Б. Сапиянскайте, В. Мицкявичюс, Г. Микульскене^а

СИНТЕЗ ПРОИЗВОДНЫХ 1-(9-АЛКИЛ-9Н-КАРБАЗОЛ-3-ИЛ)-4-КАРБОКСИ-2-ПИРРОЛИДИНОНОВ

Синтезированы производные 1-(9-алкил-9Н-карбазол-3-ил)-4-карбокси-2-пирролидинонов – метиловые эфиры, гидразиды. Изучены реакции конденсации синтезированных гидразидов с ароматическими альдегидами, ацетилацетоном, ацетоуксусным эфиром. Методами спектроскопии ИК и ЯМР проведен структурный анализ полученных соединений, обсуждена специфика свойств заместителей.

Ключевые слова: 1-(9-алкил-9Н-карбазол-3-ил)-4-карбокси-2-пирролидиноны, арилиденгидразиды, 3,5-диметилпиразолы, конденсация, спектры ЯМР, циклизация.

Интерес к химии карбазола обусловлен широким применением его производных в производстве фотополупроводников [1–3]. Фрагменты карбазола входят также в состав некоторых алкалоидов [4–6]. В настоящей работе нами осуществлен синтез новых производных 9-алкилкарбазолов, имеющих в молекуле 4-карбокси-2-пирролидиновый заместитель. Производные 4-карбокси-2-пирролидинона являются регуляторами роста растений [7, 8], а также используются для синтеза фармацевтических препаратов [9, 10].

Структура синтезированных соединений исследовалась методами ИК и ЯМР спектроскопии. Отнесение сигналов в спектрах ЯМР ¹Н проводилось на основе характерных химических сдвигов соответствующих структурных фрагментов, констант спин-спинового взаимодействия и интегральной интенсивности сигналов.

Синтез исходных 1-(9-алкил-9Н-карбазол-3-ил)-4-карбокси-2-пирролидинонов 1, 2 описан в работе [11]. 4-Карбокси-1-(9-пропил-9Н-карбазол-3ил)-2-пирролидинон (3) синтезирован по той же методике из 3-амино-9пропилкарбазола и итаконовой кислоты с выходом 59%. Кипячением соединений 1–3 в метаноле в присутствии серной кислоты нами получены соответствующие метиловые эфиры 4–6. В спектрах ЯМР ¹Н соединений 4–6 резонансное поглощение атомов водорода карбазолильного фрагмента наблюдалось в интервале 7.16–8.30 м. д. Несимметричное 4'-замещение пирролидонового кольца вызывает магнитную неэквивалентность геминальных протонов метиленовых групп СОСН₂ и NCH₂, вследствие чего в спектрах наблюдались характерные мультиплеты в интервалах 2.70–2.92 и 4.07–4.25 м. д. и квинтет группы СН пирролидонового кольца при 3.52 м. д.

1, 4, 7 R = Me; 2, 5, 8, 14, 16 R = Et; 3, 6, 9, 15, 17 R = *n*-Pr; 10, 12 R¹ = 4-Et₂NC₆H₄; 11, 13 R¹ = 9-этил-9-карбазол-3-ил

Нагреванием метиловых эфиров **4–6** с избытком гидразингидрата получены соответствующие карбогидразиды **7–9**. В спектрах ЯМР ¹Н соединений **7–9** в отличие от соответствующих спектров соединений **4–6** отсутствует поглощение группы СОСН₃ при 3.71 м. д. Появление уширенных двухпротонного (δ 4.21–4.32 м. д.) и однопротонного (δ 9.32–9.34 м. д.) сигналов указывает на наличие группы СОNHNH₂. В ИК спектрах соединений **7–9** помимо интенсивных полос поглощения v C=O 1603 и 1670 (7), 1648 и 1687 (**8**) и 1647 и 1687 см⁻¹ (**9**) наблюдается широкая полоса поглощения гидразинового фрагмента СОNHNH₂ в интервале 3140–3425 см⁻¹.

Исследованы реакции конденсации гидразидов 8, 9 с карбонильными соединениями. Нагреванием гидразида 8 с ароматическими альдегидами синтезированы соответствующие бензилиденгидразиды 10, 11. В спектрах ЯМР ¹Н растворов соединений 10, 11 в CDCl₃ наблюдаются сигналы ароматических и N=CH протонов в области 7.14–8.47 м. д. а также слабопольное поглощение протона группы CONH, которое в CDCl₃ было представлено одним однопротонным сигналом, а в растворе ДМСО двумя уширенными сигналами при 11.50 и 11.57 м. д. общей интегральной интенсивности 1. Надо заметить, что соединения 10, 11 из-за возможности различного положения заместителей по отношению к двойной связи (группы N=CH) существуют в виде смеси *Z*-, *E*-изомеров*. По интенсивности сигналов при 11.50 и 11.57 м. д. был сделан вывод, что соединение 10 существует в виде смеси 41% *E*- и 59% *Z*-изомеров, а соединение 11 – в виде смеси 37% *E*- и 63% *Z*-изомеров.

Соединения 10, 11 далее были подвергнуты алкилированию иодэтаном в присутствии смеси гидроксида и карбоната калия. В ИК спектрах алкилированных соединений 12, 13 отсутствует поглощение в области, характерной для группы NH. В спектрах ЯМР ¹Н данных соединений помимо сигналов, присущих протонам соединений 10, 11, наблюдаются сигналы протонов группы CH₂CH₃. При исследовании конденсации гидразидов 8, 9 с ацетилацетоном при 20 °C в метаноле нам удалось выделить и охарактеризовать промежуточные продукты конденсации – производные 5-гидрокси-3,5-диметил-4,5-дигидропиразола 14, 15. Ряд появившихся новых сигналов, таких как синглеты групп CH₃ (δ 1.82 и 2.05 (2.15) м. д.), синглет группы CH₂ при 2.95 м. д., и малоинтенсивный уширенный сигнал группы OH при 5.22 (5.70) м. д. несомненно свидетельствует о наличии соединений 14, 15.

Производные 5-гидрокси-3,5-диметил-4,5-дигидропиразола 14, 15 под влиянием кислот или температуры циклизуются в 3,5-диметилпиразолы 16, 17. Образование пиразольного кольца в соединениях 16, 17 подтверждалось наличием характерного сигнала фрагмента CH=N при 6.01, а также двух синглетов групп CH₃ при 2.25 и 2.58 м. д.

^{*} Вследствие более сильного экранирования спектральные линии Z-изомеров наблюдаются в более сильном поле [12].

Таблица 1

Физико-химические свойства синтезированных соединений 3–18

Соеди-	Брутто-		<u>Найдено, %</u> Вычислено, %		Т. пл., °С *	ИК спектр,	Выход, %	
нение	формула	С	Н	Ν		V, СМ		
3	$C_{20}H_{20}N_2O_3$	<u>71.33</u> 71.42	<u>5.68</u> 6.00	<u>8.28</u> 8.32	163–164		84.7	
4	$C_{19}H_{18}N_2O_3$	$\frac{70.45}{70.80}$	$\frac{6.01}{5.63}$	$\frac{8.34}{8.69}$	114–115	1693 (CO); 1734 (CO)	61.0	
5	$C_{20}H_{20}N_2O_3$	<u>71.73</u> 71.42	$\frac{6.29}{6.00}$	$\frac{7.83}{8.32}$	96–97	1688 (CO); 1741 (CO)	59.2	
6	$C_{21}H_{22}N_2O_3$	<u>71.75</u> 71.98	$\frac{6.47}{6.32}$	<u>7.51</u> 7.99	92–93	1699 (CO); 1738 (CO)	44.0	
7	$C_{18}H_{18}N_4O_2$	<u>67.30</u> 67.07	<u>6.00</u> 5.63	$\frac{17.05}{17.38}$	137–138	1603 (CO); 1670 (CO); 3282, 3418 (NH, NH ₂)	75.2	
8	$C_{19}H_{20}N_4O_2$	<u>68.00</u> 67.84	$\frac{6.15}{6.00}$	<u>16.32</u> 16.65	168–170	1648 (CO); 1687 (CO); 3289, 3425 (NH, NH ₂)	80.0	
9	$C_{20}H_{22}N_4O_2$	<u>68.42</u> 68.56	<u>6.39</u> 6.33	<u>15.56</u> 15.98	181–183	1647 (CO); 1687 (CO); 3140–3420 (NH, NH ₂)	65.6	
10	$C_{30}H_{33}N_5O_2$	$\frac{72.49}{72.70}$	<u>6.42</u> 6.72	<u>14.36</u> 14.13	127–128	1600 (CO); 1678 (CO); 3206 (NH)	60.0	
11	C ₃₄ H ₃₁ N ₅ O ₂	<u>75.09</u> 75.40	<u>5.48</u> 5.77	<u>12.61</u> 12.93	165 (разл.)	1628 (CO); 1681 (CO); 3211 (NH)	33.7	

	1	1	Ì	1	i	1	
12	C ₃₂ H ₃₇ N ₅ O ₂	<u>73.30</u> 73.40	<u>7.42</u> 7.12	<u>13.14</u> 13.37	162–163	1664 (CO); 1695 (CO)	61.0
13	$C_{36}H_{35}N_5O_2$	<u>76.20</u> 75.90	$\frac{5.62}{6.20}$	<u>12.26</u> 12.29	212–213	1671 (CO); 1692 (CO)	55.8
14	$C_{24}H_{26}N_4O_3$	<u>68.54</u> 68.88	<u>6.39</u> 6.26	<u>13.56</u> 13.39	53 (разл.)	3406 (OH); 1689 (CO); 1665 (CO)	64.0
15	$C_{25}H_{28}N_4O_3$	<u>69.49</u> 69.42	<u>6.49</u> 6.53	$\frac{13.06}{12.95}$	48 (разл.)		62.0
16	$C_{24}H_{24}N_4O_2$	<u>72.08</u> 71.98	$\frac{5.79}{6.04}$	<u>13.79</u> 13.99	160–161.5	1693 (CO); 1724 (CO)	87.4
17	$C_{25}H_{26}N_4O_2$	<u>72.49</u> 72.44	$\frac{6.08}{6.32}$	$\frac{13.62}{13.52}$	138-139.5	1692 (CO); 1722 (CO)	50.8
18	$C_{25}H_{28}N_4O_4$	<u>66.55</u> 66.95	$\frac{6.10}{6.29}$	$\frac{12.32}{12.49}$	133–134	1691 (CO); 1734 (CO); 3248 (NH)	63.7

* Растворители: диоксан (соединение 3), ацетон–гексан (соединения 4–6, 12–15, 18), этанол (соединения 7–9), ацетон–гексан–хлороформ (соединение 10), диоксан–пропан (соединение 11) и метанол (соединения 16, 17).

	Спектры Ямір "Н синтезированных соединении 5–18^
Соеди- нение	Химические сдвиги, δ, м. д. (КССВ, J, Гц)
3	0.87 (3H, т, <i>J</i> = 7.1, NCH ₂ CH ₂ CH ₃); 1.80 (2H, м, NCH ₂ CH ₂ CH ₃); 2.70–2.92 (2H, м, COCH ₂); 3.41 (1H, м, CH); 4.07–4.25 (2H, м, NCH ₂); 4.35 (2H, м, N <u>CH₂CH₂CH₃); 7.13–8.33 (7H, м, H аром.)</u>
4	2.70–2.92 (2H, м, COCH ₂); 3.52 (1H, м, CH); 3.71 (3H, с, COOCH ₃); 3.86 (3H, с, NCH ₃); 4.07–4.25 (2H, м, NCH ₂); 7.17–8.28 (7H, м, H аром.)
5	1.29 (3H, т, <i>J</i> = 7.05, NCH ₂ <u>CH</u> ₃); 2.70–2.95 (2H, м, COCH ₂); 3.53 (1H, м, CH); 3.71 (3H, с, COOCH ₃); 4.08–4.25 (2H, м, N <u>CH₂</u>); 4.40 (2H, кв, <i>J</i> = 7.05, N <u>CH₂</u> CH ₃); 7.17–8.30 (7H, м, H аром)
6	0.85 (3H, т, <i>J</i> = 7.36, NCH ₂ CH ₂ CH ₃); 1.78 (2H, м, NCH ₂ CH ₃); 2.79–2.85 (2H, м, COCH ₂); 3.53 (1H, м, CH); 3.72 (3H, с, COOCH ₃); 4.12–4.19 (2H, м, NCH ₂); 4.34 (2H, т, <i>J</i> = 6.91, N <u>CH₂</u> CH ₂ CH ₃); 7.16–8.30 (7H, м, H аром.)
7	2.64–2.82 (2H, м, COCH ₂); 3.25 (1H, м, CH); 3.86 (3H, с, NCH ₃); 3.95–4.20 (2H, м, NCH ₂); 4.32 (2H, с, NH ₂); 7.10–8.55 (7H, м, H аром.); 9.32 (1H, с, CONH)
8	1.29 (3H, т, <i>J</i> = 7.0, NCH ₂ <u>CH₃</u>); 2.63–2.87 (2H, м, COCH ₂); 3.19–3.32 (1H, м, CH); 4.01–4.16 (2H, м, NCH ₂); 4.21 (2H, с, NH ₂); 4.40 (2H, кв, <i>J</i> = 7.0, N <u>CH₂</u> CH ₃); 7.17–8.30 (7H, м, H аром.); 9.34 (1H, с, CONH)
9	0.85 (3H, т, <i>J</i> = 7.1, NCH ₂ CH ₂ CH ₃); 1.74–1.83 (2H, м, NCH ₂ CH ₂ CH ₃); 2.70–2.75 (2H, м, COCH ₂); 3.19–3.32 (1H, м, CH); 3.97–4.13 (2H, м, NCH ₂); 4.24 (2H, с, NH ₂); 4.34 (2H, т, <i>J</i> = 7.1, N <u>CH₂CH₂CH₃); 7.16–8.29 (7H, м, H аром.); 9.34 (1H, с, CONH)</u>
10**	1.18 (6H, т, <i>J</i> = 7.03, N(CH ₂ C <u>H₃)₂</u>); 1.41 (3H, т, <i>J</i> = 7.18, NCH ₂ C <u>H₃</u>); 2.95–3.26 (2H, м, COCH ₂); 3.34–3.43 (4H, м, N(<u>CH₂CH₃)₂</u>); 4.15–4.43 (5H, м, N <u>CH₂CH₃ + NCH₂ + CH</u>); 7.15–8.35 (12H, м, H аром. + N=CH); 9.47 (1H, с, CONH)
	[1.15 (6H, м, N(CH ₂ <u>CH₃</u>) ₂); 1.39 (м, NCH ₂ <u>CH₃</u>); 2.70–2.90 (2H, м, COCH ₂), в интервале ~3.5 м. д. сигналы закрыты сигналом воды, 6.64–8.40 (12H, м, H аром. + N=CH); 11.50 и 11.57 (1H, 2c, CONH)]. Смесь <i>E</i> -, <i>Z</i> -изомеров, 41/59%
11	1.27–1.34 (6H, м, NCH ₂ <u>CH₃</u> + NCH ₂ <u>CH₃</u>); 2.83–2.94 (2H, м, COCH ₂); 3.50 (1H, м, CH); 4.15–4.48 (6H, м, (N <u>CH₂CH₃</u>) + NCH ₂ CH ₃ + NCH ₂); 7.14–8.47 (15H, м, H аром. + N=CH); 11.50 и 11.57 (1H, 2с, CONH). Смесь <i>E</i> -, <i>Z</i> -изомеров, 37/63%
12	1.16–1.25 (9H, M, N(CH ₂ <u>CH₃</u>) ₂ + NCH ₂ <u>CH₃</u>); 1.41 (3H, T, $J = 7.18$, NCH ₂ <u>CH₃</u>); 2.90–3.25 (2H, M, COCH ₂); 3.38 (4H, KB, $J = 7.03$, N(<u>CH₂</u> CH ₃) ₂); 4.15–4.46 (7H, M, 2N <u>CH₂</u> CH ₃ + NCH ₂ + CH); 7.15–8.30 (12H, M, H apoM. + N=CH)
13	1.29, 1.40, 1.44 (9H, 3T, $J = 7.10$, $J = 4.93$, $J = 4.93$, $3NCH_2CH_3$); 3.00–3.28 (2H, M, COCH ₂); 4.15–4.60 (9H, M, $3NCH_2CH_3 + NCH_2 + CH$); 7.15–8.40 (15H, M, H apom. + N = CH)
14	1.32 (3H, т, <i>J</i> = 7.1, NCH ₂ <u>CH</u> ₃); 1.82 (3H, с, CH ₃); 2.05 (3H, с, CH ₃); 2.69–2.88 (2H, м, COCH ₂); 2.95 (2H, с, CH ₂); 3.88–4.22 (3H, м, NCH ₂ + CH); 4.40 (2H, кв, <i>J</i> = 7.1, N <u>CH₂</u> CH ₃); 5.22 (1H, с, OH); 7.09–8.38 (7H, м, H аром.)
15	0.95 (3H, T, <i>J</i> = 7.1, NCH ₂ CH ₂ CH ₃); 1.82 (3H, c, CH ₃); 2.15 (3H, c, CH ₃); 2.40–2.66 (2H, M, NCH ₂ CH ₂ CH ₃); 2.68–2.93 (2H, M, COCH ₂); 2.95 (2H, c, CH ₂); 3.85–4.28 (3H, M, NCH ₂ +CH); 4.38 (2H, T, <i>J</i> =7.1, NCH ₂ CH ₂ CH ₃); 5.70 (1H, c, OH); 7.06–8.40 (7H, M, H apom.)
16	1.41 (3H, т, <i>J</i> = 7.1, NCH ₂ <u>CH</u> ₃); 2.25 (3H, с, CH ₃); 2.58 (3H, с, CH ₃); 3.00–3.19 (2H, м, COCH ₂); 4.23–4.37 (4H, м, N <u>CH₂</u> CH ₃ + NCH ₂); 4.63 (1H, м, CH); 6.01 (1H, с, CH); 7.20–8.18 (7H, м, H аром.)
17	0.95 (3H, т, <i>J</i> = 7.1, NCH ₂ CH ₂ CH ₃); 1.89 (2H, м, NCH ₂ CH ₂ CH ₃); 2.25 (3H, с, CH ₃); 2.58 (3H, с, CH ₃); 3.00–3.19 (2H, м, COCH ₂); 4.23–4.37 (4H, м, N <u>CH₂</u> CH ₂ CH ₂ CH ₃ + NCH ₂); 4.63 (1H, м, CH); 6.02 (1H, с, CH); 7.20–8.17 (7H, м, H аром.)
18	1.26 (3H, т, $J = 7.0$, NCH ₂ <u>CH₃</u>); 1.40 (3H, т, $J = 7.2$, COOCH ₂ <u>CH₃</u>); 1.99 (3H, c, CH ₃); 2.87–3.10 (2H, м, COCH ₂); 3.32 (2H, c, <u>CH₂COOC₂H₅); 4.07–4.27</u> (5H, м, NCH ₂ + COO <u>CH₂</u> CH ₃ + CH); 4.35 (2H, кв, $J = 7.0$, N <u>CH₂</u> CH ₃); 7.20–8.17 (7H, м, H аром.); 9.20 и 9.65 (1H, 2c, CONH). Смесь <i>E</i> -, <i>Z</i> -изомеров, 14/86%

Спектры ЯМР ¹Н синтезированных соединений 3–18*

* Спектры ЯМР ¹Н снимали в ДМСО-d₆ (соединения **3–9**, **11**), CDCl₃ (соединения **10**, **12**, **13**, **16–18**) и ацетоне (соединения **14**, **15**).

^{**} В квадратных скобках приведены данные спектра ЯМР ¹Н, снятые в ДМСО-d₆.

При конденсации гидразида **8** с ацетоуксусным эфиром в этаноле был выделен 3-замещенный этилбутаноат **18**, образование которого подтверждалось наличием сигналов групп CH₃ (δ 1.99 м.д.) и CH₂ (δ 3.32 м. д.), а также характерных триплета и квартета группы OCH₂CH₃, соответственно, при 1.40 и 4.15 м. д. Наличие двух уширенных сигналов группы CONH большей и меньшей интенсивности при 9.20 и 9.65 м. д. свидетельствует о том, что соединение **18** существует в виде смеси 14% *E*- и 86% *Z*-изомеров.

Анализ более информативных спектров ЯМР ¹³С осложнялся отсутствием инкрементов влияния пирролидонового заместителя на атомы углерода карбазола. С целью установления неизвестных инкрементов были использованы синтезированные нами модельные соединения, в структуре которых имелся фрагмент *n*-замещенной ароматики (пирролидонил-С₆Н₄-R). Тип замещения ароматического кольца и опубликованные данные инкрементов [13] заместителя ($R = COCHCHC_6H_5$) позволили рассчитать влияние пирролидонового заместителя на ароматические атомы углерода. При помощи полученных данных ($\Delta\delta$, м. д.: C_i = 10.6; C_o = -11.92; $C_m = -0.85; C_p = -5.63)$ были отнесены сигналы 1-1а атомов углерода карбазолила во всех исследуемых соединениях. На основании отнесения было уточнено среднее значение инкрементов пирролидонового заместителя ($\Delta\delta$, м. д.: C_i = 12.50; C_o = -6.77; C_m = -0.24; C_p = -2.90) данного класса соединений для атомов углерода карбазола. В спектрах ЯМР ¹³С синтезированных соединений изменения N-заместителя карбазолила в ряду CH₃, CH₂CH₃, CH₂CH₂CH₃ существенного влияния на химические сдвиги атомов углерода карбазолила не оказывало.

Применение эксперимента INEPT [14] позволило идентифицировать резонансные сигналы атомов углерода, что способствовало правильному отнесению спектральных линий как ароматических атомов углерода карбазолильного фрагмента, так и пирролидонового или пиразольного кольца. Заместитель CONHNH₂ пирролидонового кольца в соединениях 7-9 оказывал экранирующее действие (около 0.8 м. д.) на химический сдвиг С-4' атома по сравнению с исследуемыми соединениями 4-6, 16, 18. Из-за структурных и стерических особенностей синтезированных соединений в спектрах проблематичным оказалось отнесение сигналов групп СО. Однозначное отнесение последних требует дополнительных исследований синтезированных соединений. Наличие сигналов атомов углерода при 152.94 (а), 144 (с) и 111.83 м. д. (в), указывало на образование пиразольнового кольца [15-17] в соединении 16. Резонансные сигналы атомов углерода соединений 5, 16, 18 в растворах CDCl₃ наблюдались в более слабом поле (за исключением сигналов атомов С-1, С-3 и С-8) по сравнению с соответствующими сигналами соединений 4-9 в растворах ДМСО-d₆.

Спектры ЯМР ¹³С соединений 4–9, 16, 18

	OC-N-N		
3 R = COOH, 4–6 R = COOCH ₃ , 7–9 R = CONHNH ₂ ;	$16 \text{ R} = \frac{c'}{H_3C} + \frac{c'}{b} + \frac{a'}{CH_3} + \frac{a'}{CH_3}$	18 R =	$\overset{4"}{\text{CONHN}=C(CH_3)}\overset{b}{\overset{b'}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\overset{c'}{\underset{2}{\underset{2}{\overset{c'}{\underset{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop2}{\atop_{2}{\atop1}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{\atop_{2}{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$

3, 6, 9 X =	= C ₃ H ₇ , 4 ,	7 X = 0	CH3, 5 , 8 X =	$C_{2}H_{5}$	16, 18 X =	$C_{2}H_{5}$
-, -,	- 3/3 -3			- 2 55		- 25

Атом С	Химические сдвиги (ДМСО-d ₆), б. м. д.											
	3	4	5	5*	6	7	8	9	16*	18*		
C-1	109.06	108.62	108.84	108.08	109.07	108.83	108.82	109.05	108.60	108.56		
C-2	119.49	119.44	119.56	120.16	119.52	119.38	119.51	119.47	120.33	120.24		
C-3	131.07	131.06	131.01	130.37	130.95	131.19	131.15	131,09	130.56	130.71		
C-4	112.51	112.43	112.66	113.70	112.55	112.56	112.56	112.46	113.90	113.69		
C-4a	121.71	121.43	121.89	122.68	121.72	121.64	121.87	121.69	122.76	122.74		
C-1a	137.25	137.79	136.71	137.71	137.29	137.70	136.64	137.22	137.73	137.62		
C-5a	121.87	121.83	122.03	122.96	121.87	121.82	122.02	121.85	122.99	122.94		
C-5	120.33	120.25	120.41	120.64	120.33	120.22	120.39	120.30	120.65	120.63		
C-6	118.54	118.62	118.61	118.89	118.56	118.59	118.59	118.53	118.60	118.83		

Таблица З

C-7	125.78	125.83	125.85	126.01	125.80	125.81	125.82	125.78	125.98	125.92
C-8	109.34	109.15	109.12	108.80	109.36	109.14	109.11	109.34	108.60	108.60
C-8a	141.51	141.05	139.96	140.43	140.52	141.03	139.94	140.49	140.45	140.42
NCH ₃		28.95				28.94				
NCH ₂ CH ₃			36.93 13.58	37.63 13.81			36.92 13.58		37.62 13.77	37.60 13.80
NCH ₂ CH ₂ CH ₃	43.67, 21.77, 11.26				43.68 21.78, 11.26			43.68 21.78, 11.26		
C-2', CO (C-4") C-b'	171.26 или 174.37	170.91 или 173.18	170.93 или 173.20	171.49 или 173.12	170.93 или 173.20	171.40 или 171.57	171.44 или 171.60	171.43 или 171.58	171.85 или 172.49	171.79 или 174.32 или 169.42
C-3'		34.81	34.80	35.37	34.80	35.48	35.49	35.48	35.29	34.18
C-4'		35.07	35.10	36.13	35.11	34.26	34.33	34.33	36.49	35.10
C-5'		50.81	50.84	51.79	50.83	51.73	51.77	51.76	52.25	51.79
OCH ₃		52.06	52.62	52.08	52.08					
а									152.94	146.93
a'									14.36 или 14.44	14.17
b									111.83	44.57
с									144.36	60.21
c'									14.36 или 14.44	15.65

* Спектры ЯМР¹³С полученны в CDCl₃.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹H, ¹³С получали на спектрометре Joel FX 100 (100 МГц), Bruker AC 250 (250 МГц) и Bruker DRX 500 (500 МГц), внутренний стандарт ТМС. ИК спектры снимали на приборе Perkin–Elmer BX FT-IR в таблетках КВг. Контроль за ходом реакций и чистотой полученных соединений осуществляли методом ТСХ на пластинках Silufol UV-254, проявление вели в УФ свете или иодом. Для колонной хроматографии использовали силикаrenь L 40/100 (Chemapol).

Физико-химические и спектральные характеристики синтезированных соединений приведены в табл. 1–3.

1-(9-Метил-9Н-карбазол-3-ил)-4-метоксикарбонил-2-пирролидинон (4). Кипятят смесь 7.7 г (25 ммоль) 4-карбокси-1-(9-метил-9Н-карбазол-3-ил)-2-пирролидинона (1), 80 мл метанола и 2.5 мл конц. H_2SO_4 6 ч, жидкие фракции отгоняют в вакууме на ротационном испарителе, остаток заливают 150 мл 5% Na_2CO_3 и экстрагируют диэтиловым эфиром (3 × 100 мл). Экстракт сушат безводным Na_2CO_3 , отгоняют растворитель в вакууме на ротационном испарителе и соединение 4 выделяют хроматографированием остатка в системе ацетон–гексан, 1:1.5.

4-Метоксикарбонил-1-(9-этил-9Н-карбазол-3-ил)-2-пирролидинон (5) получают из 8.0 г (25 ммоль) 4-карбокси-2-пирролидинона **2** аналогично соединению **4**.

4-Метоксикарбонил-1-(9-пропил-9Н-карбазол-3-ил)-2-пирролидинон (6) получают из 8.4 г (25 ммоль) 4-карбокси-2-пирролидинона **3** аналогично соединению **4**.

1-(9-Метил-9Н-карбазол-3-ил)-5-оксо-3-пирролидинкарбогидразид (7). Кипятят 6.44 г (20 ммоль) метилового эфира 4, 2.9 г (60 ммоль) гидразингидрата и 20 мл этанола 30 мин. При охлаждении выделившиеся кристаллы гидразида 7 фильтруют, промывают этанолом, эфиром.

5-Оксо-1-(9-этил-9Н-карбазол-3-ил)-3-пирролидинкарбогидразид (8) получают из 6.72 г (20 ммоль) метилового эфира **5** аналогично соединению **7**.

5-Оксо-1-(9-пропил-9Н-карбазол-3-ил)-3-пирролидинкарбогидразид (9), получают из 7.0 г (20 ммоль) метилового эфира 6 аналогично соединению 7.

N-[(4-Диметиламинофенил)метилиден]-5-оксо-1-(9-этил-9Н-карбазол-3-ил)-3-пирролидинкарбогидразид (10). Смесь 1.0 г (3.0 ммоль) гидразида **8**, 0.53 г (3.0 ммоль) 4-диметиламинобензальдегида и 10 мл 1,4-диоксана кипятят 2 ч, растворитель отгоняют в вакууме на ротационном испарителе, остаток обрабатывают 20 мл диэтилового эфира, фильтруют. Соединение **10** выделяют хроматографированием в системе ацетон-гексан-хлороформ, 2:1:1.

N-[(9-Этил-9Н-карбазол-3-ил)метилиден]-5-оксо-1-(9-этил-9Н-карбазол-3-ил)-3пирролидинкарбогидразид (11) получают из 1.0 г (3.0 ммоль) гидразида **8**, 0.67 г (3.0 ммоль) 9-этил-3-формилкарбазола аналогично соединению **10**. Очищают кристаллизацией из смеси диоксан–2-пропанол, 1:1.

N-[(4-Диметиламинофенил)метилиден]-N'-этил-5-оксо-1-(9-этил-9Н-карбазол-3-ил)-3пирролидинкарбогидразид (12). Смесь 1.0 г (2.0 ммоль) соединения **10**, 0.20 г (4.0 ммоль) порошкообразного гидроксида калия, 1.0 г карбоната калия и 30 мл иодэтана кипятят 1 ч, добавляют 30 мл ацетона, фильтруют. Фильтрат упаривают в вакууме на ротационном испарителе, соединение **12** выделяют хроматографированием остатка в системе ацетон–гексан, 1:1.

N-[(9-Этил-9Н-карбазол-3-ил)метилиден]-N'-этил-5-оксо-1-(9-этил-9Н-карбазол-3-ил)-3-пирролидинкарбогидразид (13) получают из 1.08 г (2.0 ммоль) соединения 11 аналогично соединению 12.

4-(5-Гидрокси-3,5-диметил-4,5-дигидропиразоло-1-карбонил)-1-(9-этил-9Н-карбазол-3-ил)-2-пирролидинон (14). Смесь 1.0 г (3.0 ммоль) гидразида **8**, 15 мл метанола и 0.6 мл (6.0 ммоль) ацетилацетона перемешивают 7 ч при 20 °C. Жидкие фракции удаляют в вакууме на ротационном испарителе (при температуре не более 40 °C). Вещество **14** выделяют хроматографированием остатка в системе ацетон–гексан, 1:1.5.

4-(5-Гидрокси-3,5-диметил-4,5-дигидропиразоло-1-карбонил)-1-(9-пропил-9Н-карбазол-3-ил)-2-пирролидинон (15) получают из 1.0 г (3.0 ммоль) гидразида **9** и 0.6 мл (6.0 ммоль) ацетилацетона аналогично соединению **14**.

4-(3,5-Диметилпиразоло-1-карбонил)-1-(9-этил-9Н-карбазол-3-ил)-2-пирролидинон (16). Смесь 1.0 г (3.0 ммоль) гидразида **8**, 30 мл метанола, 0.6 мл (6.0 ммоль) ацетилацетона и 0.3 мл 2М HCl кипятят 4 ч, охлаждают, выделившиеся кристаллы соединения **16** фильтруют, промывают метанолом, эфиром.

4-(3,5-Диметилпиразоло-1-карбонил)-1-(9-пропил-9Н-карбазол-3-ил)-2-пирролидинон (17) получают из 1.0 г (3.0 ммоль) гидразида 9 и 0.6 мл (6.0 ммоль) ацетилацетона аналогично соединению **16**.

Этил-3-(2-{[5-оксо-1-(9-этил-9Н-карбазол-3-ил)-3-пирролидинил]карбонил}гидразоно)бутаноат (18). Смесь 2.0 г (6.0 ммоль) гидразида 8, 1.56 г (12 ммоль) ацетоуксусного эфира, 0.3 мл 2М НС1 и 10 мл этанола нагревают 1 ч 30 мин при 60 °С, растворитель упаривают в вакууме на ротационном испарителе. Соединение 18 выделяют хроматографированием остатка в системе ацетон-гексан, 5:1.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ricoh Co, Jpn. Pat. 58132231; Chem. Abstr., 99, 222489 (1983).
- M. Daškevičienė, V. Gaidelis, V. Getautis, V. Jankauskas, O. Paliulis, J. Sidaravičius, Lithuanian J. Phys., 41, 521 (2001).
- 3. P. Stroghried, J. V. Gražulevičius, in *Handlook of Organic Conductive Molecules and Polymers*, Ed. H. S. Nalwa, John Wiley and Sons, Chishester, 1997, **1**, 553.
- 4. M. Suffness, G. A. Cordell, in *The Alkaloids*, Ed. A. Brossi, Acad. Press, New York, 2000, **54**, 395.
- 5. J. E. Saxton, Indoles, Wiley-Intersci., New York, 1983, Pt 4, 201.
- 6. A. Kleemann, J. Engel, *Pharmazeutische Wirkstoffe*, Georg Thieme Verlag, Stuttgart, New York, 1978, **15**, 555.
- 7. D. Bellus, W. Foery, H. Pobler, Ger. Pat. 2650604; Chem. Abstr., 87, 102159 (1977).
- Harry C. Bucha, Raymond W. Luckenbaugh, US Pat. 3136620 (1964); Chem. Abstr., 61, 9974 (1964).
- 9. J. W. Lampe, Y. L. Chou, R. G. Hanna, S. V. Di Meo, P. W. Erhardt, A. A. Hagedorn, W. R. Ingebretsen, E. Cantor, *J. Med. Chem.*, **36**, 1041 (1993).
- H. Jizuka, T. Oguchi, Y. Aoki, N. Ohto, K. Horikomi, T. Miwa, T. Kamioka, S. Kawashima, Eur. Pat. Appl. 668275; *Chem. Abstr.*, **124**, 8606 (1996).
- 11. Б. Сапиянскайте, В. Мицкявичюс, ХГС, 1637 (1999).
- 12. М. Ногради. Стереохимия, Москва, 1984.
- H. O. Kalinowski, S. Berger, S. Braun, ¹³C NMR -Spektroskopie, Georg Thieme Verlag, Stuttgart, New York, 1984.
- 14. А. Е. Дроум, Современные методы ЯМР для химических исследований, Мир, Москва, 1992.
- 15. A. R. Katritzky, K. W. Law, Magn. Reson. Chem., 26, 129 (1988).
- R. M. Claramunt, C. Lopez, M. A. Garcia, M. Pierrot, M. Giorgi, J. Elguero, J. Chem. Soc., Perkin Trans. 2, 2049 (2000).
- 17. R. M. Claramunt, C. Escolastico, J. Elguero, ARKIVOC, 2, Pt 1, 944 (2001).

Каунасский технологический университет, Каунас LT-3028, Литва e-mail: Vytautas.Mickevicius@ktu.lt Поступило в редакцию 29.01.2003

^аИнститут биохимии, Вильнюс LT-2600, Литва e-mail: gemam@bchi.lt