С. А. Ямашкин, Г. А. Романова, И. С. Романова, М. А. Юровская^а

СИНТЕЗ ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫХ ПИРРОЛО[3,2-*h*]ХИНОЛИНОВ ИЗ 2,3-ДИМЕТИЛ-, 1,2,3-ТРИМЕТИЛ-7-АМИНОИНДОЛОВ

Разработаны способы получения некоторых функционально замещенных пирроло[3,2-*h*]хинолинов на основе взаимодействия 2,3-диметил- и 1,2,3-триметил-7-аминоиндолов с ацетоуксусным, трифторацетоуксусным и этоксиметиленмалоновым эфирами.

Ключевые слова: 7-амино-2,3-диметилиндол, 7-амино-1,2,3-триметилиндол, ацетоуксусный эфир, трифторацетоуксусный эфир, этоксиметиленмалоновый эфир, функционально замещенные пирроло[3,2-*h*]хинолины.

Ранее сообщалось, что енаминокетоны, полученные из 7-аминоиндолов и β-дикетонов в условиях кислотной циклизации легко превращаются в соответствующие пирроло[3,2-*h*]хинолины [1, 2]. При этом альтернативного замыкания цикла на пиррольный фрагмент с образованием трициклических структур с узловым атомом азота – 1,7-диазепиноиндолов не наблюдалось. Продолжая исследования в этом направлении, мы изучили поведение 7-амино-2,3-диметил- (1) и 7-амино-1,2,3-триметилиндолов (2) в реакциях с ацетоуксусным, трифторацетоуксусным и этоксиметиленмалоновым эфирами с целью получения функционально замещенных пирроло[3,2-*h*]хинолинов, как потенциальных биологически активных соединений.

Кипячение в абсолютном бензоле аминов 1 и 2 с ацетоуксусным эфиром в присутствии каталитических количеств ледяной уксусной кислоты приводит к образованию смесей Z- и E-изомеров соответствующих индолиламинокротонатов 3 и 4.

Согласно данным спектров ЯМР ¹Н, в растворе ДМСО- d_6 соотношение *Z*-, *E*-форм аминокротонатов **3**, **4** составляет 1.5 : 1. В спектрах *Z*-изомеров протоны этоксильной группы, винильного протона, протона группы N–H и метильной группы енаминного фрагмента смещены в область слабых полей на 0.2, 0.3, 2.0 и 0.4 м. д., соответственно, по сравнению с сигналами аналогичных протонов *E*-изомеров (табл. 1). Различно расположенная в пространстве енаминокарбонильная цепочка оказывает влияние и на химические сдвиги протонов бензольного кольца. Так сигналы протонов 5-H для смеси изомеров проявляются в виде двух триплетов, протоны 4- и 6-H также неравноценны для изомерных пар и дают по два дублета в ароматической части спектра.

В менее полярном растворителе (CDCl₃) соединение **4** находится полностью в *Z*-форме. Из-за плохой растворимости в дейтерохлороформе поведение енамина **3** не исследовалось.

В масс-спектрах енаминов **3**, **4** наблюдается интенсивный пик иона $[M-46]^+$, соответствующий потере C_2H_5OH с циклизацией в пирролохинолоновые структуры. Дальнейшая фрагментация иона $[M-46]^+$ типична для распада пирролохинолонов. Спектральные данные для индолил-7-аминокротонатов **3** и **4** (включая и УФ спектры) согласуются с таковыми для других енаминокарбонильных соединений индольного ряда [3] и дополняют их.

В отличие от ацетоуксусного, трифторацетоуксусный эфир в тех же условиях реагирует с аминоиндолами 1 и 2 с участием этоксикарбонильной группы.

При этом в случае амина 1 выделено соединение, которому, согласно спектральным данным, приписано строение соединения 5. В ИК спектре этого соединения наблюдается две полосы валентных колебаний амидной карбонильной группы при 1682 и 1666 см⁻¹, что обусловлено возможностью существования двух конформеров с различным расположением трифторметильной и гидроксильной групп. В спектре ЯМР ¹Н проявляются сигналы протонов метиленовой, гидроксильной и двух групп N–H. Об образовании циклической структуры свидетельствует наличие в спектре AB-системы бензольных протонов 4- и 5-Н (два дублета с J = 8 Гц). Окончательное подтверждение предложенной структуры соединения 5 получено на основе эксперимента по двумерной спектроскопии ЯМР ¹Н–¹Н (NOESY). Действительно, в двумерном спектре наблюдается кросс-пик, обусловленный взаимодействием сближенных в пространстве протонов 5-Н и OH. Масс-спектр характеризуется пиком молекулярного иона, а

также наличием фрагментных ионов $[M-18]^+$ и $[M-69]^+$, последний из которых наиболее интенсивный. Образование иона $[M-18]^+$ свидетельствует, по-видимому, об ароматизации молекулы с потерей молекулы воды и превращении в пирролохинолоновую структуру. Пик $[M-69]^+$ соответствует потере радикала CF₃, что характерно для такого типа соединений. Соединению **5**, видимо, предшествует образование нециклического амида, который за счет высокой реакционной способности трифторкарбонильной группы легко электрофильно циклизуется по положению 6 индола. Температура реакции (~78 °C) и следы уксусной кислоты, вероятно, недостаточны для ароматизации за счет отщепления воды. Согласно данным TCX и спектру ЯМР ¹Н, для аминоиндола **2** в реакции с трифторацетоуксусным эфиром в реакционной смеси обнаруживается смесь циклического и нециклического амидов **6**. В свободном виде эти соединения не выделялись.

С этоксиметиленмалоновым эфиром аминоиндолы 1 и 2 при нагревании в спирте превращаются в соответствующие индолиламинометиленмалоновые эфиры 7 и 8.

В спектрах ЯМР ¹Н енаминов 7, **8** обнаруживаются сигналы неравноценных этоксикарбонильных групп, одна из которых взаимодействует с протоном группы N–H, в результате чего сигналы метиленовых водородов сдвинуты на 0.11, а метильных – на 0.07 м. д. в более слабое поле.

Во всех описанных превращениях амин 1 более реакционноспособен, чем амин 2: реакции с соединением 2 требуют больше времени по сравнению с таковыми для соединения 1. По-видимому, группа N–CH₃ в аминоиндоле 2 стерически затрудняет подход реагента к 7-аминогруппе. Данный факт отмечался и ранее в реакциях этих аминов с β -дикетонами [1].

В условиях высокотемпературной циклизации (кипячение в дифениле) енаминокротонаты **3** и **4** превращаются в соответствующие пирроло-[3,2-*h*]хинолоны **9**, **10**.

Образование возможной 1,7-диазепиноиндольной структуры даже в случае соединения **3** не происходит, т. е. альтернативное замыкание цикла по пиррольному азоту и в термических условиях не реализуется. В спектре ЯМР ¹Н пирроло[3,2-*h*]хинолонов **9**, **10** проявляются сигналы протонов трех метильных групп, а для соединения **10** также сигнал протонов группы N–CH₃, синглет протона 7-H, дублетные сигналы протонов бензольного кольца с J = 8 Гц, синглет протона 9-H, а для пирролохинолона 9 слабопольный сигнал протона 1-H. В масс-спектрах пирролохинолонов **9**, **10** самым интенсивным является пик иона [M–1]⁺, кроме этого имеются пики фрагментарных ионов [M–15]⁺, [M–H–28]⁺, что характерно для массспектрального распада подобных γ -хинолоновых структур. УФ спектры соединений **9** и **10** практически идентичны: содержат три максимума поглощения, что также согласуется с литературными данными для такого типа пирролохинолонов.

Гетероароматизация енаминометиленмалонатов обычно протекает при нагревании в даутерме (250 °C), т. е. в более мягких условиях, чем енаминокротонатов. Действительно, енамин 7 в этих условиях в течение 30 мин с хорошим выходом превращается в соответствующий пирролохинолин 11.

В спектре ЯМР ¹Н соединения **11** наблюдаются синглетные сигналы протонов метильных групп, сигналы протонов этоксигруппы, два дублета 4- и 5-Н с J = 8 Гц, синглеты протонов 8- и 1-Н. В масс-спектре соединения **11** пик иона [M–46]⁺ (элиминирование молекулы этанола) самый интенсивный, что характерно для ароматических структур, имеющих *орто*-расположенные гидроксильную и этоксикарбонильную группы.

Неожиданным оказалось то, что N-метилированный аналог соединения 7 – енаминоиндол 8 – не только в даутерме, но и при длительном нагревании в дифениле не превращается в соответствующий пирролохинолин. Последний обнаруживается в осмолившейся реакционной массе лишь хроматографически в следовых количествах. Аналогично не удается получить продукта циклизации из N-метилированного аминокротоната 4 в условиях реакции Вильсмайера, в то время как соединение 3 дает соответствующий пирролохинолин 12.

Спектр ЯМР ¹Н пирролохинолина **12** содержит три синглета протонов метильных групп, сигналы протонов этоксигруппы, два дублета с J = 8 Гц ароматических протонов 4- и 5-Н, синглетные сигналы протонов 6- и 1-Н. Пик молекулярного иона в масс-спектре пирроло[3,2-*h*]хинолина **12** самый интенсивный, что говорит об устойчивости молекулы к электронному удару. Ион [М–73]⁺ обусловлен отщеплением радикала C₂H₅OCO и подтверждает наличие в молекуле этоксикарбонильной группы. УФ спектр соединения **12** типичен для пирролохинолинов: содержит три полосы поглощения.

Таким образом, образование пирроло[3,2-h]хинолиновой системы, в отличие от такой же пирролохинолоновой, в случае N-метилированных по пиррольному азоту енаминокарбонильных соединений затруднено, вероятно, из-за стерических факторов. По-видимому, пиридоновое кольцо, в отличие от пиридинового, способно частично выводиться из плоскости трициклической системы. Это также подтверждается легкостью образования соответствующих циклических амидов трифторацетоуксусной кислоты 5 и 6, полученных из как 2,3-диметил-, так и 1,2,3-триметил-7-аминоиндолов, которые ароматизуются затем в трифторметилпирроло-[3,2-h]хинолоны 13, 14 при нагревании выше 100 °C в присутствии трифторуксусной кислоты.

13
$$R = H$$
, 14 $R = Me$

В спектрах ЯМР ¹Н полученных трифторметилпирролохинолонов имеются два синглета (соединение **13**) и три синглета метильных групп (соединение **14**), синглетный сигнал протона 7-Н, два дублета протонов 4-и 5-H с J = 8 Гц, синглеты протонов 9- и 1-Н (пирролохинолон **13**). В массспектрах наиболее интенсивными являются пики молекулярных ионов, $[M-H]^+$, $[M-Me]^+$, $[M-CO]^+$, что характерно для всех α - и γ -пирролохинолоновых структур. УФ спектры соединений **13** и **14** практически одинаковы и характеризуются тремя полосами поглощения.

Подтверждением выгодности структур типа **13**, **14** является то, что из этих угловых структур, хотя и с бо́льшим трудом, чем для линейных, удается получить пирроло[3,2-*h*]хинолон **15** с *пери*-метильными группами у обоих атомов азота. Это осуществляется метилированием диметилсульфатом соединения **13** или **14**.

Таблица 1

Спектральные параметры соединений 3-15

Соеди-	Crowr $\mathbf{M}\mathbf{D}^{1}\mathbf{H}$ ($\mathbf{I}\mathbf{M}\mathbf{C}\mathbf{O}$ d) S \mathbf{x} \mathbf{x} ($\mathbf{L}\mathbf{F}\mathbf{x}$)	Масс-спектр,	УФ спектр	
нение	Спектр лип п (диссо-а6), о, м. д. (э, г ц)	<i>m/z</i> (<i>I</i> _{отн} , %)	λ_{max}	lg
1	2	3	4	
3- <i>E</i>	1.04 (3H, т, <i>J</i> = 7, OCH ₂ <u>CH₃</u>); 2.16 (3H, с, 3-CH ₃); 2.18 (3H, с, C=C-CH ₃); 2.42 (3H, с, 2-CH ₃); 3.85 (2H, к, <i>J</i> = 7, O <u>CH₂</u> CH ₃); 4.38 (1H, с, Н вин.); 6.78 (1H, д, <i>J</i> = 8, 4-H); 6.94 (1H, т, <i>J</i> = 8, 5-H); 7.25 (1H, д, <i>J</i> = 8, 6-H); 8.18 (1H, с, N–Н амин.); 10.35 (1H, с, N–Н инд.)	272 (M ⁺) (100) 238 (20) 226 (80) 211 (10) 198 (65) 183 (35)	231 286 298	4. 4. 4.
3 -Z	1.22 (3H, т, $J = 7$, OCH ₂ <u>CH₃</u>); 1.79 (3H, с, C=C-CH ₃); 2.16 (3H, с, 3-CH ₃); 2.31 (3H, с, 2-CH ₃); 4.07 (2H, к, $J = 7$, O <u>CH₂</u> CH ₃); 4.72 (1H, с, H вин.); 6.78 (1H, д, $J = 8$, 4-H); 6.93 (1H, т, $J = 8$, 5-H); 7.26 (1H, д, $J = 8$, 6-H); 10.02 (1H, с, N-H амин.); 10.62 (3H, с, N-H инд.)	144 (15)		
4- <i>E</i>	1.03 (3H, т, <i>J</i> = 7, OCH ₂ <u>CH</u> ₃); 2.18 (3H, с, 3-CH ₃); 2.28 (3H, с, C=CCH ₃); 2.40 (3H, с, 2-CH ₃); 3.69 (3H, с, N-CH ₃); 3.83 (2H, к, <i>J</i> = 7, O <u>CH</u> ₂ CH ₃); 4.35 (1H, с, H вин); 6.82 (1H, д, <i>J</i> = 8, 4-H); 6.98 (1H, т, <i>J</i> = 8, 5-H); 7.35 (1H, д, <i>J</i> = 8, 6-H); 8.51 (1H, с, N-H амин.)	286 (M ⁺) (87) 240 (75) 225 (70) 212 (100) 197 (60) 184 (36)	235 286 299	3. 4. 4.
4- <i>Z</i>	1.20 (3H, т, <i>J</i> = 7, OCH ₂ <u>CH₃</u>); 1.62 (3H, с, C=C-CH ₃); 2.18 (3H, с, 3-CH ₃); 2.28 (3H, с, 2-CH ₃); 3.69 (3H, с, N-CH ₃); 4.06 (2H, к, <i>J</i> = 7, O <u>CH₂</u> CH ₃); 4.71 (1H, с, H вин.); 6.74 (1H, д, <i>J</i> = 8, 4-H); 6.96 (1H, т, <i>J</i> = 8, 5-H); 7.35 (1H, д, <i>J</i> = 8, 6-H); 10.4 (1H, с, N-H амин.)	158 (26) 115 (25) 92 (20)		
4- <i>Z</i> *	1.31 (3H, т, <i>J</i> = 7, OCH ₂ <u>CH₃</u>); 1.78 (3H, с, C=C-CH ₃); 2.25 (3H, с, 3-CH ₃); 2.34 (3H, с, 2-CH ₃); 3.75 (3H, с, N-CH ₃); 4.18 (2H, к, <i>J</i> = 7, O <u>CH₂</u> CH ₃); 4.75 (1H, с, Н вин.); 6.85 (1H, д, <i>J</i> = 8, 4-H); 7.01 (1H, т, <i>J</i> = 8, 5-H); 7.40 (3H, д, <i>J</i> = 8, 6-H); 10.18 (1H, с, N-H амин.)			
5	2.16 (3H, c, 3-CH ₃); 2.35 (3H, c, 2-CH ₃); 2.90 (2H, c, CH ₂); 6.32 (1H, c, O-H); 7.02 (1H, д, <i>J</i> = 8, 4-H); 7.20 (1H, д, <i>J</i> = 8, 5-H); 9.81 (1H, c, N-H амид.); 10.11 (1H, c, N-H инд.)	298 (M ⁺) (47) 280 (11) 229 (100) 187 (16)	213 240 308	4.3 4.4 3.8
7	1.23 (3H, т, $J = 7$, OCH ₂ <u>CH₃</u>); 1.30 (3H, т, $J = 7$, OCH ₂ <u>CH₃</u>); 2.16 (3H, с, 3-CH ₃); 2.34 (3H, с, 2-CH ₃); 4.14 (2H, к, $J = 7$, O <u>CH₂CH₃</u>); 4.25 (2H, к, $J = 7$, O <u>CH₂CH₃</u>); 6.91 (1H, д, $J = 8$, 4-H); 7.00 (1H, т, $J = 8$, 5-H); 7.26 (1H, д, $J = 8$, 6-H); 8.35 (1H, д, $J = 15$, H вин.); 10.36 (1H, д, $J = 15$, N–H амин.); 11.03 (1H, с, N–H инд.)	330 (M ⁺) (30) 284 (35) 238 (100) 210 (65) 182 (31) 169 (20) 143 (20) 115 (20)	249 286 339	3. 4. 4.

Окончание таблицы 1

1	2	3	4	5
8	1.23 (3H, т, $J = 7$, OCH ₂ <u>CH₃</u>); 1.27 (3H, т, $J = 7$, OCH ₂ <u>CH₃</u>); 2.18 (3H, с, 3-CH ₃); 2.31 (3H, с, 2-CH ₃); 3.83 (3H, с, N-CH ₃); 4.10 (2H, д. д, $J = 7$, O <u>CH₂</u> CH ₃); 4.21 (2H, к, $J = 7$, O <u>CH₂</u> CH ₃); 6.91 (1H, д, $J = 8$, 4-H); 7.00 (1H, т, $J = 8$, 5-H); 7.34 (1H, д, $J = 8$, 6-H); 8.21 (1H, д, $J = 15$, H вин.); 11.05 (1H, д, $J = 15$, N-H амин.)	$\begin{array}{c} 344 \ (M^+) \ (30) \\ 298 \ (100) \\ 270 \ (10) \\ 252 \ (15) \\ 237 \ (15) \\ 226 \ (20) \\ 197 \ (42) \\ 184 \ (50) \\ 115 \ (30) \end{array}$	233 290 338	4.16 4.13 4.21
9	2.22 (3H, c, 3-CH ₃); 2.40 (3H, c, 2-CH ₃); 2.43 (3H, c, 8-CH ₃); 5.85 (1H, c, 7-H); 7.25 (1H, д, <i>J</i> = 8, 4-H); 7.64 (1H, д, <i>J</i> = 8, 5-H); 10.68 (1H, c, 9-H); 10.74 (1H, c, 1-H)	226 (M ⁺) (82) 225 (100) 211 (12) 183 (10)	217 272 323	4.34 4.75 3.88
10	2.27 (3H, c, 3-CH ₃); 2.38 (3H, c, 2-CH ₃); 2.55 (3H, c, 8-CH ₃); 4.42 (3H, c, 1-CH ₃); 6.65 (1H, c, 7-H); 7.45 (1H, α , $J = 8$, 4-H); 7.64 (1H, α , 5-H); 10.74 (1H, c, 9-H)	240 (M ⁺) (59) 239 (100) 225 (30) 211 (10) 195 (10)	230 274 345	3.89 4.80 4.24
11	1.34 (3H, уш. с, OCH ₂ <u>CH₃</u>); 2.23 (3H, с, 3-CH ₃); 2.43 (3H, с, 2-CH ₃); 4.30 (2H, уш. с, O <u>CH₂</u> CH ₃); 7.43 (1H, д, <i>J</i> = 8, 4-H); 7.77 (1H, д, <i>J</i> = 8, 5-H); 8.64 (1H, с, 8-H); 11.07 (1H, уш. с, 1-H)	284 (M ⁺) (34) 238 (100) 223 (11) 209 (10) 181 (10)	215 289 330	3.80 4.15 3.50
12	1.42 (3H, τ , $J = 7$, OCH ₂ <u>CH₃</u>); 2.28 (3H, c, 3-H); 2.43 (3H, c, 2-CH ₃); 2.94 (3H, c, 8-CH ₃); 4.38 (2H, κ , $J = 7$, O <u>CH₂</u> CH ₃); 7.45 (1H, μ , $J = 8$, 4-H); 7.63 (1H, μ , $J = 8$, 5-H); 8.74 (1H, c, 6-H); 11.76 (1H, c, 1-H)	282 (M ⁺) (100) 281 (30) 254 (20) 253 (50) 237 (15) 209 (12)	238 254 294 382	4.08 4.20 4.54 4.18
13	2.20 (3H, c, 3-CH ₃); 2.40 (3H, c, 2-CH ₃); 6.74 (1H, c, 7-H); 7.28 (1H, д, <i>J</i> = 8, 4-H); 7.37 (1H, д, <i>J</i> = 8, 5-H); 11.00 (1H, c, 9-H); 11.94 (1H, c, 1-H)	280 (M ⁺) (100) 279 (96) 265 (34) 252 (10) 231 (12) 140 (13) 69 (10)	235 278 385	4.23 4.20 3.75
14	2.26 (3H, c, 3-CH ₃); 2.39 (3H, c, 2-CH ₃); 4.38 (3H, c, 1-CH ₃); 7.08 (1H, c, 7-H); 7.44 (1H, д, <i>J</i> = 8, 4-H); 7.59 (1H, д, <i>J</i> = 8, 5-H); 11.40 (1H, c, 9-H)	294 (M ⁺) (100) 293 (90) 279 (50) 69 (10)	237 282 385	4.42 4.48 4.15
15	2.27 (3H, c, 3-CH ₃); 2.40 (3H, c, 2-CH ₃); 4.10 (3H, c, 9-CH ₃); 4.35 (3H, c, 1-CH ₃); 7.21 (1H, c, 7-H); 7.48 (1H, д, <i>J</i> = 8, 4-H); 7.66 (1H, д, <i>J</i> = 8, 5-H)	$\begin{array}{c} 308 \ (\mathrm{M}^{+}) \ (55) \\ 307 \ (54) \\ 293 (40) \\ 280 \ (100) \\ 279 \ (100) \\ 265 \ (35) \\ 250 \ (10) \\ 231 \ (10) \end{array}$	236 282 377	4.30 4.46 4.14

* Снимали в CDCl₃.

Таблица 2

Со- еди-	Брутто-	<u>Найдено, %</u> Вычислено, %			R_{f}	Т. пл., °С (растворитель	Вы- хол
не- ние	формула	С	Н	M^+	(система)*	для кристал- лизации)	%
3	$C_{16}H_{20}N_2O_2$	<u>70.33</u> 70.56	<u>7.51</u> 7.40	<u>272</u> 272	0.65 (A)	113 (бензол–петро- лейный эфир)	86
4	$C_{17}H_{22}N_2O_2$	<u>71.19</u> 71.30	<u>7.52</u> 7.74	<u>286</u> 286	0.74 (Б)	90–91 (гексан)	78
5	$C_{14}H_{13}F_3N_2O_2$	<u>56.32</u> 56.38	<u>4.41</u> 4.39	<u>298</u> 298	0.29 (B)	>300 (толуол)	79
7	$C_{18}H_{22}N_2O_4$	<u>65.39</u> 65.44	<u>6.63</u> 6.71	<u>330</u> 330	0.34 (Б)	175–177 (спирт)	80
8	$C_{19}H_{24}N_2O_4$	<u>66.31</u> 66.26	<u>7.12</u> 7.02	<u>344</u> 344	0.53 (Б)	105–106 (водн. спирт)	63
9	$C_{14}H_{14}N_2O$	<u>74.20</u> 74.31	<u>6.35</u> 6.24	<u>226</u> 226	0.25 (Γ)	293–295 (ДМФА)	76
10	$C_{15}H_{16}N_2O$	<u>74.15</u> 74.97	<u>6.45</u> 6.71	$\frac{240}{240}$	0.63 (Γ)	244–245 (бензол)	75
11	$C_{16}H_{16}N_2O_3$	<u>67.40</u> 67.59	<u>5.81</u> 5.67	$\frac{284}{284}$	0.83 (Γ)	>300 (ДМФА)	85
12	$C_{17}H_{18}N_2O_2$	$\frac{72.42}{72.32}$	$\frac{6.30}{6.43}$	$\frac{282}{282}$	0.78 (B)	152–153 (водн. спирт)	38
13	$C_{14}H_{11}F_{3}N_{2}O$	<u>59.73</u> 60.00	<u>4.12</u> 3.96	$\frac{280}{280}$	0.26 (В) 0.76 (Г)	>300 (ДМФА)	79
14	$C_{15}H_{13}F_{3}N_{2}O$	<u>61.03</u> 61.22	<u>4.68</u> 4.45	<u>294</u> 294	0.40 (B)	234–235 (спирт)	88
15	$C_{16}H_{15}F_3N_2O$	<u>62.10</u> 62.33	<u>4.96</u> 4.90	<u>308</u> 308	0.61 (Д)	152–153 (бензол)	85
							1

Физико-химические характеристики полученных соединений

* Системы бензол-этилацетат, 10:1 (А), 8:1 (Б), 3:2 (В), этилацетат-метанол, 5:1 (Г), бензол-гексан, 1:2 (Д).

Образование пирролохинолоновой структуры оказалось возможным, хотя обнаруживается напряжение из-за близкого расположения групп N–CH₃. Это подтверждает спектр ЯМР ¹Н, где сигналы протонов групп 1- и 9-CH₃ проявляются на 0.5–0.6 м. д. в более слабых полях, по сравнению с положением сигналов протонов таких же групп, не имеющих *пери*-расположения. В остальном спектр ЯМР ¹Н соединения **15** мало отличается от спектров соединений **13**, **14**. Дополнительным подтверждением того, что соединения **13**, **14** подверглись не O-, а N-метилированию, является масс-спектр полученного пирролохинолона **15**, где имеется интенсивный пик иона $[M–28]^+$, как и для всех изученных пирролохинолонов. УФ спектры для соединений **13–15** однотипны, что также подтверждает их одинаковое строение.

Таким образом, нами разработан способ получения функционально замещенных пирроло[3,2-*h*]хинолинов на основе 2,3-диметил- и 1,2,3-триметил-7-аминоиндолов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на приборе Bruker DRX 500 (500 МГц) внутренний стандарт ТМС. ИК спектры зарегистрированы на приборе Untitled Spectrum в таблетках КВг. Масс-спектры получены на масс-спектрометре Finnigan MAT INCOS-50 с прямым вводом образца в ионный источник при энергии ионизации 70 эВ. Электронные спектры зарегистрированы на спектрофотометре Specord в этаноле. Очистку продуктов реакции проводили методом колоночной хроматографии на Al₂O₃ (нейтральная, I и II ст. акт. по Брокману). Контроль за ходом реакции и чистотой полученных соединений осуществляли TCX на пластинках Silufol UV-254.

Физико-химические и спектральные характеристики полученных соединений приведены в табл. 1, 2. Получение исходных аминоиндолов **1**, **2** описано в работе [1].

Этиловый эфир (*E,Z*)-3-(2,3-диметил-1Н-индолил-7)аминобутеновой кислоты (3). Раствор 0.92 г (5.75 ммоль) аминоиндола 1 и 0.615 г (4.73 ммоль) ацетоуксусного эфира в 200 мл абсолютного бензола в присутствии следов ледяной уксусной кислоты нагревают 34 ч (хроматографический контроль) с насадкой Дина–Старка. По окончании реакции бензол отгоняют. Полученный аминокротонат очищают пропусканием нагретого до кипения раствора в бензоле с петролейным эфиром через слой оксида алюминия (1.5–2 см). Выход 1.25 г.

Этиловый эфир (*E*,*Z*)-3-(1,2,3-триметил-1Н-индолил-7)аминобутеновой кислоты (4) получают аналогично из 0.5 г (2.87 ммоль) аминоиндола 2 и 0.4 г (8 ммоль) ацетоуксусного эфира, но нагревание продолжают 38 ч. Очищают пропусканием нагретого до кипения раствора в петролейном эфире через слой оксида алюминия (1.5–2 см). Выход 0.64 г.

6-Гидрокси-2,3-диметил-6-трифторметил-6,7,8,9-тетрагидро-1Н-пирроло[3,2-*h*]**хинолин-8-он (5)** получают аналогично нагреванием 15 ч 0.4 г (2.5 ммоль) аминоиндола 1 и 0.5 г (2.72 ммоль) трифторацетоуксусного эфира. Выход 0.585 г. При определении температуры плавления полученное вещество превращается в пирролохинолон 13.

6-Гидрокси-1,2,3-триметил-6-трифторметил-6,7,8,9-тетрагидро-1Н-пирроло[3,2-*h*]хинолин-8-он и N-(1,2,3-триметил-1Н-индолил-7)амид 4,4,4-трифтор-3-оксобутановой кислоты (6) получают аналогично из 0.45 г (2.59 ммоль) аминоиндола 2 и 0.5 г (2.72 ммоль) трифторацетоуксусного эфира. Нагревание продолжают 20 ч. Смесь веществ очищают пропусканием нагретого до кипения раствора в петролейном эфире через слой (1 см) оксида алюминия. Выход 0.6 г.

Диэтиловый эфир 2-[(2,3-диметил-1Н-индолил-7)аминометилен]малоновой кислоты (7). Смесь 0.7 г (4.38 ммоль) аминоиндола 1 и 1 г (4.63 ммоль) этоксиметиленмалонового эфира в 4 мл спирта кипятят 1 ч. Выпавший после охлаждения осадок отфильтровывают. Выход 1.1 г.

Диэтиловый эфир 2-[(1,2,3-триметил-1Н-индолил-7)аминометилен]малоновой кислоты (8) получают аналогично из 0.6 г (3.45 ммоль) аминоиндола **2** и 0.75 г (3.47 ммоль) этоксиметиленмалонового эфира. Вещество очищают пропусканием нагретого до кипения раствора в петролейном эфире через слой оксида алюминия (1.5–2 см). Выход 0.816 г.

2,3,8-Триметил-6,9-дигидро-1Н-пирроло[3,2-*h*]**хинолин-6-он (9).** В кипящий дифенил вносят 0.44 г (1.62 ммоль) аминокротоната **3**, кипятят 30 мин. Затем охлажденную смесь выливают в петролейный эфир, выпавший осадок отфильтровывают и многократно промывают горячим гексаном от дифенила. Выход 0.28 г.

1,2,3,8-Тетраметил-6,9-дигидро-1Н-пирроло[3,2-*h*]хинолин-6-он (10) получают аналогично из 0.2 г (0.7 ммоль) аминокротоната 4 циклизацией в дифениле. Выход 0.15 г. Вещество очищают пропусканием нагретого до кипения раствора в бензоле через слой оксида алюминия (1.5 см).

Этиловый эфир 6-гидрокси-2,3-диметил-1Н-пирроло[3,2-*h*]хинолин-7-карбоновой кислоты (11). В кипящий даутерм вносят 0.45 г (1.36 ммоль) соединения 7, кипятят 30 мин. Затем остывший раствор выливают в петролейный эфир. Выпавший осадок отфильтровывают и многократно промывают горячим гексаном от даутерма. Выход 0.33 г.

Этиловый эфир 2,3,8-триметил-1Н-пирроло[3,2-*h*]хинолин-7-карбоновой кислоты (12). К раствору 1 г (3.68 ммоль) аминокротоната 3 в 50 мл хлороформа добавляют реактив Вильсмайера, приготовленный из 1 мл POCl₃ и 1 мл ДМФА. Реакционную смесь кипятят 6 ч (хроматографический контроль), охлаждают, разбавляют 200 мл хлороформа и обрабатывают 50 мл 12% водного аммиака. Хлороформный слой отделяют, промывают 3–4 раза водой, сушат сульфатом натрия. Хлороформ отгоняют. Выход 0.4 г. **2,3-Диметил-6-трифторметил-8,9-дигидро-1Н-пирроло[3,2-***h*]**хинолин-8-он (13)** получают кипячением 1.34 г (4.51 ммоль) амида 5 в СF₃СООН в течение 1 ч. Затем реакционную массу выливают в водный аммиак со льдом. Выпавший осадок отфильтровывают и многократно промывают водой. Выход 1 г.

1,2,3-Триметил-6-трифторметил-8,9-дигидро-1Н-пирроло[3,2-*h*]хинолин-8-он (14) получают аналогично нагреванием в CF₃COOH 1.8 г (5.79 ммоль) смеси амидов **6** в течение 1 ч. Выход 1.5 г.

1,2,3,9-Тетраметил-6-трифторметил-8,9-дигидро-1Н-пирроло[3,2-*h*]хинолин-8-он (15). А. Получают кипячением 0.168 г (0.6 ммоль) пирролохинолона 13 с 10-кратным избытком диметилсульфата в присутствии КОН в ацетоне в течение 8 ч 30 мин. По окончании реакции (хроматографический контроль) реакционную смесь выливают в воду, выпавший осадок отфильтровывают. Выход 0.157 г.

Б. Получают аналогично из 0.04 г (0.14 ммоль) пирролохинолона 14, но нагревание ведут 10 ч. Выход 0.018 г.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. А. Ямашкин, И. А. Батанов, ХГС, 58 (1995).
- M. Elouar, N. Kuouzi, A. El. Kihel, E. M. Essassi, Synth. Commun., 25, 1601 (1995); PWXMM., 19W201 (1995).
- 3. С. А. Ямашкин, М. А. Юровская, XTC, 1336 (1999).

Мордовский государственный педагогический институт, Саранск 430007, Россия e-mail: mgpi@si.moris.ru Поступило в редакцию 20.12.2002

^аМосковский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: yumar@org.chem.msu.ru