# А. М. Демченко, Н. А. Штиль<sup>а</sup>, А. П. Андрушко<sup>а</sup>, А. Н. Красовский<sup>а</sup>, А. Н. Чернега<sup>б</sup>, Е. Б. Русанов<sup>6</sup>, В. В. Пироженко<sup>6</sup>, М. О. Лозинский<sup>6</sup>

## СИНТЕЗ И СВОЙСТВА БРОМИДОВ 1,3-ДИАРИЛ-5,6-ДИГИДРО-8Н-ИМИДАЗО[2,1-*c*]-1,4-ОКСАЗИНИЯ

Установлено, что конденсация 3-(4-метоксифениламино)-5,6-дигидро-2H-1,4-оксазина с замещенными фенацилбромидами протекает по экзоциклическому атому азота с образованием бромидов 3-арил-3-гидрокси-1-(4метоксифенил)-2,5,6,8-тетрагидро-3H-имидазо[2,1-*c*]-1,4-оксазиния. Обработкой последних уксусным ангидридом получены бромиды 3-арил-1-(4метоксифенил)-5,6-дигидро-8H-имидазо[2,1-*c*]-1,4-оксазиния. Строение синтезированных соединений доказано данными спектроскопии ЯМР <sup>1</sup>Н и РСА.

Ключевые слова: гетероциклические амидины, 3-(4-метоксифенилимино)-5,6-дигидро-2H-1,4-оксазин, замещенные фенацилбромиды, уксусный ангидрид, 3-этокси-5,6-дигидро-2H-1,4-оксазин, экзоциклический атом азота, алкилирование.

В продолжение работ по изучению свойств гетероциклических N-арил-(алкил)амидинов [1–4], нами изучено алкилирование 3-(4-метоксифениламино)-5,6-дигидро-2Н-1,4-оксазина (1) замещенными фенацилбромидами. Установлено, что первичными продуктами реакции являются соли 2а-е с выходами 48-78% (табл. 1). При кипячении последних в уксусном ангидриде получены бромиды 3-арил-1-(4-метоксифенил)-5,6-дигидро-8Нимидазо[2,1-с]-1,4-оксазиния За-е. Строение продуктов реакции 2а-е исследовано методами ИК и ЯМР <sup>1</sup>Н спектроскопии. Так, в ИК спектрах продуктов 2а-е отсутствуют полосы поглощения валентных колебаний групп СО в области 1650-1750 см<sup>-1</sup>, а также групп NH в области 3300-3500 см<sup>-1</sup> и наблюдаются характеристические полосы поглощения ассоциированных групп ОН в области 3060-3100 см<sup>-1</sup>. В спектрах ЯМР <sup>1</sup>Н, зарегистрированных в растворе ДМСО-d<sub>6</sub>, сигналы метиленовых групп оксазинового кольца проявляются в области 3.01-4.48 м. д. Двупротонный синглет группы 8-CH<sub>2</sub> расположен в области 4.38-4.48 м. д. Сигналы метоксигруппы зарегистрированы при 3.81–3.84 м. д. Вследствие наличия в молекуле 2 асимметрического атома углерода метиленовая группа во втором положении системы проявляется в спектрах в виде характеристических сигналов АВ-системы в области 4.46-4.95 м. д. (J = 16.8-17.4 Гц). Однопротонный синглет группы ОН наблюдается в области 8.11-8.30 м. д. (такое отнесение подтверждается исчезновением данного сигнала при повторной регистрации спектра в присутствии незначительных количеств D<sub>2</sub>O) (табл. 2). Таким образом, соединения 2а-е являются бромидами 1,3-диарил-2,5,6,8-тетрагидро-3Н-имидазо[2,1-с]-1,4-оксазиния. Интересно отметить, что рассматриваемые соли также хорошо растворимы в хлороформе, как и в полярных растворителях.



**2**, **3** a R = 4-Me; b R = 4-Br; c R = 2-F,4-OMe; d R = 3,4-OCH<sub>2</sub>CH<sub>2</sub>O; e R = 4-Ph

Таблица 1

| Соеди-<br>нение | Брутто-формула                                                     | <u>Найдено, %</u><br>Вычислено, %<br>N | Т. пл., °С | Выход, % |
|-----------------|--------------------------------------------------------------------|----------------------------------------|------------|----------|
| 1               | C <sub>11</sub> H <sub>14</sub> N <sub>2</sub> O <sub>2</sub> •HBr | <u>9.98</u><br>9.76                    | 173–174    | 78       |
| 2a              | $C_{20}H_{23}N_2O_3\bullet Br$                                     | <u>6.50</u><br>6.68                    | 206–207    | 65       |
| 2b              | $C_{19}H_{20}BrN_2O_3{\bullet}Br$                                  | <u>5.84</u><br>5.79                    | 206–207    | 75       |
| 2c              | $C_{20}H_{22}FN_2O_4\bullet Br$                                    | <u>6.03</u><br>6.18                    | 202–203    | 68       |
| 2d              | $C_{21}H_{23}N_2O_5{\bullet}Br$                                    | <u>5.96</u><br>6.05                    | 176–177    | 64       |
| 2e              | $C_{25}H_{25}N_2O_3{\scriptstyle \bullet}Br$                       | <u>5.97</u><br>5.82                    | 213–215    | 78       |
| 3a              | $C_{20}H_{21}N_2O_2{\scriptstyle \bullet}Br$                       | <u>6.72</u><br>6.98                    | 213–214    | 50       |
| 3b              | $C_{19}H_{18}BrN_2O_2{\bullet}Br$                                  | <u>5.76</u><br>6.01                    | 230–231    | 62       |
| 3c              | C <sub>20</sub> H <sub>20</sub> FN <sub>2</sub> O <sub>3</sub> •Br | $\frac{6.26}{6.44}$                    | 209–210    | 48       |
| 3d              | $C_{21}H_{21}N_2O_4\bullet Br$                                     | <u>6.51</u><br>6.29                    | 212–213    | 53       |
| 3e              | $C_{25}H_{23}N_2O_2{}\bullet Br$                                   | $\frac{5.88}{6.05}$                    | 241–242    | 62       |

## Характеристики соединений 1, 2а-е, 3а-е

Кипячением солей 2a-e в Ac<sub>2</sub>O получены соединения 3a-e. Строение полученных имидазолиниевых солей также доказано на основе спектроскопии ЯМР <sup>1</sup>Н. Исчезновение асимметрического центра при переходе от соединений 2 к продуктам 3 приводит к значительному упрощению протонных спектров последних. Так, метиленовые группы оксазинового цикла проявляются в виде двух триплетов и синглета при 4.18, 4.33 и 5.1 м. д.

Следует отметить, что данные спектральных исследований не дают однозначного ответа, по какому из атомов азота происходит алкилирование. Поэтому было проведено рентгеноструктурное исследование соединения **За**, которое доказало, что алкилирование протекает по экзоциклическому атому азота с образованием бромидов 3-арил-3-гидрокси-1-(4-метоксифенил)-2,5,6,8-тетрагидро-3H-имидазо[2,1-*c*]-1,4-оксазиния **2а**-е.

Общий вид молекулы **3а** показан на рис. 1, ее основные геометрические параметры приведены в табл. 3. Центральный пятичленный гетероцикл  $N_{(1)}C_{(3)}N_{(2)}C_{(5)}C_{(6)}$  плоский в пределах 0.010 Å, атомы  $C_{(2)}$ ,  $C_{(4)}$ ,  $C_{(7)}$  и  $C_{(14)}$  отклоняются от этой плоскости, соответственно, на 0.212, -0.022, -0.015 и 0.130 Å. Распределение длин связей в этом цикле свидетельствует о существенной делокализации электронной плотности, что является характерной чертой строения подобных систем [2]. Бензольные кольца  $C_{(7-12)}$  и  $C_{(14-19)}$  развернуты в одну и ту же сторону относительно пятичленного цикла, образуя с ним двугранные углы 17.8 и 17.3°. Торсионные углы в шестичленном гетероцикле  $O_{(1)}C_{(2)}N_{(1)}C_{(3)}C_{(4)}(O_{(1)}C_{(2)}N_{(1)} 54.4(5), C_{(3)}C_{(4)}O_{(1)}C_{(1)} 44.4(4), C_{(4)}O_{(1)}C_{(1)}C_{(2)} -72.0(4)°) указывают на его существенную непланарность. Расчет модифицированных параметров Кремера–Попла [5] ($ *S* $0.85, <math>\theta$  43.1°,  $\Psi$  20.9°) показал, что данный гетероцикл имеет конформацию несколько искаженного *полукресла*.



Рис. 1. Общий вид молекулы бромида 3-(4-метилфенил)-1-(4-метоксифенил)-5,6дигидро-8Н-имидазо[2,1-с]-1,4-оксазиния (**3a**)

| 2 |
|---|
| а |
| Ц |
| И |
| 5 |
| 9 |
| а |
| F |

| 1, 2a-e, 3a-e    |
|------------------|
| соединений       |
| Н спектры        |
| <sup>1</sup> dMR |
| ИК и             |

|        |                     |         |                      |                                             | Спектр ЯМ                   | Р <sup>1</sup> Н, 8, м | . д. (Ј, Гц)        |                                                                                                                 |
|--------|---------------------|---------|----------------------|---------------------------------------------|-----------------------------|------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|
| соеди- | V, CM <sup>-1</sup> | MeO (c) | OCH <sub>2</sub> (c) | OCH <sub>2</sub> - <u>CH</u> <sub>2</sub> N | 0 <u>CH</u> 2-CH2N          | HO<br>(9)              | H <sub>Ar</sub> (M) | Другие сигналы                                                                                                  |
| 1      |                     | 3.80    | 4.68                 | 3.33 ( $\tau$ , $J = 5.1$ )                 | 3.95 ( $\tau$ , $J$ = 5.1)  |                        | 7.06–7.28 (4H)      | 9.58 (c, 1H, NH)                                                                                                |
| 2a     | 1630; 3060–3070     | 3.81    | 4.42                 | 3.01–3.42 (m)                               | 3.97 (m)                    | 8.16                   | 7.10–7.72 (8H)      | 2.36 (с, 3H, CH <sub>3</sub> ); 4.69 и 4.87 (д. д.<br>J = 17.4, 2H, CH <sub>2</sub> N)                          |
| 2b     | 1620; 3060–3070     | 3.81    | 4.43                 | 3.05-3.43 (m)                               | 4.00 (m)                    | 8.30                   | 7.09–7.32 (8H)      | 4.46 и 4.86 (д-д, J = 16.8, 2H, CH <sub>2</sub> N)                                                              |
| 2c     | 1635; 3080–3090     | 3.84    | 4.44                 | 3.07-3.69 (m)                               | 4.08-4.39 (m)               | 8.24                   | 6.68–7.86 (7H)      | 3.86 (с, 3Н, ОСН <sub>3</sub> ); 4.58 и 4.82 (д. д.<br><i>J</i> = 17.1, 2Н, СН <sub>2</sub> N)                  |
| 2d     | 1630; 3090          | 3.81    | 4.38                 | 3.05–3.42 (m)                               | 3.98 (M)                    | 8.11                   | 6.95–7.58 (7H)      | 4.29 (с, 4H, OCH <sub>2</sub> CH <sub>2</sub> O); 4.67 и 4.83 (д.<br>д. <i>J</i> = 17.1, 2H, CH <sub>2</sub> N) |
| 2e     | 1620; 3090–3100     | 3.82    | 4.48                 | 3.08–3.50 (м)                               | 4.03 (M)                    | 8.27                   | 7.09–7.85 (13H)     | 4.75 и 4.95 (д. д. <i>J</i> = 17.1, 2H, CH <sub>2</sub> N)                                                      |
| За     | 1620                | 3.82    | 5.09                 | 4.18 (T, $J = 4.5$ )                        | 4.30 (T, $J = 4.5$ )        |                        | 7.19–7.71 (8H)      | 2.41 (c, 3H, CH <sub>3</sub> ); 8.24 (c, 1H, CHN)                                                               |
| 3b     | 1620                | 3.86    | 5.09                 | 4.18 (T, $J = 4.2$ )                        | 4.33 (T, $J = 4.2$ )        |                        | 7.19–7.82 (8H)      | 8.32 (c, 1H, CHN)                                                                                               |
| 3c     | 1640                | 3.85    | 5.12                 | 4.19 (T, $J = 4.5$ )                        | 4.33 (T, $J = 4.5$ )        |                        | 6.85–8.02 (7H)      | 3.86 (c, 3H, OCH <sub>3</sub> ); 8.31 (c, 1H, CHN)                                                              |
| 3d     | 1610                | 3.84    | 5.21                 | $4.18 (\mathrm{T}, J = 4.5)$                | 4.36 ( $\tau$ , $J = 4.5$ ) |                        | 7.02–7.75 (7H)      | 4.27 (c, 4H, OCH <sub>2</sub> CH <sub>2</sub> O); 8.22 (c, 1H,<br>CHN)                                          |
| 3e     | 1610                | 3.86    | 5.13                 | 4.20 (T, $J = 4.8$ )                        | 4.42 (T, $J = 4.8$ )        |                        | 7.21–7.95 (13H)     | 8.37 (c, 1H, CHN)                                                                                               |
|        |                     |         |                      |                                             |                             |                        |                     |                                                                                                                 |



*Рис. 2*. Кристаллическая упаковка соединения **За** (вид вдоль оси *с*)

Таблица З

| Связь                              | d, Å     | Угол                                                 | ω, град. |
|------------------------------------|----------|------------------------------------------------------|----------|
| O(1)-C(4)                          | 1.398(4) | $C_{(4)} - O_{(1)} - C_{(1)}$                        | 111.8(3) |
| O <sub>(1)</sub> –C <sub>(1)</sub> | 1.423(5) | C(17)-O(2)-C(20)                                     | 117.1(3) |
| O(2)-C(17)                         | 1.356(4) | C(3)-N(1)-C(6)                                       | 109.2(3) |
| O(2)-C(20)                         | 1.433(5) | $C_{(3)} - N_{(1)} - C_{(2)}$                        | 121.4(3) |
| N(1)-C(3)                          | 1.335(4) | $C_{(6)}-N_{(1)}-C_{(2)}$                            | 128.8(3) |
| N(1)-C(6)                          | 1.400(4) | C(3)-N(2)-C(5)                                       | 107.7(3) |
| N(1)-C(2)                          | 1.475(5) | C(3)-N(2)-C(14)                                      | 128.0(3) |
| N(2)-C(3)                          | 1.342(4) | C(5)-N(2)-C(14)                                      | 124.1(3) |
| N(2)-C(5)                          | 1.384(4) | $O_{(1)} - C_{(1)} - C_{(2)}$                        | 108.2(3) |
| N(2)-C(14)                         | 1.443(4) | $N_{(1)}-C_{(2)}-C_{(1)}$                            | 108.2(3) |
| C(1)-C(2)                          | 1.501(5) | N(1)-C(3)-N(2)                                       | 108.3(3) |
| C(3)-C(4)                          | 1.497(5) | $N_{(1)}$ - $C_{(3)}$ - $C_{(4)}$                    | 121.6(3) |
| C(5)-C(6)                          | 1.342(5) | $N_{(2)}-C_{(3)}-C_{(4)}$                            | 130.0(3) |
| C(6)-C(7)                          | 1.468(5) | O <sub>(1)</sub> -C <sub>(4)</sub> -C <sub>(3)</sub> | 111.5(3) |
|                                    |          | C(6)-C(5)-N(2)                                       | 109.0(3) |
|                                    |          | C(5)-C(6)-N(1)                                       | 105.7(3) |
|                                    |          | $C_{(5)} - C_{(6)} - C_{(7)}$                        | 128.5(3) |
|                                    |          | $N_{(1)} - C_{(6)} - C_{(7)}$                        | 125.9(3) |
|                                    | 1        | 1                                                    | 1        |

Основные длины связей (d) и валентные углы (ω) в катионе соединения За

В кристалле соединения **За** катионы объединены в центросимметричные димерные пары с параллельным наложением ароматических систем  $N_{(1)}C_{(3)}N_{(2)}C_{(5-12)}$  на расстоянии 3.434(5) Å по принципу "голова к хвосту" (рис. 2). Эти катионные димеры организуют слои, разделенные анионными слоями. Между катионами и анионами укороченные контакты не наблюдаются.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры соединений сняты на приборе UR-20 в таблетках КВг. Спектры ЯМР <sup>1</sup>Н исследованных соединений записаны на спектрометре Bruker (300 МГц) в растворе ДМСО-d<sub>6</sub>, внутренний стандарт ТМС. Константы, выходы и данные элементного анализа новых соединений приведены в табл. 1, 2.

Рентгеноструктурное исследование соединения За проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 ( $\lambda$ Мо $K_{\alpha}$ -излучение, графитовый монохроматор, отношение скоростей сканирования  $\omega/2\theta = 1.2, \theta_{\text{max}} = 24^{\circ}$ , сегмент сферы  $0 \le h \le 10, -11 \le k \le 11, -10 \le l \le 11$ ). Для определения параметров элементарной ячейки и матрицы ориентации монокристалла соединения За с линейными размерами  $0.22 \times 0.38 \times 0.47$  мм было использовано 22 рефлекса с  $12 < \theta < 13^{\circ}$ . Всего было собрано 2850 отражений, из которых 2667 являются симметрически независимыми (*R*-фактор усреднения 0.020). Кристаллы соединения **За** триклинные, a = 9.652(2), b = 9.690(1), c = 9.847(1) Å,  $\alpha = 79.42(1), \beta = 73.08(1), \gamma = 85.09(1)^{\circ}$ V = 863.2(2) Å<sup>3</sup>, Z = 2,  $d_{\text{выч}} = 1.544$  г/см<sup>3</sup>,  $\mu = 2.397$  мм<sup>-1</sup>, F(000) = 412, пространственная группа Р1(№ 2). Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием программ SHELXS и SHELXL 93 [6, 7]. В уточнении использовано 2304 отражений с  $I > 2\sigma(I)$  (310 уточняемых параметров, число отражений на параметр 7.43, использована весовая схема  $\omega = 1/[\sigma^2(Fo^2) + (0.060P)^2 + 0.217P]$ , где  $P = (Fo^2 + 2Fc^2)/3$ , отношение максимального/среднего сдвига к погрешности в последнем цикле 0.013/0.001). Была введена поправка на аномальное рассеяние, поправки на поглощение не вносились. Все атомы водорода выявлены объективно из разностного синтеза электронной плотности и уточнены изотропно. Окончательные значения факторов расходимости R1(F) = 0.0387,  $R_{\mu}(F^2) = 0.0933$ , GooF = 1.065. Остаточная электронная плотность из разностного ряда Фурье 0.69 и -0.64 е/Å<sup>3</sup>. Полный набор рентгеноструктурных данных депонирован в Кембриджском банке структурных данных (регистр. № 145573).

**3-(4-Метоксифениламино)-5,6-дигидро-2Н-оксазин-1,4 (1).** К 16 г (0.1 моль) гидрохлорида анизидина прибавляют при 20 °С 14.2 г (0.11 моль) 3-этокси-5,6-дигидро-2H-1,4-оксазина [8]. Реакционную смесь выдерживают при комнатной температуре 24 ч, после чего осадок растирают с 30 мл эфира, фильтруют и растворяют в 20 мл воды. К раствору добавляют 10 мл 50% раствора гидроксида натрия. Маслянистый слой экстрагируют хлороформом, CHCl<sub>3</sub> упаривают в вакууме, остаток затирают минимальным количеством эфира, фильтруют, промывают гексаном и используют в дальнейших синтезах.

Бромиды 3-арил-3-гидрокси-1-(4-метоксифенил)-2,5,6,8-тетрагидро-3H-имидазо-[2,1-*c*]-1,4-оксазиния (2а-е). К раствору 0.01 моль α-галогенкетона в 30 мл этилацетата прибавляют 2.06 г (0.01 моль) морфолинимина 1 и кипятят до начала выпадения осадка (1-2 ч). После чего смесь охлаждают, осадок отфильтровывают, промывают эфиром и кристаллизуют из EtOH.

Бромиды 3-арил-1-(4-метоксифенил)-5,6-дигидро-8Н-имидазо[2,1-с]-1,4-оксазиния (3а-е). К 0.01 моль бромида 2а-е прибавляют 30 мл уксусного ангидрида и кипятят 5 ч. После чего Ac<sub>2</sub>O упаривают в вакууме, маслянистый остаток затирают ацетоном, фильтруют и кристаллизуют из 2-пропанола.

#### СПИСОК ЛИТЕРАТУРЫ

- А. М. Демченко, В. А. Чумаков, К. Г. Назаренко, А. Н. Красовский, В. В. Пироженко, М. О. Лозинский, XTC, 644 (1995).
- А. М. Демченко, В. А. Чумаков, А. Н. Красовский, Е. Б. Русанов, А. Н. Чернега, М. О. Лозинский, ЖОХ, 67, 1886 (1997).
- 3. А. М. Демченко, Докл. НАН Украины, 4, 144, (2000).
- 4. А. М. Демченко, В. А. Чумаков, А. Н. Красовский, В. В. Пироженко, М. О. Лозинский, *XTC*, 829 (1997).
- 5. Н. С. Зефиров, В. А. Палюлин, ДАН, **252**, 111 (1980).
- G. M. Sheldrick, SHELXS-86. Program for the Solution of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1986.
- 7. G. M. Sheldrick, *SHELXL-93*. Program for the Refinement of Crystal Structures, Univ. of Göttingen, Göttingen, Germany, 1993.
- 8. D. R. Shridhar, M. Jogibhukta, P. P. Joshi, P. Gopal Reddy, Ind. J. Chem., 20B, 132 (1981).

Черниговский педагогический университет им. Т. Г. Шевченко, Чернигов 14013, Украина Поступило в редакцию 13.02.2001

<sup>а</sup>Черниговский технологический университет, Чернигов 14027, Украина

<sup>6</sup>Институт органической химии НАН Украины, Киев 02094 e-mail: demch@cn.relc.com