79.51</u>	<u>4.79</u>	<u>15.40</u>		
		79.68	4.82	15.49		
20	C ₁₈ H ₁₃ N ₃	79.63	4.72	15.30		
		79.68	4.82	15.49		
23	C18H14N6O7	<u>50.78</u>	3.20	26.42		
		50.71	3.31	26.26		
24	$C_{18}H_{14}N_6O_7$	50.58	3.42	26.39		
		50.71	3.31	26.26		
25a	$C_{18}H_{14}N_6O_7$	<u>50.63</u>	<u>3.40</u>	<u>26.14</u>		
		50.71	3.31	26.26		
26a	C22H16 N6O7	55.41	3.13	17.84		
		55.47	3.39	17.64		
25b*	C ₁₂ H ₁₂ ClN ₃	<u>61.42</u>	<u>5.03</u>	17.77		
		61.67	5.18	17.98		
26b**	C ₁₆ H ₁₄ ClN ₃	<u>67.65</u>	4.87	14.69		
		67.72	4.97	14.81		

Данные элементного анализа синтезированных соединений

* Найдено, %: Cl 15.30. Вычислено, %: Cl 15.17.

** Найдено, %: Cl 12.28. Вычислено, %: Cl 12.49.

Пикрат фенантро[9,10-*d*]**имидазола (14)** – желтые иглы с т. пл. 305–308 °С (из ДМФА-бутанол, 3:1). Выход 0.55 г (82%).

Пикрат нафто[1,2-*d*]**имидазола (16)** – желтые иглы с т. пл. 210 °С (из этанола). Выход 0.298 г (50%).

Пикрат нафто[2,3-*d***]имидазола (21)** – желтые иглы с т. пл. 145–148 °С (из этанола). Выход 0.297 г (50%).

Хлороформный раствор хроматографируют на колонке с $Al_2O_{3,}$ элюент хлороформ (в случае соединения **13** – смесь CHCl₃–EtOH, 3:1).

1-Бензилиденаминофенантро[9,10-*d*]имидазол (13). Собирают фракцию с R_f 0.7. Светло-коричневые кристаллы с т. пл. 300–302 °С (из ДМФА-бутанол, 3:1). Выход 0.178 г (37%).

1- и 3-Бензилиденаминонафто[1,2-*d*]имидазолы (17, 18). Пропуская через колонку с Al_2O_3 хлороформный раствор, собирают две фракции: первая (R_f 0.74) – соединение 17. Бесцветные кристаллы с т. пл. 189–191 °С (из бутанола). Выход 0.2 г (49%). Вторая фракция (R_f 0.7) – соединение 18. Бесцветные кристаллы с т. пл. 198–200 °С (из бутанола). Выход 0.033 г (8%).

1-Бензилиденаминонафто[2,3-*d***]имидазол (20)**. Собирают фракцию с *R_f* 0.6. Светлокоричневые кристаллы с т. пл. 140 °С (из смеси вода–этанол, 1:1). Выход 0.126 г (31%). **N-Аминоимидазолы** (общая методика). Суспензию 0.5 ммоль соответствующего азометина в 10 мл конц. НСІ кипятят 1 ч 30 мин. Добавляют активированный уголь и кипятят еще 5 мин. После отделения угля фильтрат нейтрализуют концентрированным раствором аммиака до рН 8–9. Осадок основания отфильтровывают, промывают 1–2 мл воды.

1-Аминонафто[2,3-*d***]имидазол (8).** Выход 0.046 г (50%). Бесцветные кристаллы с т. пл. 167–170 °С (из этанола). ИК спектр, v, см⁻¹: 3100, 3150 (NH₂).

3-Аминонафто[1,2-*d***]имидазол (9).** Выход 0.055 г (60%). Бесцветные кристаллы с т. пл. 185–187 °С (из смеси бензол–этанол, 2:1). ИК спектр, v, см⁻¹: 3359, 3106 (NH₂). Масс-спектр, *m/z* (*I*_{отн}, %): 183 (100) [M]⁺, 168 (23) [M⁺–NH], 155 (37) [M⁺–N₂], 140 (26) [M⁺–HCN–NH₂], 128 (16), 113 (12), 101 (7), 77 (6), 59 (6), 44 (23).

1-Аминонафто[1,2-*d*]**имидазол (10).** Выход 0.07 г (77%). Бесцветные кристаллы с т. пл. 225–227 °С (из бутанола). ИК спектр, v, см⁻¹: 3332, 3146 (NH₂).

1-Аминофенантро[9,10-*d***]имидазол (11).** Выход 0.11 г (94%). Бесцветные кристаллы с т. пл. 280–283 °С (из смеси ДМФА–бутанол, 3:1). ИК спектр, v, см⁻¹: 3293, 3106 (NH₂).

Хлорид 1-аминонафто[2,3-*d*]имидазолия (22). Суспензию 0.054 г (0.2 ммоль) соединения 20 в 3 мл конц. НСІ кипятят 15 мин. Упаривают досуха на кипящей водяной бане. Получают темно-зеленые кристаллы хлорида 22, выход 0.033 г (75%). Т. пл. 120–122 °С (из смеси этанол–бензол, 3:1). ИК спектр, v, см⁻¹: 3386, 3186 (NH₂), 2700 (NH⁺). Масс-спектр, m/z (I_{0TH} , %): 183 (100) [M⁺–HCI], 168 (40) [M⁺–HCI–NH], 155 (50) [M⁺–HCI–N₂], 140 (63), 127 (39), 113 (22), 101 (11), 77 (16), 44 (15).

Пикраты N-амино-N'-метилимидазолия (общая методика). К раствору 1 ммоль соответствующего N-метилимидазола в 10 мл CHCl₃ при перемешивании добавляют раствор 0.268 г (1.1 ммоль) О-пикрилгидроксиламина в 3 мл CH₃CN. Смесь перемешивают 2 ч. Желтый осадок соединений **27–30** отфильтровывают, промывают 5 мл CHCl₃ и кристаллизуют из смеси ДМФА-бутанол, 3:1.

Пикрат 1-амино-3-метилнафто[2,3-*d*]имидазолия (23). Выход 0.422 г (99%). Желтые кристаллы с т. пл. 228–229 °C. ИК спектр, v, см⁻¹: 3359, 3239 (NH₂).

Пикрат 3-амино-1-метилнафто[1,2-*d*]**имидазолия (24).** Выход 0.383 г (90%). Желтые кристаллы с т. пл. 225–226 °С. ИК спектр, v, см⁻¹: 3333, 3173 (NH₂).

Пикрат 1-амино-3-метилнафто[1,2-*d***]имидазолия (25а).** Выход 0.388 г (91%). Желтые кристаллы с т. пл. 210–213 °С. ИК спектр, v, см⁻¹: 3332, 3186 (NH₂).

Пикрат 1-амино-3-метилфенантро[9,10-*d***]имидазолия (26а).** Выход 0.4 г (84%). Желтые кристаллы с т. пл. 225–227 °С. ИК спектр, v, см⁻¹: 3352, 3186 (NH₂).

Хлориды N-амино-N'-метилимидазолия (общая методика). Суспензию 0.3 ммоль соединений 25а, 26а в 2 мл конц. НСІ упаривают на кипящей водяной бане. Остаток обрабатывают эфиром (3 × 10 мл), каждый раз отфильтровывая нерастворившийся осадок хлорида 25b, 26b. Получают 0.035 г (50%) хлорида 1-амино-3-метилнафто[1,2-d]имидазолия (25b), бесцветные кристаллы с т. пл. 244–245 °С (из смеси ДМФА–бутанол, 3:1) или 0.043 г (50%) хлорида 1-амино-3-метилнафто[9,10-d]имидазолия (26b), бесцветные кристаллы с т. пл. 254–255 °С (из смеси ДМФА–бутанол, 3:1).

СПИСОК ЛИТЕРАТУРЫ

- 1. V. V. Kuzmenko, A. F. Pozharskii, Adv. Heterocycl. Chem., 53, 85 (1992).
- C. Foces-Foces, F. N. Cano, R. M. Claramunt, D. Sanz, J. Catalan, F. Fabero, A. Fruchier, J. Elguero, J. Chem. Soc., Perkin Trans. 2, 237 (1990).
- A. F. Pozarskii, V. V. Kuz' menko C. Foces-Foces, A. L. Llamas-Saiz, R. M. Claramunt, D. Sanz, J. Elguero, J. Chem. Soc., Perkin Trans. 2, 841 (1994).
- 4. В. В. Кузьменко, Т. А. Кузьменко, Г. Г. Александров, А. Ф. Пожарский, А. В. Гулевская, *XIC*, 836 (1987).
- 5. А. Ф. Пожарский, О. В. Крышталюк, Г. Г. Александров, В. В. Кузьменко, *XГС*, 103 (1995).
- С. Б. Булгаревич, Н. А. Иванова, В. В. Кузьменко, Д. Я. Мовшович, А. Ф. Пожарский, ЖОХ, 65, 1168 (1995).

- 7. Т. А. Кузьменко, В. В. Кузьменко, А. Ф. Пожарский, О. В. Крышталюк, Г. Г. Александров, *XГС*, 205 (1992).
- L. Salazar, M. Espada, D. Sanz, R. M. Claramunt, J. Elguero, S. Garcia-Granga, M. R. Diaz, F. Gomez-Beltran, J. Chem. Soc., Perkin Trans. 2, 377 (1993).
- 9. A. F. Pozharskii, O. V. Dyablo, A. V. Belyaev, Z. A. Starikova, A. I. Yanovskii, *Tetrahedron*, 54, 9677 (1998).
- 10. J. Tamura, J. Minamikawa, K. Sumoto, S. Fujii, M. Ikeda, J. Org. Chem., 38, 1239 (1973).
- А. И. Беляшова, Н. Н. Зацепина, Е. Н. Малышева, А. Ф. Пожарский, Л. П. Смирнова, И. Ф. Тупицин, XTC, 1544 (1977).
- R. M. Claramunt, D. Sanz, J. Catalan, F. Fabero, N. A. Garcia, C. Foces-Foces, A. L. Llamas-Saiz, J. Elguero, J. Chem. Soc., Perkin Trans. 2, 1687 (1993).
- 13. E. A. Steck, A. R. Day, J. Am. Chem. Soc., 36, 2567 (1942).
- 14. А. Ф. Пожарский, В. Н. Анисимова, Е. Б. Цупак, *Практические работы по химии гетероциклов*, Изд-во РГУ, Ростов-на-Дону, 1988, 86.
- 15. А. Ф. Пожарский, Е. Н. Малышева, *ХГС*, 103 (1970).
- 16. N. J. Leonard, A. M. Hyson, J. Am. Chem. Soc., 43, 1961 (1949).
- 17. E. A. Steck, A. R. Day, J. Am. Chem. Soc., 40, 771 (1946).
- Bruker (1998a) SAINTPlus Data Reduction and Correction Program v. 6.01, Bruker AXS, Madison, Wisconsin, USA.
- 19. G. M. Sheldrick (1998a), *SADABS* v. 2.01, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA.
- G. M. Sheldrick (1998b), SHELXTL v. 5.10, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA.

Ростовский государственный университет, Ростов-на-Дону 344090, Россия e-mail: ODyablo@chimfak.rsu.ru Поступило в редакцию 13.12.2001

^аИнститут элементоорганических соединений им. А. Н. Несмеянова, Москва 117813, Россия