В. Д. Дяченко, А. А. Никишин, А. Н. Чернега^а

4,4-ДИАЛКИЛЗАМЕЩЕННЫЕ 6-ОКСО-3,5-ДИЦИАНО-1,4,5,6-ТЕТРАГИДРОПИРИДИН-2-ТИОЛАТЫ N-МЕТИЛМОРФОЛИНИЯ И НЕКОТОРЫЕ ИХ СВОЙСТВА

Конденсацией 2-алкил-2-цианоэтилкротонатов с цианотиоацетамидом и N-метилморфолином синтезированы 4,4-диалкилзамещенные 6-оксо-3,5-дициано-1,4,5,6-тетрагидропиридин-2-тиолаты N-метилморфолиния, на основе которых получены замещенные 2-алкилтио-1,4,5,6-тетрагидропиридины, 2-ацетилтио-1,4,5,6-тетрагидропиридин, 6-гидразино-1,4,5,6-тетрагидропиридин и 2,3,4,5,6,7-гексагидротиазоло[3,2-*a*]пиридин. Строение 6-бром-3бромметил-7,7-диметил-6,8-дициано-2,3,4,5,6,7-гексагидротиазоло[3,2-*a*]пиридина доказано методом PCA.

Ключевые слова: 4,4-диалкилзамещенные 6-оксо-3,5-дициано-1,4,5,6-тетрагидропиридин-2-тиолаты, алкилирование, ацилирование, бромирование, конденсация, нуклеофильное замещение, РСА, циклизация.

Производные 4,4-дизамещенных тетрагидропиридонов перспективны с точки зрения поиска новых фармакологических препаратов [1–3]. Методы синтеза этих соединений представляют собой конденсацию алифатических кетонов с амидами цианоуксусной кислоты [4] или хлорангидридов коричной кислоты с замещенным 3-аминоакрилонитрилом [5]. Недавно мы предложили новый путь синтеза такого типа структур, состоящий во взаимодействии замещенных этилкротонатов 1 с цианотиоацетамидом 2 и N-метилморфолином [6].

В ходе этой реакции, протекающей по типу присоединения по Михаэлю с образованием аддукта **3**, синтезированы 4,4-дизамещенные 6-оксо-3,5-дициано-1,4,5,6-тетрагидропиридин-2-тиолаты N-метилморфолиния типа **4**.

В настоящей работе получены известный тиолат **4a** [6], а также новый тиолат **4b** и изучены некоторые их свойства. Найдено, что конденсация соединений **1** и **2** протекает нестереоселективно, о чем свидетельствуют данные спектральных исследований. Так, в спектре $\text{ЯМP}^{-1}\text{H}$ соединения **4b** наблюдается удвоение равноинтенсивных сигналов протонов в положениях 4 и 5 (табл. 1). Алкилирование солей **4a**,**b** галогенидами **5a**–**d** позволяет получить органические сульфиды **6a**–**d**, а при ацилировании соли **4a** уксусным ангидридом образуется тиоэфир **7**. При этом спектр $\text{ЯMP}^{-1}\text{H}$ соединения **6b** содержит также удвоенные равноинтенсивные сигналы протонов группы 4-Ме и 5-H (табл. 1). Таким образом, соотношение 1:1 стереоизомеров соединения **4b** сохраняется и в продуктах его алкилирования. Эти данные позволяют утверждать о существовании соли **4b** в виде смеси равных количеств стереоизомеров с *син*-перипланарным (*sp*) и *анти*-перипланарным (*ap*) положением заместителей в тетрагидропиридиновом цикле:

При алкилировании тиолата **4а** 4-хлорфенацилбромидом образуется замещенный тетрагидропиридин **8**, существующий в растворе ДМСО- d_6 в виде смеси равных количеств изомеров **8A** и **8B**, о чем свидетельствуют данные спектра ЯМР ¹H (табл. 1):

Получить по указанному выше пути селеновые аналоги солей **4** не удается вследствие доминирования различных побочных процессов в этой реакции, в частности легкой димеризации цианоселеноацетамида (**9**) [7]. В то же время введение в реакцию с замещенным этилкротонатом **1a** и амидом **9** 1,2-дибромэтана привело к образованию 7,7-диметил-6-оксо-6,8-дициано-2,3,4,5,6,7-гексагидроселеназоло[3,2-*a*]пиридина (**10**) с выходом 68%.

Замещенные тетрагидропиридоны 6 содержат достаточно активные по отношению к нуклеофильным реагентам алкилтиогруппы. Так, при кипячении соединения 6а с гидразингидратом образуется замещенный 6-гидразинотетрагидропиридин 11. Бромирование, механизм которого еще не доказан, 2-алкилтиозамещенного тетрагидропиридина 6d двукратным избытком брома, протекает в растворе кипящей уксусной кислоты с вероятным образованием соединения 12, циклизующегося далее по пути внутримолекулярного алкилирования в замещенный 2,3,4,5,6,7-гексагидротиазоло[3,2-a]пиридин 13. Особенности молекулярного и кристаллического строения соединения 13 исследованы методом РСА (рис. 1 и табл. 2).

1, 4 a R = Me, b R = Et; 5 a Hal = I, R¹ = Me; b Hal = Br, R¹ = CH₂CH=CH₂; c Hal = Cl, R¹ = CH₂CMe=CH₂; d Hal = I, R¹ = Et; 6 a R = Me, R¹ = Et; b R = Et, R¹ = Me; c R = Me, R¹ = CH₂CMe=CH₂; d R = Me, R¹ = CH₂CH=CH₂; d R = ME, R¹ = CH₂; d R = ME, R

1318

Таблица 1

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %			Т. пл., °С*	Выход,
нение	формула	С	Н	Ν		70
4b	$C_{15}H_{22}N_4O_2S$	<u>55.71</u> 55.87	<u>6.63</u> 6.88	<u>17.49</u> 17.38	171-173**	83
6a	C ₁₁ H ₁₃ N ₃ OS	<u>55.92</u> 56.14	$\frac{5.40}{5.57}$	$\frac{18.03}{17.86}$	154–155	72
6b	C11H13N3OS	<u>55.94</u> 56.14	<u>5.35</u> 5.57	<u>18.05</u> 17.86	151–153	79
6c	$C_{13}H_{15}N_3O_2S$	<u>59.68</u> 59.76	<u>5.58</u> 5.79	<u>16.19</u> 16.08	193	74
7	C ₁₁ H ₁₁ N ₃ OS	<u>52.83</u> 53.00	<u>4.21</u> 4.45	<u>16.97</u> 16.86	179–181	67
8	$C_{17}H_{14}ClN_3O_2S$	<u>56.66</u> 56.75	$\frac{3.80}{3.92}$	<u>11.77</u> 11.68	172–174	88
10	$C_{11}H_{11}N_3OSe$	<u>46.95</u> 47.15	<u>4.13</u> 3.96	<u>14.81</u> 15.00	186–188	68
11	C ₉ H ₁₁ N ₅ O	<u>52.51</u> 52.67	<u>5.23</u> 5.40	<u>34.29</u> 34.13	223–225	83
13	$C_{12}H_{11}Br_2N_3OS$	<u>35.41</u> 35.58	<u>2.85</u> 2.74	$\frac{10.14}{10.37}$	193–195	86

Характеристики синтезированных соединений

* Растворители для кристаллизации: BuOH (соединение 6а), AcOH (соединения 6b,c-8, 10, 13) и EtOH (соединение 11).

** Соединение не перекристаллизовывали.

Таблица 2

Спектральные характеристики синтезированных соединений	

Соеди- нение	ИК спектр, v, см ⁻¹ *		Спектр ЯМР ¹ Н (ДМСО-d ₆), б, м. д. (<i>J</i> , Гц)	
	C=O, N–H	C≡N		
4b	1710, 3360	2190, 2265	9.32 (1H, уш. с, NH); 4.20 и 4.10 (1H, два с, 3-H); 7.84 (4H, м, CH ₂ OCH ₂); 3.25 (4H, м, CH ₂ NCH ₂); 2.81 (3H, с, NCH ₃); 1.44 (2H, м, CH ₂); 1.25 и 1.03 (3H, два с, 4-CH ₃); 0.82 (3H, м, CH ₂ <u>CH₃</u>)	
6a	1714, 3217	2209, 2260	11.22 (1H, уш. с, NH); 4.75 (1H, с, 3-H); 3.02 (2H, м, CH ₂); 1.33 (3H, с, CH ₃); 1.25 (3H, т, <i>J</i> = 7.7, CH ₂ <u>CH₃</u>); 1.12 (3H, с, CH ₃)	
6b	1692, 3200	2204, 2255	11.13 (1H, уш. с, NH); 4.84 и 4.73 (1H, два с, 3-H); 2.50 (3H, с, SCH ₃); 1.52 (2H, м, CH ₂); 1.32 и 1.14 (3H, два с, CH ₃); 0.95 (3H, к, <i>J</i> = 7.4, CH ₃)	
60	1700, 3260	2209, 2254	11.22 (1H, уш. с, NH); 4.93 и 4.82 (1H и 1H, два д, 2 <i>J</i> = 2.1, CH ₂ =); 4.51 (1H, с, 3-H); 3.72 (2H, с, SCH ₂); 1.84 (3H, с, CH ₃); 1.35 и 1.13 (3H и 3H, два с, 2CH ₃)	
7	1740, 3180	2190, 2245	11.22 (1H, уш. с, NH); 4.71 (1H, с, 3-H); 2.54 (3H, с, COCH ₃); 1.42 (3H, с, CH ₃); 1.13 (3H, с, CH ₃)	
8	1705, 1722, 3450	2188, 2258	11.15 (1H, уш. с, NH); 3.52 (1H, уш. с, OH); 7.40–8.12 (4H, м, H _{аром}); 4.92 и 4.51 (1H, два с, 3-H); 4.84 (2H, с, CH ₂ изомера A); 4.70 (2H, с, CH ₂ изомера B); 1.12–1.43 (6H, м, 2CH ₃)	
10	1699	2192, 2255	4.53 (2H, м, 3-Н и NCH ₂); 4.12 (2H, м, NCH ₂); 3.42 (2H, м, SeCH ₂); 1.43 (3H, с, CH ₃); 1.22 (3H, с, CH ₃)	
11	1700, 3344, 3420	2205, 2250	10.81 (1H, уш. с, NH); 10.62 (1H, уш. с, NH); 4.93 (2H, уш. с, NH ₂); 4.22 (1H, с, 3-H); 1.41 (3H, с, CH ₃); 1.25 (3H, с, CH ₃)	
13	1695	2205, 2250	4.12–4.28 (3H, м, BrCH ₂ CH); 3.89 (1H, м, SCH); 3.20 (1H, м, SCH); 1.53 и 1.43 (3H, два с, 2CH ₃)	

* ИК спектры получены в вазелиновом масле.

Центральная бициклическая система соединения 13 существенно неплоская: отклонения атомов от среднеквадратичной плоскости достигают 0.401 Å. При этом заметно неплоскими являются как 6-членный цикл N(1)C(1-5), так и 5-членный гетероцикл S(1)N(1)C(5)C(10)C(11). В первом планарной в пределах 0.053 Å является группировка N(1)C(1)C(4)C(5), тогда как атомы С(2) и С(3) выходят из этой плоскости, соответственно, на -0.310 и 0.385 Å. Согласно модифицированным параметрам Кремера-Попла [8] конформацию гетероцикла N(1)C(1-5) можно описать как полуванна ($S = 0.42, \theta = 48.2^{\circ}, \psi = 27.6^{\circ}$). Пятичленный цикл имеет конформацию конверта: атомы S(1)N(1)C(5)C(10) копланарны в пределах 0.059 Å, "уголок" S(1)C(10)C(11) образует с этой плоскостью двугранный угол 151.9°, а заместитель CH₂Br занимает аксиальное положение (связь C(11)-C(12) направлена по отношению к плоскости S(1)N(1)C(5)C(10) под углом 75.5°). Атом N(1) имеет плоскотригональную конфигурацию валентных связей (сумма валентных углов при этом атоме составляет 360.0°). Сопряжение *n*(N(1))-*π*(C(1)=O(1)) и *n*(N(1))-*π*(C(4)=C(5)) приводит к существенному укорочению связей N(1)-C(1) до 1.358(13) и N(1)-C(5) до 1.397(12) по сравнению со стандартным для одинарной связи $N(sp^2)$ – $C(sp^2)$ интервалом значений 1.43-1.45 Å [9, 10]. Длины связей S(1)-C(5) 1.745(11) и S(1)-C(11) 1.819(10) Å обычные [11].

В кристалле молекулы соединения 13 (рис. 2) объединены силами вандер-Ваальса.

Таблица З

Связь	<i>d</i> , Å	Угол	ω, град.
Br(1)–C(2)	1.978(10)	C(5)–S(1)–C(11)	92.9(5)
Br(2)–C(12)	1.949(10)	C(1)-N(1)-C(5)	122.5(8)
S(1)–C(5)	1.745(11)	C(1)-N(1)-C(10)	123.3(8)
S(1)–C(11)	1.819(10)	C(5)-N(1)-C(10)	114.2(8)
O(1)–C(1)	1.226(12)	O(1)-(1)-N(1)	122.2(9)
N(1)–C(1)	1.358(13)	O(1)-C(1)-C(2)	121.7(9)
N(1)–C(5)	1.397(12)	N(1)-C(1)-C(2)	116.0(9)
N(1)–C(10)	1.476(12)	C(1)-C(2)-C(3)	112.8(9)
N(2)–C(6)	1.153(14)	C(2)-C(3)-C(4)	106.2(8)
N(3)-C(9)	1.132(13)	C(3)-C(4-C(5)	120.3(9)
C(1)–C(2)	1.51(2)	C(4)-C(5)-N(1)	121.9(9)
C(2)–C(3)	1.572(14)	C(4)–C(5)–S(1)	127.0(8)
C(3)–C(4)	1.51(2)	N(1)-C(5)-S(1)	111.1(7)
C(4)–C(5)	1.346(13)	S(1)-C(11)-C(10)	105.6(7)
C(10)–C(11)	1.51(2)	N(1)-C(10)-C(11)	107.1(8)
		•	

Основные длины связей (d) и валентные углы (ω) в молекуле соединения 13

Рис. 1. Общий вид молекулы 13 с нумерацией неводородных атомов

Рис. 2. Кристаллическая упаковка соединения 13

Таблица 4

Атом	x	у	Ζ	$U_{ m 3KB}$
Br(1)	9556(1)	2158(1)	3939(1)	62(1)
Br(2)	7048(1)	6818(1)	1487(1)	60(1)
S(1)	7257(4)	6255(3)	4531(2)	53(1)
O(1)	6255(8)	2191(7)	2812(5)	49(2)
N(1)	6685(9)	3975(9)	3745(5)	39(2)
N(2)	7180(13)	-646(11)	4018(7)	74(3)
N(3)	8979(12)	4886(11)	6769(7)	74(3)
C(1)	6804(11)	2671(11)	3543(7)	38(2)
C(2)	7720(11)	1857(10)	4253(7)	39(3)
C(3)	7636(10)	2291(11)	5267(7)	47(3)
C(4)	7838(11)	3772(9)	5298(6)	37(3)
C(5)	7308(10)	4528(10)	4576(6)	38(3)
C(6)	7409(12)	472(12)	4099(8)	51(3)
C(7)	8771(12)	1576(12)	5936(8)	57(3)
C(8)	6199(11)	1940(10)	5424(8)	57(3)
C(9)	8481(12)	4388(11)	6111(7)	44(3)
C(11)	6595(11)	6271(10)	3307(6)	38(3)
C(10)	5926(12)	4935(11)	3101(7)	51(3)
C(12)	7721(11)	6525(11)	2788(7)	47(3)

Координаты атомов (× 10⁴) и эквивалентные изотропные тепловые параметры U_{2KB} (Å ² × 10³) в структуре 13

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры синтезированных соединений записывали на приборе ИК-29. Спектры ЯМР ¹Н соединений **4b**, **6a,b**, **7**, **8**, **11** регистрировали на приборе Bruker WP-100 SY (100 МГц), соединения **6c** – Bruker AM-300 (300 МГц), а соединений **10** и **13** – Bruker WM-250 (250 МГц), внутренний стандарт Me₄Si. Масс-спектр соединения **13** регистрировали на приборе Kratos MS-890 (70 эВ). Температуры плавления определяли на блоке Кофлера. Контроль за ходом реакции осуществляли методом TCX (Silufol UV-254, ацетон–гексан, 3:5, проявитель – пары иода). Характеристики соединений **4b**, **6a–c**, **7**, **10**, **11**, **13** приведены в табл. 1, 2.

Рентгеноструктурное исследование монокристалла соединения 13 (C₁₂H₁₁Br₂N₃OS) при комнатной температуре на автоматическом четырехкружном проведено дифрактометре Enraf–Nonius CAD-4 (λ Мо K_{α} -излучение, графитовый монохроматор, отношение скоростей сканирования $\omega/2\theta$ 1.2, θ_{\max} 24°, сегмент сферы $0 \le h \le 11, 0 \le k \le 11$, -16 ≤ *l* ≤ 16). Всего было собрано 2439 отражений, из которых 2239 являются независимыми (*R*-фактор усреднения 0.030). Кристаллы соединения 13 моноклинные, μ = 5.69 мм⁻¹, *F*(000) 792, пространственная группа *P*2₁/*c* (№ 14). Структура расшифрована прямым методом и уточнена МНК в полноматричном анизотропном приближении с использованием программ SHELXS и SHELXL93 [12, 13]. В уточнении использовано 2007 отражений с $I > 2\sigma(I)$ (172 уточняемых параметра, число отражений на параметр 11.7, использована весовая схема $\omega = 1/[\sigma^2(F_o^2) + (0.1157P)^2]$, где $P = (F_o^2 + 2F_c^2)/3$. Была включена поправка на аномальное рассеяние; поправки на поглощение не вносились. Все атомы водорода выявлены объективно и включены в уточнение с фиксированными тепловыми и позиционными параметрами. Окончательные значения факторов расходимости R1(F) 0.075 и $R_W(F^2)$ 0.176, GOOF 1.063. Остаточная электронная плотность из разностного ряда Фурье после последнего цикла уточнения 0.87 и -1.18 e/Å³. Координаты атомов приведены в табл. 4.

4,4-Диметил-6-оксо-3,5-дициано-1,2,3,4-тетрагидропиридин-2-тиолат N-метилморфолиния (4а) и 4-метил-6-оксо-3,5-дициано-4-этил-1,2,3,4-тетрагидропиридин-2-тиолат N-метилморфолиния (4b) получают по методике работы [6]. Характеристики соли 4а представлены в работе [6].

4,4-Диметил-3,5-дициано-6-этилтио-1,2,3,4-тетрагидропиридин-2-он (ба), 4-метил-6-метилтио-3,5-дициано-4-этил-1,2,3,4-тетрагидропиридин-2-он (бb), 6-металлилтио-4,4-диметил-3,5дициано-1,4,5,6-тетрагидропиридин-2-он (бс), 6-аллилтио-4,4-диметил-3,5-дициано-1,2,3,4-тет-1322 рагидропиридин-2-он (6d) и 4,4-диметил-6-(4-хлорбензоилметилтио)-3,5-дициано-1,2,3,4тетрагидропиридин-2-он (8) получают по методике работы [6]. Характеристики соединения 6d представлены в работе [6].

6-Ацетилтио-4,4-диметил-3,5-дициано-1,2,3,4-тетрагидропиридин-2-он (7). Раствор 3.1 г (10 ммоль) соли **4а** в 15 мл Ac₂O кипятят 4 ч и далее выдерживают 48 ч при комнатной температуре. Образовавшийся белый кристаллический осадок отфильтровывают, промывают этанолом и гексаном. Получают соединение 7.

7,7-Диметил-6,8-дициано-2,3,4,5,6,7-гексагидроселеназоло[3,2-а]пиридин-5-он (10). К раствору 1.5 г (10 ммоль) этилакрилата **1а** в 15 мл абсолютного этанола при 20 °С в атмосфере аргона прибавляют, перемешивая, 1.5 г (10 ммоль) цианоселеноацетамида **9** и 1.7 мл (15 ммоль) N-метилморфолина, далее выдерживают реакционную массу в закрытом сосуде 48 ч при комнатной температуре, добавляют при перемешивании 0.9 мл (10 ммоль) 1,2-дибромэтана и выдерживают еще 24 ч. Образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Получают соединение **10**.

2-Гидразино-4,4-диметил-3,5-дициано-1,2,3,4-тетрагидропиридин-5-он (11). Смесь 2.4 г (10 ммоль) соединения **6a** и 1 мл (10 ммоль) гидразингидрата в 20 мл этанола кипятят 40 мин и далее выдерживают 3 ч при 20 °С. Образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Получают соединение **11**.

6-Бром-3-бромметил-7,7-диметил-6,8-дициано-2,3,4,5,6,7-гексагидротиазоло[3,2-а]пиридин-5-он (13). К раствору 2.5 г (10 ммоль) соединения **6d** в 15 мл кипящей ледяной уксусной кислоты при освещении лампой (500 Вт) добавляют по каплям (каждый раз после обесцвечивания реакционной смеси) 1 мл (20 ммоль) брома. Смесь выдерживают 2 сут при комнатной температуре, затем разбавляют 2 мл H₂O. Образовавшийся белый осадок отфильтровывают, промывают этанолом и гексаном. Получают соединение **13**. Масс-спектр, m/z ($I_{отн}$, %): 405 [M]⁺ (18), 390 (13), 324 (41), 309 (59), 179 (78), 108 (46), 73 (60), 39 (100).

СПИСОК ЛИТЕРАТУРЫ

- 1. G. Culliamet, J. Pharm. Belg., 49, 216 (1994).
- 2. S. Pavlov, M. Bogavac, Z. Arsenijevic, Pharmazie, 45, 286 (1990).
- 3. В. В. Кузнецов, Хим.-фарм. журн., № 7, 61 (1991).
- 4. Заявка ФРГ № Р 3844355, 1990; РЖХим, 10Н108П (1991).
- 5. A. K. D. Chowdhury, M. Sarkar, S. R. Chowdhury, K. K. Mahalanabis, *Synth. Commun.*, **26**, 4233 (1996).
- 6. В. Д. Дяченко, А. А. Никишин, В. П. Литвинов, *ХГС*, 996 (1997).
- В. Д. Дяченко, Ю. А. Шаранин, В. П. Литвинов, В. Н. Нестеров, В. Е. Шкловер, Ю. Т. Стручков, В. К. Промоненков, А. В. Туров, *ЖОХ*, 61, 747 (1991).
- 8. Н. С. Зефиров, В. А. Палюлин, ДАН, 252, 111 (1980).
- 9. R. W. Alder, N. C. Goode, T. J. King, J. M. Mellor, B. W. Miller, J. Chem. Soc., Chem. Commun., No. 5, 173 (1976).
- 10. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3216 (1976).
- 11. В. А. Наумов, О. Н. Катаева, Молекулярное строение органических соединений кислорода и серы, Наука, Москва, 1990, 192.
- 12. G. M. Sheldrick, *SHELXS-86*. Program for the Solution of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1986.
- 13. G. M. Sheldrick, *SHELXL-93*. Program for the Refinement of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1993.

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: chem@lgpu.lg.ua Поступило в редакцию 18.12.2000

^аИнститут органической химии НАН Украины, Киев, 02094 e-mail: iochkiev@ukrpack.net