В. В. Липсон, С. М. Десенко^{а,6}, С. В. Шишкина⁶, М. Г. Широбокова, О. В. Шишкин⁶, В. Д. Орлов^а

циклоконденсация 2-аминобензимидазола с димедоном и его арилиденпроизводными

Изучены реакции 2-аминобензимидазола с замещенными бензальдегидами и димедоном, 2-арилиденпроизводными димедона, 9-арилгексагидро-1H-ксантен-1,8(2H)-дионами, а также с димедоном и ДМФА. Установлена и обсуждена направленность формирования пиримидинового цикла. Проведено рентгеноструктурное исследование 2,2-диметил-2,3-дигидробензимидазо-[1,2-*a*]хиназолин-4(1H)-она.

Ключевые слова: 2-аминобензимидазол, 2-арилиденпроизводные димедона, димедон, частично гидрированные хиназолиновые системы, PCA, циклоконденсация.

Регионаправленности в циклизациях α -аминоазолов с карбонильными 1,3-биэлектрофилами посвящен ряд работ [1–4]. Однако исследования в этой области не утратили актуальности в связи с многообразием реагентов, используемых в подобных реакциях. В настоящей работе изучено взаимодействие 2-аминобензимидазола (1) в среде ДМФА с замещенными бензальдегидами **2а–с** и димедоном **3**, с продуктами межмолекулярной конденсации последних – 2-арилиден-5,5-диметилциклогексан-1,3-дионом (**6a**) и 9-арил-3,3,6,6-тетраметил-3,4,5,6,7,9-гексагидро-1H-ксантен-1,8(2H)-дионами **7а–с**, а также с димедоном **3**.

2, **4**, **5**, **7 a** R = H, **b** R = MeO, **c** R = NO₂

В зависимости от природы карбонильных соединений, вступающих в реакцию с амином 1, имеет место одно из альтернативных направлений формирования пиримидинового цикла (*а* либо *b*).

Так кратковременное (3–5 мин) кипячение в ДМФА эквимолярных количеств амина 1, альдегида 2а–с и димедона 3 приводит к 12-арил-3,3-диметил-3,4,5,12-тетрагидробензимидазо[1,2-*b*]хиназолин-1(2H)-онам 4а–с. Аналогичные результаты получены и в реакциях соединения 1 с арилиденпроизводным 6а либо ксантендионами 7.

Напротив, при взаимодействии эквимолярных количеств аминобензимидазола 1 с димедоном 3 в ДМФА реализуется направление b, приводящее к соединению 9 с иным, чем в случае продуктов 4, сочленением безимидазольного и тетрагидрохиназолинового фрагментов.

Таблица 1

Соеди- нение	Брутто- формула	<u>Найдено N, %</u> Вычислено N, %	Т. пл., °С	ИК спектр (KBr), v, см ⁻¹	Выход, %*
4 a	$C_{22}H_{21}N_{3}O$	<u>11.9</u> 12.2	>300	3100–2500, 1640, 1612, 1592, 1568	65
4b	$C_{23}H_{23}N_3O_2$	<u>11.1</u> 11.3	>300	3100–2500, 1644, 1612, 1592, 1568	57
4c	$C_{22}H_{20}N_4O_3$	$\frac{14.3}{14.4}$	>300	3100–2500, 1644, 1612, 1592, 1568	53
9	$C_{16}H_{15}N_{3}O$	<u>15.6</u> 15.8	256–258	2972, 1692, 1592, 1512	60

Характеристики соединений 4а-с и 9

* По методике А.

Строение синтезированных веществ **4а–с**, **9** установлено методами ИК, масс-спектрометрии и ЯМР ¹Н (табл. 1, 2). Структура соединения **9** подтверждена также результатами РСА.

В масс-спектрах соединений 4a,b, 9 зарегистрированы пики молекулярных ионов с m/z 343, 373 и 265 соответственно. В случае соединения 9 (спектр см. экспериментальную часть) это значение свидетельствует о том, что в образовании продукта реакции в качестве одного из карбонильных компонентов принимает участие молекула ДМФА.

ИК спектры веществ **4а–с** однотипны, в них отмечены полосы поглощения карбонильной группы 1640 и широкая полоса в области 3100–2600 см⁻¹, являющаяся результатом наложения полос, характерных для ассоциированной группы NH, метильных и метиленовых. В ИК спектре соединения **9** наиболее характеристичным является поглощение карбонильной группы при 1648 см⁻¹.

В реакциях амина 1 с бензальдегидами 2а-с и димедоном 3 возможно образование конденсированных систем двух типов – 4 и 5. Выбор между изомерами сделан на основании анализа спектров ЯМР ¹Н полученных продуктов (табл. 2). В них имеются сигналы арильных протонов, групп NH и CH, двух фрагментов CH₂, образующих AB системы, и двух групп CH₃. Значение сигнала протона группы NH δ 11.3–11.0 м. д. типично для

Таблица 2

C	Химические сдвиги, б, м. д. (Ј, Гц)						
соеди-	NH	Наром	12-H	2,2- и	4,4-H ₂ (H _A H _B))	CH ₃
nenne	(1Н, уш. с)	(м)	(1H, c)	Н _А (2Н, д)	Н _В (2Н, д)	$J_{ m AB}$	(3H, c)
4 a	11.10	7.41–6.92 (9H)	6.41	2.58, 2.53	2.06, 2.05	-14.1, -15.6	0.94, 1.06
4b*	11.01	7.42–6.73 (8H)	6.35	2.62, 2.53	2.06, 2.25	-16.5, -16.2	0.95, 1.06,
4c	11.31	8.10–7.04 (8H)	6.60	2.66, 2.57	2.07, 2.28	-20.7, -15.9	0.92, 1.07

Спектры ЯМР ¹Н соединений 4а-с

* Сигнал группы ОСН₃ расположен в области 3.66 м. д. (3H, с).

дигидроазолопиримидиновых систем, содержащих фрагмент C=CN-H: в дигидроизомерах с изолированными аминогруппой и этиленовым фрагментом рассматриваемый протон резонирует в существенно более сильном поле (при 8–9 м. д.) [4, 5]. Таким образом, синтезированные соединения имеют структуру 4.

Реакция между амином 1 и димедоном 3 при участии ДМФА также может протекать по путям a или b, приводящим к структурам 8 или 9 соответственно.

В спектре ЯМР ¹Н полученного нами продукта имеются сигналы всех групп и фрагментов указанных для него возможных структур. Отметим значительное смещение сигналов протонов одной из метиленовых групп в область слабого поля по сравнению с соединениями **4** (табл. 2). Это следует связать как с электроноакцепторным воздействием пиримидобензимидазольного фрагмента, так и с его сильным дезэкранирующим влиянием через пространство, что можно считать косвенным доводом в пользу реализации структуры **9** полученного соединения.

Однозначный ответ о структуре рассматриваемого вещества получен на основании результатов его РСА (рисунок, табл. 3, 4). В молекуле соединения 9 трициклический пиримидо[1,2-*a*]бензимидазольный фрагмент

Строение молекулы соединения 9

Таблица З

Угол	ω, град.	Угол	τ, град.
C(13)N(1)C(14)	115.3(4)	C(12)C(7)C(8)C(9)	-13.9(6)
C(14)N(2)C(1)	104.2(4)	C(7)C(8)C(9)C(10)	43.1(5)
C(6)N(3)C(14)	106.3(3)	C(8)C(9)C(10)C(11)	-58.1(5)
N(2)C(1)C(6)	112.7(4)	C(9)C(10)C(11)C(12)	43.7(5)
C(7)N(3)C(14)	120.7(4)	C(10)C(11)C(12)C(7)	-12.2(5)
C(5)C(4)C(6)	122.1(5)	C(11)C(12)C(7)C(8)	-3.1(6)
C(12)C(7)N(3)	116.8(4)	C(14)N(3)C(7)C(12)	2.8(5)
N(3)C(6)C(1)	104.0(4)	N(3)C(7)C(12)C(13)	-0.9(5)
C(12)C(7)C(8)	123.8(4)	C(7)C(12)C(13)N(1)	-0.9(6)
C(7)C(8)C(9)	114.1(4)	C(12)C(13)N(1)C(14)	0.7(6)
C(7)C(12)C(13)	120.2(4)	C(13)N(1)C(14)N(3)	1.2(5)
N(1)C(14)N(3)	122.3(4)	N(1)C(14)N(3)C(7)	-3.1(5)
C(7)C(12)C(11)	119.7(4)		
N(1)C(13)C(12)	124.6(4)		
N(2)C(14)N(3)	112.8(4)		

Некоторые валентные (ω) и торсионные (τ) углы в молекуле 9

Таблица 4

Координаты ($\times 10^4$) и эквивалентные изотропные тепловые параметры (Å $^2 \times 10^3$) неводородных атомов в молекуле 9

Атом	x	У	z	U(eq)
O(1)	3488(6)	6655(5)	3084(2)	78(1)
N(1)	2719(5)	7085(5)	4846(2)	49(1)
N(2)	2075(5)	5513(5)	5681(2)	49(1)
N(3)	2528(4)	4080(4)	4856(1)	39(1)
C(1)	1972(5)	3836(6)	5778(2)	43(1)
C(2)	1674(6)	3037(7)	6300(2)	54(1)
C(3)	1669(6)	1353(7)	6311(2)	54(1)
C(4)	1963(6)	437 6)	5809(2)	50(1)
C(5)	2263(6)	1188(6)	5288(2)	47(1)
C(6)	2241(5)	2898(6)	5279(2)	42(1)
C(7)	2829(5)	3971(5)	4273(2)	39(1)
C(8)	2816(6)	2324(5)	3987(2)	43(1)
C(9)	2657(6)	2391(5)	3307(2)	43(1)
C(10)	4003(7)	3756(6)	3138(2)	49(1)
C(11)	3521(6)	5382(6)	3373(2)	41(1)
C(12)	3106(6)	5412(5)	3993(2)	49(1)
C(13)	3052(6)	6932(6)	4295(2)	43(1)
C(14)	2433(5)	5630(6)	5130(2)	60(1)
C(15)	3219(7)	730(6)	3077(2)	56(1)
C(16)	548(6)	2776(6)	3050(2)	78(1)
			1	

планарен с точностью до 0.03 Å. Циклогексеноновый фрагмент находится в конформации *полукресло* (параметры складчатости [6]: S = 0.73, $\theta = 37.34^{\circ}$, $\psi = 29.36^{\circ}$). Отклонения атомов C(10) и C(9) от среднеквадратичной плоскости остальных атомов цикла составляют 0.33 и –0.40 Å соответственно. Некоторая асимметрия конформации *полукресло*, вероятно, обусловлена укороченными внутримолекулярными контактами H(16A)...C(7) 2.85, H(16A)...C(11) 2.67, H(16A)...C(12) 2.85, H(8A)...C(6) 2.86 (сумма ван-дерваальсовых радиусов 2.87 Å [7]) и H(8A)...H(5) 2.17 Å (2.32 Å). Следует отметить, что конформация тетрагидроцикла – *полукресло* – не характерна для такого типа соединений (в подобных системах имеет место конформация *софы* или несколько искаженной в сторону *полукресла софы* [8– 13]). Связь C(7)–C(12) 1.357(6) Å в молекуле **9** несколько удлинена по сравнению со средним значением 1.326 Å [14], что свойственно аналогичным структурам [8–13].

Установленное строение соединений **4а**–с указывает, что направленность процесса формирования пиримидинового цикла соответствует протеканию взаимодействия между карбонильным атомом углерода димедона **3** (либо димедонового фрагмента соединений **6**, **7**) и аминогруппой аминоазола, но не его эндоциклическим реакционным центром. Это согласуется с общими закономерностями, найденными для реакций амина **1** с α , β -непредельными кетонами [5], и свидетельствует в пользу того, что первой стадией взаимодействия 2-аминобензимидазола с альдегидами и димедоном является конденсация двух карбонильных компонентов реакции.

Изменение направленности формирования пиримидинового цикла при образовании соединения 9 следует связать с изменением последовательности стадий гетероциклизации, а именно – с взаимодействием амина сначала с димедоном, а затем с ДМФА. При этом, согласно данным [15, 16], на первой стадии реакции можно ожидать образования двух изомерных енаминокетонов **A** и **B**. Однако последующая реакция интермедиата **A** с ДМФА должна была бы привести к формированию хиназолиновой системы **8**, чего не наблюдается. Предлагаемый нами механизм образования продукта **9** включает стадию конденсации кетона по эндоциклическому атому азота амина **1**, приводящую к интермедиату **B**. Последний при участии молекулы ДМФА циклизуется в целевой продукт **9**. Аналогичный механизм предлагался ранее для реакций аминоазолов с ДМФА и бензоциклоалканонами [16].

Отсутствие же соединения **9** в продуктах реакции аминобензимидазола с альдегидами и димедоном следует связать со значительно большей реакционной способностью бензальдегидов по сравнению с ДМФА.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование соединения 9. Кристаллы 2,2-диметил-2,3-дигидробензимидазо[1,2-*a*]хиназолин-4(1H)-она 9 моноклинные, $C_{16}H_{15}N_3O$, при 20 °C: a = 6.972(3), b = 8.097(2), c = 22.905(12) Å, $\beta = 97.85(4)^\circ$, V = 1280.9(9) Å³, $M_r = 265.31$, Z = 4, пространственная группа P2(1)/c, $d_{выч} = 1.376$ г/см³, $\mu(MoK_{\alpha}) = 0.089$ мм⁻¹, F(000) = 560. Параметры элементарной ячейки и интенсивности 2409 отражений (2214 независимых, $R_{int} = 0.07$) измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (Мо K_{α} графитовый монохроматор, 2 θ/θ -сканирование, 2 $\theta_{max} = 50$ °).

1199

Структура расшифрована прямым методом по комплексу программ SHELX97 [17]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездник" с $U_{_{H30}} = nU_{_{3KB}}$ неводородного атома, связанного с данным водородным (n = 1.5 для метильной группы, n = 1.2 для остальных атомов водорода). Структура уточнена по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов до $wR_2 = 0.250$ по 2214 отражениям ($R_1 = 0.082$ по 1181 отражению с $F>4\sigma(F)$, S = 0.979). Координаты и эквивалентные изотропные тепловые параметры неводородных атомов молекулы 9 приведены в табл. 4.

ИК спектры зарегистрированы на спектрометре Specord M-82 для таблеток КВг, спектры ЯМР – на спектрометре Varian 300 (300 МГц) для растворов в ДМСО-d₆, внутренний стандарт ТМС. Масс-спектры получены на спектрометре Finnigan M-95 при непосредственном вводе образца в ионный источник. Температура ионизационной камеры 180 °С, ионизирующее напряжение 70 эВ, ток эмиссии 100 мкА. Контроль за чистотой полученных соединений осуществляли с помощью TCX на пластинках Silufol UV-254, элюент ацетон–хлороформ, 1:1.

3,3-Диметил-12-фенил-3,4,5,12-тетрагидробензимидазо[2,1-b]хиназолин-1(2H)-он (4а). А. Смесь 0.14 г (1 ммоль) 5,5-диметилциклогексан-1,3-диона **3**, 0.11 г (1 ммоль) бензальдегида **2а** и 0.133 г (1 ммоль) 2-аминобензимидазола **1** в 1 мл ДМФА кипятят 5 мин до образования кристаллического осадка. Реакционную массу охлаждают, добавляют 5 мл 2-пропанола и отфильтровывают 0.22 г соединения **4а**, которое перекристаллизовывают из смеси ДМФА–2-пропанол, 1:2.

Соединения 4b,с получают аналогично, используя альдегиды 2b,с.

Б. Смесь 0.272 г (1 ммоль) соединения **6a** и 0.133 г (1 ммоль) 2-аминобензимидазола **1** в 1 мл ДМФА кипятят 3 мин. Реакционную массу охлаждают, добавляют 5 мл 2-пропанола, осадок продукта **4a** отделяют фильтрованием. Выход 0.21 г (62%). Продукт очищают перекристаллизацией из смеси ДМФА–2-пропанол, 1:2. Полученное вещество **4a** полностью совпадает по спектральным характеристикам и т. пл. с образцом, синтезированным по методике А.

В. Смесь 0.35 г (1 ммоль) 3,3,6,6-тетраметил-9-фенил-3,4,5,6,7,9-гексагидроксантен-1,8(2H)-диона **7a**, 0.133 г (1 ммоль) амина **1** в 1 мл ДМФА кипятят 3–5 мин до образования осадка. После охлаждения к реакционной массе добавляют 5 мл 2-пропанола, осадок продукта **4a** отделяют фильтрованием. Выход соединения **4a** 0.172 г (51%). Фильтрат экстрагируют хлороформом, полученный экстракт сушат сульфатом натрия, фильтруют, фильтрат упаривают. Из маслянистого остатка с помощью метанола выделяют 0.13 г димедона **3**, т. пл. 150–151 °С (т. пл. 150 °С [18]).

Соединения 4b,с получают аналогично из соединений 7b,с соответственно.

2,2-Диметил-2,3-дигидробензимидазо[1,2-*а*]**хиназолин-4(1Н)-он (9)**. Смесь 0.14 г (1 ммоль) димедона **3**, 0.133 г (1 ммоль) амина **1** в 1 мл ДМФА кипятят 25 мин. К охлажденной массе прибавляют 5 мл 2-пропанола и отфильтровывают 0.16 г (60%) соединения **9**, которое перекристаллизовывают из 2-пропанола. Спектр ЯМР ¹Н, 8, м. д.: 8.44–7.51 (4H, м, 8-H–11-H); 9.08 (1H, с, 5-H); 2.61, 3.70 (2H, с, CH₂); 1.21 (6H, с, CH₃). Масс-спектр, *m/z* (*1*, %): 265 (88), 250 (15), 209 (100), 181 (30), 154 (40), 133 (25), 103 (28), 77 (18), 51 (32).

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Н. Кост, ХГС, 1200 (1980).
- 2. G. Fisher, Adv. Heterocycl. Chem., 57, 81 (1993).
- 3. С. А. Ямашкин, Н. Я. Кучеренко, М. А. Юровская, XTC, 579 (1997).
- 4. С. М. Десенко, В. Д. Орлов, Х. Эстрада, XTC, 999 (1990).
- С. М. Десенко, В. Д. Орлов, Н. В. Гетманский, О. В. Шишкин, С. В. Линдеман, Ю. Т. Стручков, XTC, 481 (1993).
- 6. N. S. Zefirov, V. A. Palyulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 147 (1990).
- 7. Ю. В. Зефиров, П. М. Зоркий, *Успехи химии*, 713 (1989).
- 8. H. N. De Armas, N. M. Blaton, O. M. Peeters et al., Acta Crystallogr., C55, 596 (1999).
- 9. V. K. Ganesh, D. Velmurugan, M. B. Sagar, Acta Crystallogr., C54, 557 (1998).

- В. Д. Дяченко, В. Н. Нестеров, С. Г. Кривоколыско, В. П. Литвинов, *ЖОрХ*, **33**, 1580 (1997).
- 11. В. Д. Дяченко, В. Н. Нестеров, С. Г. Кривоколыско, В. П. Литвинов, ХГС, 785 (1997).
- 12. K. Gunasekaran, D. Velmurugan, P. Murugan, Acta Crystallogr., C53, 1512 (1997).
- 13. A. D. Morales, S. Garsia-Granda, M. S. Navarro, Acta Crystallogr., C52, 2356 (1996).
- 14. H.-B. Burgi, J. D. Dunitz, Structure correlation, VCH, Weinheim, 1994, 2, 741.
- 15. И. Э. Лиелбриедис, Р. Б. Кампаре, Г. Я. Дубур, Изв. АН ЛатвССР, 212 (1990).
- 16. С. М. Десенко, В. Д. Орлов, Х. Эстрада, С. М. Ивков, ХГС, 694 (1991).
- 17. G. M. Sheldrick, *SHELX97*. PC Version. A system of computer programs for the crystal structure solution and refinement. Rev. 2, 1998.
- Свойства органических соединений. Справочник. Под ред. А. А. Потехина, Химия, Ленинград, 1984, 420.

Институт проблем эндокринной патологии им. В. Я. Данилевского ФАМН Украины, Харьков 61002 e-mail: stevoid@ipep.vl.net.ua Поступило в редакцию 15.03.2001 После доработки 06.09.2001

^аХарьковский национальный университет им. В. Н. Каразина, Харьков 61077, Украина e-mail: orlov@univer.kharkov.ua

⁶*НТК "Институт монокристаллов", Харьков 61001, Украина*

Схема на стр. 2

47/2001

В. В. Липсон, С. М. Десенко, С. В. Шишкина, М. Г. Широбокова, О. В. Шишкин, В. Д. Орлов

ЦИКЛОКОНДЕНСАЦИЯ 2-АМИНОБЕНЗИМИДАЗОЛА С ДИМЕДОНОМ И ЕГО АРИЛИДЕНПРОИЗВОДНЫМИ

V. V. Lipson, S. M. Desenko, S. V. Shishkina, O. V. Shihkin, V. D. Orlov CYCLICONDENSATION OF 2-AMINOBENZIMIDAZOLE WITH DIMEDONE AND ITS ARYLIDENDERIVATIVES