А. А. Боголюбов, Н. Б. Чернышева, В. В. Нестеров^а, М. Ю. Антипин^а, В. В. Семенов

СТРУКТУРА ПРОДУКТОВ РЕАКЦИИ 4-МЕТИЛЕН-1,3-ДИОКСОЛАН-2-ОНОВ С ГИДРАЗИНАМИ

Методом РСА доказано строение одного из двух продуктов реакции бензилгидразина с 4,4-диметил-5-метилен-1,3-диоксолан-2-оном и единственного продукта из фенилгидразина с тем же диоксоланоном; оба вещества являются производными 3-амино-4-гидроксиоксазолидин-2-она.

Ключевые слова: 3-амино-4-гидроксиоксазолидин-2-оны, гидразины, 5-гидрокси-1,3,4-оксадиазин-2-оны, 4-метилен-1,3-диоксолан-2-оны, РСА.

Реакция 4-метилен-1,3-диоксолан-2-онов с гидразинами была рассмотрена нами ранее [1]. Однако вызывало некоторые сомнения: являются ли продукты реакции производными оксазолидин-2-она **3** или 1,2,3-оксадиазин-2-она **A**. Ни данные спектра ЯМР ¹Н, ни данные комбинации ИК, ЯМР ¹Н и масс-спектрометрии не дают однозначного ответа. Этот вопрос был решен методом PCA*. В качестве примера были взяты вещества **3а** и **3b** [1]. Оказалось, что как фенилпроизводное **3а** (рис. 1, табл. 1 и 2), так и бензилпроизводное **3b** – суть пятичленные оксазолидин-2-оны.

Пятичленный гетероцикл O(1)–C(2)–N(3)–C(4)–C(5) находится в конформации конверта, отклонение атома C(4) от плоскости N(3)–C(2)–O(1)–C(5) (плоскость выполняется с точностью ± 0.003 Å) составляет –0.555 Å, а двугранный угол между рассматриваемой плоскостью и плоскостью, проведенной через атомы N(3)–C(4)–C(5) равен 34.1°. Двугранный угол C(10)...C(15) между плоской частью пятичленного гетероцикла и фенильным заместителем составляет 89.9°, а торсионные углы C(2)–N(3)–N(9)–C(10) и N(3)–N(9)–C(10)–C(11) равны –76.2 и –29.1°, соответственно, что свидетельствует о значительном развороте данных фрагментов молекулы друг относительно друга. Обнаружено удлинение валентной связи C(4)–C(5) до 1.552(5) Å, что, вероятно, связано с наличием у этих атомов заместителей, между которыми наблюдаются стерические взаимодействия. Согласно данным [3, 4], в родственных соединениях при отсутствии стерических

^{*} См. также наше сообщение [2].

Рис. 1. Строение оксазолидинона За

Рис. 2. Упаковка молекул в кристалле оксазолидинона **За**, проекция *ab*, штриховые линии – межмолекулярные водородные связи О–Н...Н

Таблица 1

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
O(1)–C(2)	1.334(4)	C(5)–C(8)	1.500(7)	N(9)-C(10)	1.421(5)
O(1)–C(5)	1.492(5)	C(5)–C(7)	1.515(6)	C(4)–C(6)	1.494(6)
O(2)–C(2)	1.206(4)	C(10)–C(11)	1.374(5)	C(11)–C(12)	1.384(6)
O(3)–C(4)	1.395(5)	C(10)–C(15)	1.398(5)	C(12)–C(13)	1.384(6)
N(3)–C(2)	1.367(5)	N(3)–N(9)	1.392(4)	C(13)–C(14)	1.360(7)
C(4)–C(5)	1.552(5)	N(3)–C(4)	1.459(4)	C(14)–C(15)	1.384(6)

Длины связей в оксазолидиноне За

факторов длина подобной валентной связи не превышает 1.536 Å. Остальные геометрические параметры (длины связей d и валентные углы ω) в исследованной молекуле обычны и имеют стандартные значения [5]. В кристалле наблюдается довольно прочная межмолекулярная водородная связь O(3)–H(3O)...O(2) (½ + x; 1½ –y; z) с параметрами: O(3)...O(2) 2.706(4), O(3)–H(3O) 0.90(4), H(3O)...O(2) 1.84(4) Å, угол O(3)–H(3O)...O(2) 138(3)°, которая объединяет молекулы в бесконечные цепочки вдоль оси a (рис. 2). Следует отметить, что атом водорода при N(9) (рис. 1) не образует водородных связей и сокращенных внутри- и межмолекулярных невалентных контактов. Координаты и изотропные (для неводородных атомов – эквивалентные) температурные параметры атомов приведены в табл. 3.

В молекуле оксазолидинона **3b** (рис. 3, табл. 4 и 5) пятичленный гетероцикл O(1)–C(2)–N(3)–C(4)–C(5) находится в конформации *полукресла*, отклонения атомов C(4) и C(5) от плоскости O(1)–C(2)–N(3) составляют 0.276 и –0.203 Å, соответственно, в то время как в молекуле фенилпроизводного подобный гетероцикл находится в конформации *конверта*. Двугранный угол C(11)...C(16) между плоской частью пятичленного гетероцикла и плоскостью фенильного заместителя равен 62.2°, а торсионные углы C(2)–N(3)–N(9)–C(10) – 68.1°, N(3)–N(9)–C(10)–C(11)–62.6°, N(9)–C(10)–C(11)–C(12) – 78.8°, что указывает на взаимную скрученность данных фрагментов молекулы. Как и в молекуле фенилпроизводного **3а**, в исследованной структуре наблюдается удлинение валентной связи C(4)–C(5) до 1.545(5) Å, что связано с наличием у этих атомов заместителей, между которыми наблюдаются стерические взаимодействия. Остальные геометрические параметры (длины связей *d* и валентные углы ω) в исследованной молекуле имеют стандартные значения [5].

Таблица 2

Угол	ω, град.	Угол	ω, град.	Угол	ω, град.
C(2)-O(1)-C(5)	108.6(3)	O(1)-C(5)-C(4)	101.9(3)	N(3)-C(4)-C(5)	97.5(3)
C(2)-N(3)-N(9)	121.4(3)	C(8)–C(5)–C(4)	114.4(4)	C(6)-C(4)-C(5)	116.2(4)
C(2)–N(3)–C(4)	109.7(3)	C(7)–C(5)–C(4)	114.2(4)	C(11)-C(10)-N(9)	121.3(3)
N(9)-N(3)-C(4)	120.4(3)	C(11)-C(10)-C(15)	120.0(3)	C(15)-C(10)-N(9)	118.7(3)
N(3)-N(9)-C(10)	115.2(3)	O(1)–C(2)–N(3)	109.3(3)	C(10)-C(11)-C(12)	119.9(3)
O(2)–C(2)–O(1)	124.2(3)	O(3)–C(4)–N(3)	105.4(3)	C(11)-C(12)-C(13)	119.9(4)
O(2)-C(2)-N(3)	126.4(3)	O(3)–C(4)–C(6)	112.7(3)	C(14)-C(13)-C(12)	120.3(4)
O(1)–C(5)–C(8)	106.3(3)	N(3)-C(4)-C(6)	112.9(3)	C(13)-C(14)-C(15)	120.5(4)
O(1)-C(5)-C(7)	107.1(3)	O(3)–C(4)–C(5)	110.7(3)	C(14)-C(15)-C(10)	119.3(4)
C(8)–C(5)–C(7)	111.9(4)				

Углы в оксазолилиноне За

1222

Таблица З

Атом	x	у	Z	U
O(1)	9154(2)	8244(1)	2225(5)	34(1)
O(2)	8179(2)	7191(2)	1016(6)	45(1)
O(3)	11121(2)	7449(2)	1044(6)	35(1)
N(3)	9703(2)	7009(2)	3067(6)	30(1)
N(9)	9756(2)	6169(2)	2817(7)	34(1)
C(2)	8944(3)	7454(2)	1979(7)	30(1)
C(4)	10655(3)	7491(2)	3253(7)	29(1)
C(5)	10130(3)	8330(2)	3626(7)	35(1)
C(6)	11359(3)	7207(3)	5173(8)	38(1)
C(7)	10731(4)	9037(3)	2594(9)	49(1)
C(8)	9795(4)	8493(3)	6105(9)	49(1)
C(10)	9011(2)	5723(2)	4140(7)	28(1)
C(11)	8626(3)	6016(2)	6226(7)	31(1)
C(12)	7935(3)	5552(2)	7521(8)	36(1)
C(13)	7624(3)	4798(2)	6702(9)	40(1)
C(14)	8012(3)	4503(2)	4650(8)	37(1)
C(15)	8711(3)	4955(2)	3342(8)	33(1)
H(3O)	11803(35)	7517(22)	1367(75)	28(10)
H(9N)	9757(31)	6032(24)	1252(89)	35(11)
H(61)	11645(39)	6729(32)	4430(106)	63(15)
H(62)	11850(43)	7599(29)	5464(100)	58(15)
H(63)	11029(27)	7156(21)	6766(72)	21(9)
H(71)	11415(37)	9091(28)	3523(99)	57(14)
H(72)	10437(42)	9525(39)	3095(131)	89(19)
H(73)	10901(37)	8912(28)	1049(107)	51(14)
H(81)	9300(47)	8928(36)	6124(112)	79(17)
H(82)	9430(33)	8124(29)	6935(89)	41(12)
H(83)	10401(33)	8600(23)	6956(78)	34(11)
H(11)	8794(29)	6551(26)	6700(77)	39(11)
H(12)	7676(28)	5746(21)	8930(72)	24(10)
H(13)	7247(34)	4574(28)	7418(93)	44(14)
H(14)	7818(32)	3948(27)	4072(88)	50(13)
H(15)	8953(26)	4786(22)	1832(77)	24(9)

Координаты (×10⁴) и изотропные (для неводородных атомов – эквивалентные) температурные параметры атомов в оксазолидиноне За

Длины связей в оксазолидиноне 3b

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
O(1)–C(2)	1.352(4)	N(3)–N(9)	1.402(4)
O(1)–C(5)	1.483(4)	N(3)–C(4)	1.475(4)
O(2)–C(2)	1.220(4)	N(9)-C(10)	1.479(5)
O(3)–C(4)	1.421(4)	C(4)–C(8)	1.506(5)
N(3)–C(2)	1.336(5)	C(4)–C(5)	1.545(5)
C(5)–C(7)	1.508(5)	C(12)-C(13)	1.397(6)
C(5)–C(6)	1.538(5)	C(13)-C(14)	1.355(6)
C(10)-C(11)	1.517(5)	C(14)-C(15)	1.373(7)
C(11)-C(16)	1.375(5)	C(15)-C(16)	1.396(6)
C(11)–C(12)	1.389(6)		

Таблица 4

Рис. 3. Строение оксазолидинона 3b

Рис. 4. Упаковка молекул в кристалле оксазолидинона **3b**, проекция *bc*, штриховые линии – межмолекулярные водородные связи О-Н...Н

В кристалле соединения **3b** атом водорода гидроксильной группы участвует в образовании межмолекулярной водородной связи O(3)–H(3O)...O(2) (-*x*, 1-*y*, 1-*z*) [O(3)...O(2) 2.799(2), O(3)–H(3O) 0.99(2), H(3O)...O(2) 1.82(2) Å, угол O(3)–H(3O)...O(2) 166(2)°]. Связи Н объединяют молекулы в центросимметричные димеры (рис. 4). Следует отметить, что атом водорода при N(9) (рис. 3) водородных связей и сокращенных внутри- и межмолекулярных невалентных контактов не образует (табл. 6). 1224

Таблица 5

Углы в оксазолидиноне 3b

Угол	ω, град.	Угол	ω, град.	Угол	ω, град.
C(2)-O(1)-C(5)	108.0 (3)	O(1)-C(5)-C(4)	103.4 (3)	O(3)–C(4)–C(5)	114.0 (3)
C(2)-N(3)-N(9)	124.9 (3)	C(7)–C(5)–C(4)	114.6 (3)	N(3)-C(4)-C(5)	97.9 (3)
C(2)-N(3)-C(4)	112.5 (3)	C(6)-C(5)-C(4)	113.5 (3)	C(8)–C(4)–C(5)	116.5 (3)
N(9)-N(3)-C(4)	119.5 (3)	N(9)-C(10)-C(11)	110.4 (3)	O(1)-C(5)-C(7)	106.5 (3)
N(3)-N(9)-C(10)	112.7 (3)	C(16)-C(11)-C(12)	119.3 (4)	C(12)-C(11)-C(10)	120.0 (4)
O(2)-C(2)-N(3)	127.6 (4)	C(16)-C(11)-C(10)	120.7 (4)	C(11)-C(12)-C(13)	120.1 (4)
O(2)–C(2)–O(1)	122.5 (4)	O(3)-C(4)-N(3)	110.0 (3)	C(14)-C(13)-C(12)	119.7 (5)
N(3)-C(2)-O(1)	109.9 (3)	O(3)–C(4)–C(8)	105.8 (3)	C(13)-C(14)-C(15)	121.3 (5)
O(1)-C(5)-C(6)	106.6 (3)	N(3)-C(4)-C(8)	112.5 (3)	C(14)-C(15)-C(16)	119.4 (5)
C(7)–C(5)–C(6)	111.4 (3)			C(11)-C(16)-C(15)	120.3 (4)

Таблица б

Координаты (×10⁴) и изотропные (для неводородных атомов – эквивалентные) температурные параметры атомов в оксазолидиноне 3b

Атом	x	У	Z	U
O(1)	608(4)	6090(2)	4072(2)	37(1)
O(2)	49(4)	4239(2)	4003(2)	41(1)
O(3)	-3076(4)	6824(2)	5051(2)	33(1)
N(3)	-2477(4)	5513(2)	3978(2)	27(1)
N(9)	-4103(5)	4796(3)	4022(2)	33(1)
C(2)	-588(6)	5189(4)	4014(2)	31(1)
C(4)	-2706(5)	6702(3)	4184(2)	28(1)
C(5)	-634(5)	7098(3)	3947(2)	30(1)
C(6)	252(8)	7994(4)	4542(3)	43(1)
C(7)	-485(7)	7430(4)	3039(3)	39(1)
C(8)	-4442(7)	7228(3)	3713(3)	35(1)
C(10)	-4356(7)	4068(3)	3276(2)	39(1)
C(11)	-4763(6)	4760(3)	2490(2)	32(1)
C(12)	-6640(6)	5187(4)	2314(3)	40(1)
C(13)	-7012(7)	5832(4)	1594(3)	49(1)
C(14)	-5538(8)	6026(4)	1065(3)	54(1)
C(15)	-3667(8)	5619(4)	1229(3)	49(1)
C(16)	-3288(7)	4968(3)	1945(3)	40(1)
H(3O)	-1889(70)	6528(40)	5363(32)	82(17)
H(9N)	-3874(50)	4466(29)	4474(24)	26(11)
H(61)	235(56)	7751(32)	5077(26)	43(12)
H(62)	1596(53)	8160(28)	4414(21)	28(10)
H(63)	-845(79)	8614(46)	4555(34)	95(18)
H(71)	-1145(60)	6856(37)	2641(28)	61(13)
H(72)	979(52)	7480(26)	2925(21)	27(10)
H(73)	-1270(56)	8124(36)	2875(25)	53(12)
H(81)	-5799(52)	6943(27)	3920(21)	29(9)
H(82)	-4277(49)	7171(28)	3094(25)	33(10)
H(83)	-4482(57)	7963(37)	3857(27)	55(13)
H(101)	-5749(55)	3592(30)	3380(24)	46(11)
H(102)	-3156(55)	3653(30)	3186(23)	42(12)
H(12)	-7603(54)	5008(30)	2674(23)	37(11)
H(13)	-8409(55)	6029(29)	1381(25)	40(11)
H(14)	-5652(59)	6402(32)	628(28)	43(13)
H(15)	-2614(53)	5764(29)	895(24)	36(11)
H(16)	-1976(60)	4720(33)	2120(26)	49(12)

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все расчеты проводили на ЭВМ IBM PC/AT-586 по программам SHELXTL PLUS и SHELXL-93 [6].

Бесцветные кристаллы фенилпроизводного **3a** получали из ацетонитрила медленной кристаллизацией в течение трех дней. Кристаллы ($C_{12}H_{16}N_2O_3$) ромбические, при -80 °C: a = 12.830(6), b = 16.461(10), c = 5.697(4) Å, V = 1203(1) Å³, $d_{\text{выч}} = 1.304$ г/см³, Z = 4, пространственная группа *Pna2*₁. Параметры элементарной ячейки и интенсивности 1459 отражений измеряли на автоматическом четырехкружном дифрактометре Syntex P2(1) (λMoK_{α}), графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta_{\text{max}} = 27^{\circ}$). Структуру расшифровывали прямым методом и уточняли полноматричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода локализовали объективно в разностном Фурье-синтезе и уточняли в изотропном приближении. Окончательные значения факторов расходимости $wR_2 = 0.1408$ по 1407 независимым отражениям ($R_1 = 0.049$ по 980 независимым отражениям с $I > 2\sigma(I)$).

Бесцветные кристаллы бензилпроизводного **3b** получали из ацетонитрила медленной кристаллизацией в течение трех дней. Кристаллы ($C_{13}H_{18}N_2O_3$) моноклинные, при -60 °C: a = 6.775(4), b = 12.013(5), c = 15.923(8) Å, $\beta = 92.53(4)^\circ$, V = 1295(1) Å³, $d_{\rm выч} = 1.284$ г/см³, Z = 4, пространственная группа $P2_1/c$. Параметры элементарной ячейки и интенсивности 2892 отражений измерены на автоматическом четырехкружном дифрактометре Syntex P2(1) (λ Mo K_{α}), графитовый монохроматор, $\theta/2\theta$ -сканирование, $\theta_{\rm max} = 27^\circ$). Структуру расшифровывали прямым методом и уточняли полноматричным МНК в анизотропном приближении для неводородных атомов. Атомы водорода локализовали объективно в разностном Фурье-синтезе и уточняли в изотропном приближении. Окончательные значения факторов расходимости $wR_2 = 0.156$ по 2573 независимым отражениям ($R_1 = 0.076$ по 1126 независимым отражениям с $I > 2\sigma(I)$).

Работа выполнена при финансовой поддержке РФФИ, гранты № 97-03-33783, 96-15-97367, 96-07-89187.

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. Б. Чернышева, А. А. Боголюбов, В. В. Семенов, *XTC*, 1212 (2003).
- В. В. Нестеров, М. Ю. Антипин, Н. Б. Чернышева, А. А. Боголюбов, В. В. Семенов, Тезисы II Национальной кристаллохимической конференции, Черноголовка, 2000, 59.
- 3. I. Goldberg, J. Am. Chem. Soc., 104, 7077 (1982).
- 4. D. A. Claremon, P. K. Lumma, B. T. Phillips, J. Am. Chem. Soc., 108, 8265 (1986).
- F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2, No. 12, S1 (1987).
- 6. G. M. Sheldrick, *SHELXTL Version 5, Software Reference Manual*, Siemens Industrial Automation, Madison, WI, 1994.

Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913 e-mail: vs@cacr.ioc.ac.ru Поступило в редакцию 19.01.2001

^аИнститут элементоорганических соединений им. А. Н. Несмеянова РАН, Москва 117813 e-mail: mishan@xray.ineos.ac.ru