

Синтез и оптимизация противотуберкулезной активности производных 1-окса-9-азаспиро[5.5]ундекана

Кристина Ю. Комарова¹, Алексей Ю. Лукин^{1,2}, Любовь В. Виноградова¹, Максим Е. Журавлёв¹, Марине З. Догонадзе², Татьяна И. Виноградова², Максим А. Гуреев³, Михаил В. Чудинов¹, Дмитрий В. Дарьин^{2,4}*

¹ Российский технологический университет, Институт тонких химических технологий им. М. В. Ломоносова, пр. Вернадского, 78, Москва 119571, Россия

² Санкт-Петербургский НИИ фтизиопульмонологии Минздрава России, Лиговский пр., 2-4, Санкт-Петербург 191036, Россия; e-mail: d.dariin@spbu.ru

³ Институт Цитологии РАН, Тихорецкий пр., 4, Санкт-Петербург 194064, Россия

⁴ Санкт-Петербургский государственный университет, Университетская наб., 7/9, Санкт-Петербург 198504, Россия Поступило 6.06.2024 Принято 10.06.2024

Целью работы явились синтез и исследование противотуберкулезной активности спироциклических ингибиторов белка MmpL3 *М. tuberculosis*, содержащих скелет 1-окса-9-азаспиро[5.5]ундекана. Результаты молекулярного докинга показали направление возможной оптимизации исходной структуры. Полученная серия соединений, характеризующаяся химическим разнообразием периферического фрагмента, проявила высокую активность в отношении чувствительного к антибиотикам штамма H37Rv и некоторых мультирезистентных штаммов *М. tuberculosis*, превышающую активность препарата сравнения.

Ключевые слова: 1-окса-9-азаспиро[5.5]ундекан, спироциклы, белок MmpL3, противотуберкулезная активность, циклизация Принса.

Спироциклические соединения все чаще и чаще применяются в медицинской химии.¹⁻⁴ Причина такого интереса кроется в уникальной особенности строения спироциклических скаффолдов: сочетании гибкости, характерной для алифатических соединений, с ограничением числа степеней свободы. Количество соединений со спироциклической структурой, характеризующихся таким термином как druglikeness, то есть потенциально способных стать лекарствами, в среднем больше, чем в других классах веществ.^{5,6} Главная проблема в дизайне лекарств такого типа – сложность химического синтеза спироциклических структур.⁷

Варианты биологической активности соединений, содержащих 1-окса-9-азаспиро[5.5]ундекановый скаффолд,

чрезвычайно разнообразны, что однозначно указывает на привилегированный характер этой структуры. На его основе были получены агонисты рецептора свободных жирных кислот FFA1,⁸ ингибиторы растворимой эпоксигидролазы sEH⁹ и различные антибактериальные агенты.^{10,11} В одном из недавних исследований¹² 9-(4-*mpem*-бутилбензил)-1-окса-9-азаспиро[5.5]ундекан (1) (схема 1) был также охарактеризован как мощный ингибитор белка MmpL3 *M. tuberculosis*. Этот белок является членом семейства транспортеров MmpL, необходимых для жизнедеятельности *M. tuberculosis*,^{13,14} и перспективной мишенью для дизайна новых противотуберкулезных препаратов.^{15,16} Однако предложенная авторами шестистадийная схема синтеза

Схема 1. Синтез спироциклических производных 2а-d

ii: HCOONH₄, 10% Pd/C, EtOH, Δ , 10 h

iii: Boc₂O, CH₂Cl₂, rt, 12 h; *iv*: PDC, CH₂Cl₂, rt, 18 h

w: RPPh₃Cl, *n*-BuLi, THF, 0°C→rt, 18 h; *w*: TFA, CH₂Cl₂, 0°C, 6 h *vii*: NaH, DMF, 0°C, 30 min, then 4-bromopyridine, DMF, 0°C→rt, 18 h *viii*: 4-*tert*-butyl benzaldehyde, KOAc, NaBH(OAc)₃, CH₂Cl₂, rt, 10 h

спироциклической структуры с использованием реакции метатезиса олефинов на катализаторе Граббса является сложной, дорогой для воспроизведения и не предполагает введения заместителей.

Ранее в нашей лаборатории был предложен синтетический подход,^{8,17} основанный на реакции циклизации Принса, который позволяет построить 1-окса-9азаспиро[5.5]ундекановый скаффолд в одну стадию и вводить различные заместители в положение 4 спироцикла (схема 1). Проверить структурные аналоги соединения 1, ранее исследованные на другие типы биологической активности, на противотуберкулезную активность было очевидным решением. Набор целевых спироциклов **2а–d** получили восстановительным алкилированием 4-*трет*-бутилбензальдегидом из синтезированных ранее^{8–11} полупродуктов **3а–d** (схема 1).

Направление для дальнейшей оптимизации структуры было задано первичной оценкой противомикобактериальных свойств соединений. Более липофильные спироциклы **2b**,**c** оказались существенно активнее, чем спироциклы **2a**,**d**.

Синтез соединений **2е–і**, содержащих липофильные группы различного размера и полярности (фенильную, азидную, фторную, дифторную), был осуществлен в соответствии со схемой 2.

Исходный 1-[(4-*трет*-бутилфенил)метил]пиперидин-4-он (6) был получен алкилированием 4-*трет*-бутилбензилбромидом гидрохлорида гидрата пиперидин-4-она с выходом 92%. Далее была проведена реакция Принса с бут-3-ен-1-олом в MeSO₃H, продуктом которой стал метансульфонат 9-(4-*трет*-бутилбензил)-1-окса-9-азаспиро[5.5]ундека-4-ила (2е). АльтернативСхема 2. Синтез спироциклических производных 2е-і

v: DAST, CH₂Cl₂, 0°C→rt, 18 h

vi: 3 M HCl/dioxane, CH₂Cl₂, rt, 12 h

vii: 4-tert-butylbenzaldehyde, KOAc, NaBH(OAc)₃, CH₂Cl₂, rt, 10 h

ным способом получения соединения 2а стала циклизация пиперидин-4-она 6 с бут-3-ен-1-олом в 70% H₂SO₄ с выходом 46% (схема 1). Мезилат 2е был переведен в 4-азидо-9-(4-трет-бутилбензил)-1-окса-9-азаспиро[5.5]ундекан (2f) реакцией нуклеофильного замещения с NaN₃, выход составил 75%. Мы предположили, что использование кислоты Льюиса (BF₃·Et₂O) в избытке PhH при проведении циклизации позволит нам получить 9-(4-трет-бутилбензил)-4-фенил-1-окса-9-азаспиро[5.5]ундекан (2g). Следует отметить, что это превращение ранее не было известно для азациклических кетонов. Оказалось, что в таких условиях наряду с искомым спироциклическим соединением 2g (выход 35%) образуется значительное количество 9-(4-третбутилбензил)-4-фтор-1-окса-9-азаспиро[5.5]ундекана (2h) (выход 56%). Эти продукты легко разделялись с помощью хроматографии. В синтезе 9-(4-трет-бутилбензил)-4,4-дифтор-1-окса-9-азаспиро[5.5]ундекана (2i) в качестве исходного соединения использовали кетон 5, а оптимальным фторирующим реагентом – диэтиламинотрифторид серы (DAST), применение которого позволило получить дифторное производное 2i (схема 2).

Для синтезированных соединений 2a-i были определены минимальные ингибирующие концентрации (МИК) в отношении *М. tubeculosis* (штамм H37Rv), в качестве препарата сравнения использовали изониазид.¹⁸ Определение МИК проводили методом двукратных серийных микроразведений (от 100 до 0.016 мкг/мл) в жидкой синтетической среде Миддлбрука в 96-луночном планшете с индикацией роста микобактерий с помощью 0.01% резазурина.¹⁹ Сопоставление противотуберкулезной активности соединений (табл. 1) и

Соединение	МИК, мкг/мл	Соединение	МИК, мкг/мл
2a	25	2f	25
2b	0.016	2g	100
2c	3.1	2h	0.016
2d	100	2i	0.016
2e	12.5	Изониазид	0.025

Таблица 1. Противотуберкулезная активность спироциклических ингибиторов белка MmpL3

Рисунок 1. Изображения связывания соединений 2а (МИК 25 мкг/мл) и 2i (МИК 0.016 мкг/мл) в активном центре белка MmpL3.

результатов докинга с белком MmpL3 подтвердило, что ключевым отличием более активных соединений является интенсивность липофильных контактов заместителя.

Присутствие группы ОН в положении 4 спироцикла соединения **2a** стимулирует полярные контакты с аминокислотой Asp645 белка MmpL3, тогда как у активных соединений полярные контакты реализованы с электронной плотностью гетероциклического кислорода (рис. 1). Это вызывает конформационную перегруппировку в структуре лиганд-белкового комплекса и уменьшает вклад липофильных контактов.

Однако увеличение липофильности сопряжено с ростом объема заместителя и ограничевается конфигурацией активного центра. Эффективным решением здесь является липофильная изостеризация водорода по положению 4' спироциклического фрагмента.

Таким образом, нами было экспериментально подтверждено, что введение в качестве заместителя одного или двух атомов фтора в тетрагидропирановый цикл спироциклической системы 1-окса-9-азаспиро[5.5]ундекана позволяет получить 9-(4-*mpem*-бутилбензил)-4-фтор-1-окса-9-азаспиро[5.5]ундекан и 9-(4-*mpem*бутилбензил)-4,4-дифтор-1-окса-9-азаспиро[5.5]ундекан, проявляющие высокую активность в отношении чувствительного к антибиотикам штамма H37Rv и некоторых мультирезистентных штаммов *M. tuberculosis*.

Экспериментальная часть

Спектры ЯМР ¹Н и ¹³С зарегистрированы на спектрометре Bruker DPX-300 (300 и 75 МГц соответственно) в ДМСО- d_6 , CDCl₃, DCl–D₂O и MeOD- d_4 . Внутренний стандарт ТМС Масс-спектры высокого разрешения записаны на приборе Shimadzu Axima-Resonance. ВЭЖХ-МС соединений 5, 7 записаны на приборе Shimadzu LCMS-2020 (ионизация ЭУ). Препаративная адсорбционная колоночная хроматография проведена на силикагеле Kieselgel 60 (Мегск, Германия), тонкослойная хроматографию – на пластинах Sorbfil ПТСХ-АФ-В-УФ ("Имид", Россия) в подходящей системе растворителей, визуализация – в ультрафиолетовом свете и растворе нингидрина. Температуры плавления определены при помощи прибора Stuart SMP50.

Все операции с реагентами, чувствительными к влаге и кислороду, проведены в атмосфере сухого аргона в тщательно высушенной стеклянной аппаратуре. В работе использованы растворители марок "хч", "чда", "осч". Растворители удалены упариванием на роторном испарителе (давление 10–20 мм рт. ст., температура 40–60°С) с последующим высушиванием остатка при давлении 0.1 мм рт. ст.

Вос-защищенный 1-окса-9-азаспиро[5.5]ундекан-4-ол (4) получен по методике, описанной нами ранее.¹⁷

9-(4-трет-Бутилбензил)-1-окса-9-азаспиро[5.5]ундекан-4-ол (2а). К смеси 200 мг (0.81 ммоль) 1-[(4-трет-бутилфенил)метил]пиперидин-4-она (6) и 64 мг (0.89 ммоль) бут-3-ен-1-ола при интенсивном перемешивании медленно прикапывают 1 мл 70% H₂SO₄, перемешивают в течение ночи, добавляют 5 мл H₂O и насыщенный раствор NaOH до pH 9. Экстрагируют EtOAc (3 × 10 мл). Экстракт сушат безводным Na₂SO₄ и упаривают при пониженном давлении. Остаток подвергают колоночной хроматографии, элюируя CH₂Cl₂ и повышая полярность добавлением MeOH до 5%. Выход 118 мг (46%), прозрачное масло. Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д. (J, Γ ц): 7.33 (2H, д, J = 8.1, H Ar); 7.21 (2H, д, J = 8.0, H Ar); 3.80–3.59 (2H, м, NCH₂Ar); 3.53-3.43 (3H, м, CH₂); 2.47-2.19 (4H, м, CH₂); 1.90 (1H, д, J = 13.9, CH₂); 1.70 (2H, д. д, J = 12.7, J = 4.3, CH₂); 1.59–1.53 (2H, м, CH₂); 1.50–1.35 (1H, м, СН₂); 1.27 (9H, с, С(СН₃)₃); 1.15–1.04 (1H, м, СН₂). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д.: 149.7; 129.3; 129.2; 128.6; 125.3; 71.0; 62.9; 62.0; 58.7; 48.9; 48.7; 45.3; 36.1; 34.6; 31.6; 30.4. Найдено, m/z: 318.2433 [M+H]⁺. С₂₀Н₃₂NO₂. Вычислено, *m/z*: 318.2433.

Получение соединений 2а–d,і (общая методика). К раствору 0.158 г (0.97 ммоль, 1.5 экв.) 4-*трет*-бутилбензальдегида в 10 мл CH₂Cl₂ добавляют 0.65 ммоль (1 экв.) гидрохлорида соответствующего 4-замещенного 1-окса-9-азаспиро[5.5]ундекана и 0.096 г (0.97 ммоль, 1.5 экв.) КОАс и перемешивают в течение 2 ч. Затем порциями вносят 0.55 г (2.6 ммоль, 4 экв.) NaBH(OAc)₃ и перемешивают при комнатной температуре в течение 8 ч. Реакционную смесь выливают в 20 мл насыщенного водного раствора NaHCO₃ и экстрагируют CH₂Cl₂ (3 × 20 мл), объединенные органические экстракты сушат над безводным Na₂SO₄, фильтруют и упаривают при пониженном давлении. Остаток очищают методом колоночной хроматографии на SiO₂.

9-(4-трет-Бутилбензил)-1-окса-9-азаспиро[5.5]ундекан-4-ол (2а). Выход 84 мг (41%), прозрачное масло. Спектральные данные совпадают с описанными ранее для этого соединения.

9-(4-трет-Бутилбензил)-4-метил-1-окса-9-азаспиро-[5.5]ундекан (2b). Выход 127 мг (62%), прозрачное масло. Спектр ЯМР ¹Н (CDCl₃), δ, м. д. (*J*, Гц): 7.58 (2H, д, *J* = 8.0, H Ar); 7.43 (2H, д, *J* = 8.2, H Ar); 4.16– 3.93 (2H, м, NCH₂Ar); 3.86–3.60 (2H, м, CH₂); 3.43 (1H, т, *J* = 11.3, CH₂); 3.19 (2H, т, *J* = 12.9, CH₂); 3.03 (1H, кв, *J* = 12.5, *J* = 11.4, CH₂); 2.81 (1H, д, *J* = 11.1, CH₂); 2.48– 2.30 (2H, м, CH₂); 2.23–2.05 (1H, м, CH₂); 1.72–1.50 (3H, м, CH₂); 1.31 (9H, с, C(CH₃)₃); 1.19–0.98 (2H, м, CH₂); 0.89 (3H, д, *J* = 6.3, CH₃). Спектр ЯМР ¹³С (CDCl₃), δ, м. д.: 153.1; 131.1; 126.1; 125.3; 68.3; 61.1; 60.7; 47.8; 47.6; 43.8; 35.9; 34.7; 34.3; 31.1; 26.0; 25.0; 22.2. Найдено, *m/z*: 316.2640 [M+H]⁺. С₂₁H₃₄NO. Вычислено, *m/z*: 316.2640.

9-(4-*трет***-Бутилбензил)-4-(4-метилбензил)-1-окса-9-азаспиро[5.5]ундекан (2с)**. Выход 53 мг (20%), прозрачное масло. Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д. (*J*, Гц): 7.32 (2H, д, *J* = 8.1, H Ar); 7.21 (2H, д, *J* = 7.9, H Ar); 7.07 (1H, д, *J* = 7.9, H Ar); 7.02 (1H, д, *J* = 8.1, H Ar); 3.62–3.41 (4H, м, NC<u>H</u>₂Ar, C<u>H</u>₂Ar); 2.49–2.30 (5H, м, CH₂); 2.25 (3H, с, CH₃ Ar); 2.13–2.00 (1H, м, CH₂); 1.95–1.78 (1H, м, CH₂); 1.43 (4H, т, *J* = 13.2, CH₂); 1.3–1.2 (11H, м, CH₂, C(CH₃)₃); 1.07 (1H, т. д, *J* = 12.4, *J* = 5.1, CH₂); 0.94 (1H, т, *J* = 12.6, CH₂). Спектр ЯМР ¹³С (ДМСО- d_6), δ , м. д.: 149.8; 137.0; 135.0; 129.25; 129.1; 125.3; 69.8; 61.9; 59.9; 48.7; 43.0; 42.7; 34.6; 32.6; 32.0; 31.6; 28.8; 21.0. Найдено, *m/z*: 406.3112 [M+H]⁺. C₂₈H₄₀NO. Вычислено, *m/z*: 406.3109.

9-(4-*трет***-Бутилбензил)-4-(пиридин-4-илокси)-1-окса-9-азаспиро[5.5]ундекан (2d)**. Выход 89 мг (35%), прозрачное масло. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 8.35 (2H, д, *J* = 6.5, H Ру); 7.31 (2H, д, *J* = 8.0, H Ру); 7.23–7.14 (2H, м, H Ar); 6.95 (2H, д, *J* = 6.4, H Ar); 4.82 (1H, д. т, *J* = 9.8, *J* = 5.3, CH₂); 3.80–3.57 (2H, м, CH₂); 3.39 (2H, с, NCH₂Ar); 2.47–2.34 (2H, м, CH₂); 2.34–2.18 (2H, м, CH₂); 2.04–1.89 (3H, м, CH₂); 1.66–1.34 (5H, м, CH₂); 1.26 (9H, с, C(CH₃)₃). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ, м. д.: 163.4; 151.3; 149.5; 135.9; 129.0; 125.2; 111.5; 71.4; 70.1; 62.3; 58.0; 48.8; 48.7; 37.8; 34.5; 31.8; 31.6; 31.2. Найдено, *m/z*: 395.2696 [M+H]⁺. C₂₅H₃₅N₂O₂. Вычислено, *m/z*: 395.2698.

9-(4-*трет***-Бутилбензил)-4,4-дифтор-1-окса-9-азаспиро[5.5]ундекан (2і)**. Выход 81 мг (37%), прозрачное масло. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 7.58 (2H, д, *J* = 7.9, H Ar); 7.45 (2H, д, *J* = 8.0, H Ar); 4.22 (2H, с, NCH₂Ar); 3.75 (2H, т, *J* = 5.6, CH₂); 3.14–2.94 (4H, м, CH₂); 2.09–1.86 (8H, м, CH₂); 1.29 (9H, с, C(CH₃)₃). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ, м. д. (*J*, Гц): 152.1; 131.5; 129.6; 127.6; 125.8 (д, *J* = 8.1); 69.7; 58.8; 47.0; 34.8; 33.8 (т, *J* = 22.1); 31.4; 30.8. Найдено, *m/z*: 338.2296 [M+H]⁺. С₂₀H₃₀F₂NO. Вычислено, *m/z*: 338.2295.

Получение соединений 2g,h (общая методика). К раствору 200 мг (0.81 ммоль) 1-[(4-*трет*-бутилфенил)метил]пиперидин-4-она (6) в 3 мл РhН последовательно добавляют 58 мг (0.81 ммоль) бут-3-ен-1-ола и 120 мкл (0.97 ммоль) $BF_3 \cdot Et_2O$. Реакционную смесь перемешивают в течение ночи при 40°С, затем выливают в 10 мл насыщенного водного раствора NaHCO₃ и экстрагируют EtOAc (3 \times 10 мл), объединенные органические экстракты сушат над безводным Na₂SO₄, фильтруют и упаривают при пониженном давлении. Остаток очищают методом колоночной хроматографии на SiO₂ (элюент CH₂Cl₂–MeOH, 5%).

9-(4-*трет***-Бутилбензил)-4-фенил-1-окса-9-азаспиро-[5.5]ундекан (2g)**. R_f 0.9 (CH₂Cl₂–MeOH, 5%). Выход 107 мг (35%), прозрачное масло. Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д. (*J*, Гц): 7.39–7.14 (9H, м, H Ar); 3.76– 3.56 (4H, м, NC<u>H</u>₂Ar, CH₂); 2.99–2.87 (1H, м, CH₂); 2.77– 2.55 (2H, м, CH₂); 2.45–2.23 (2H, м, CH₂); 1.73–1.49 (6H, м, CH₂); 1.43 (1H, т, *J* = 12.9, CH₂); 1.27 (9H, с, C(CH₃)₃). Спектр ЯМР ¹³С (ДМСО- d_6), δ , м. д.: 150.3; 146.2; 129.8; 128.8; 127.1; 126.5; 125.5; 69.8; 60.3; 48.4; 43.1; 36.0; 34.6; 33.6; 31.5. Найдено, *m/z*: 378.2797 [M+H]⁺. С₂₁Н₃₄NO. Вычислено, *m/z*: 378.2796.

9-(4-*трет***-Бутилбензил)-4-фтор-1-окса-9-азаспиро-[5.5]ундекан (2h)**. R_f 0.3 (CH₂Cl₂–MeOH, 5%). Выход 145 мг (56%), прозрачное масло. Спектр ЯМР ¹Н (ДМСО- d_6), δ , м. д. (J, Гц): 7.31 (2H, д, J = 8.1, H Ar); 7.19 (2H, д, J = 8.0, H Ar); 4.90 (1H, д. д. т, J = 49.4, J = 8.9, J = 4.5, CHF); 3.79–3.64 (1H, м, CH₂); 3.58–3.45 (2H, м, NCH₂Ar); 2.45–2.35 (2H, м, CH₂); 2.32–2.08 (2H, м, CH₂); 1.95–1.61 (4H, м, CH₂); 1.61–1.35 (4H, м, CH₂); 1.26 (9H, с, C(CH₃)₃). Спектр ЯМР ¹³C (ДМСО- d_6), δ , м. д. (J, Гц): 149.4; 136.0; 128.9; 125.2; 88.6; 86.3; 71.2 (д, J = 7.8); 62.3; 57.2 (д, J = 8.3); 48.7 (д, J = 23.3); 36.8; 34.5; 32.7; 32.6; 31.6. Найдено, m/z: 320.2390 [M+H]⁺. C₂₀H₃₁FNO. Вычислено, m/z: 320.2389.

Метансульфонат 9-(4-трет-бутилбензил)-1-окса-9-азаспиро[5.5]ундека-4-ила (2е). К раствору 0.5 г (2.04 ммоль) 1-[(4-трет-бутилфенил)метил]пиперидин-4-она (6) в 10 мл CH₂Cl₂ добавляют 0.153 г (2.12 ммоль) бут-3-ен-1-ола и при перемешивании медленно прикапывают 0.82 г (8.5 ммоль) метансульфокислоты, перемешивают при комнатной температуре в течение 24 ч. Затем к реакционной смеси по каплям добавляют 10% водный раствор К2СО3 до рН 9, экстрагируют CH₂Cl₂ (3 × 10 мл). Экстракт сушат над безводным Na₂SO₄ и упаривают при пониженном давлении. Остаток подвергают колоночной хроматографии, элюируя CH₂Cl₂ и повышая полярность добавлением MeOH до 5%. Выход 0.29 г (46%), прозрачное масло. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 7.32 (2Н, д, *J* = 8.3, H Ar); 7.19 (2H, д, J = 8.0, H Ar); 4.90 (1H, д. кв, J = 9.6, J = 4.9, CHOMs); 3.76–3.66 (1Н, м, CH₂); 3.56 (1Н, т, J = 11.4, CH₂); 3.39 (2H, c, NC<u>H₂Ar</u>); 3.19 (3H, c, СН₃SO₂); 2.45–2.37 (2Н, м, СН₂); 2.33–2.10 (2Н, м, СН₂); 2.01–1.89 (3Н, м, СН₂); 1.64–1.37 (5Н, м, СН₂); 1.26 (9H, с, С(СН₃)₃). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д.: 149.5; 135.9; 128.9; 125.2; 79.6; 76.3; 71.6; 62.2; 57.9; 48.8; 48.6; 34.5; 32.9; 31.6; 31.1. Найдено, *m/z*: 396.2209 [M+H]⁺. С₂₁Н₃₄NO₄S. Вычислено, *m/z*: 396.2208.

4-Азидо-9-(4-*трет***-бутилбензил)-1-окса-9-азаспиро-[5.5]ундекан (2f)**. К раствору 0.25 г (0.63 ммоль) соединения **2e** в 1 мл ДМФА добавляют 82 мг (1.26 ммоль) NaN₃ и перемешивают в течение 12 ч при 80°С. Реакционную смесь охлаждают до комнатной температуры, выливают в 5 мл насыщенного водного раствора NaHCO₃ и экстрагируют EtOAc (3×10 мл), объединенные органические экстракты сушат над безводным Na₂SO₄, фильтруют и упаривают при пониженном давлении. Остаток очищают методом колоночной хроматографии на SiO₂ (элюент CH₂Cl₂-MeOH, 5%). Выход 0.16 г (75%), прозрачное масло. Спектр ЯМР 1 Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 7.32 (2H, д, *J* = 8.0, H Ar); 7.21 (2Н, д, *J* = 8.2, Н Аг); 3.81 (1Н, т. т, *J* = 11.4, *J* = 4.5, CHN₃); 3.74–3.65 (1H, м, CH₂); 3.53 (1H, т. д, *J* = 11.8, J = 2.4, CH₂); 3.45 (2H, c, NCH₂Ar); 2.47–2.27 (3H, M, СН₂); 2.27–2.14 (1Н, м, СН₂); 2.00–1.93 (1Н, м, СН₂); 1.83 (2Н, д. д. J = 13.0, J = 4.2, CH₂); 1.64–1.52 (2Н, м, СН₂); 1.52–1.34 (2Н, м, СН₂); 1.27 (9Н, с, С(СН₃)₃). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д.: 149.7; 135.2; 129.2; 125.3; 70.8; 62.0; 58.5; 54.0; 48.7; 48.5; 38.1; 34.5; 31.7; 31.6; 29.7. Найдено, *m/z*: 343.2499 [M+H]⁺. С₂₀Н₃₁N₄O. Вычислено, *m/z*: 343.2497.

трет-Бутил-4-оксо-1-окса-9-азаспиро[5.5]ундекан-9-карбоксилат (5). К раствору 4.70 г (17.3 ммоль) соединения 4 в 100 мл CH₂Cl₂ добавляют 5 г молекулярных сит 3 Å, несколько капель AcOH и при перемешивании порциями вносят 13 г (34.6 ммоль) дихромата пиридиния. Реакционную смесь перемешивают при комнатной температуре в течение 18 ч, фильтруют через слой целита, осадок дополнительно промывают 100 мл CH₂Cl₂. Фильтрат промывают 5% водным раствором HCl, сушат над безводным Na₂SO₄, фильтруют и упаривают при пониженном давлении. Остаток очищают методом колоночной хроматографии на SiO₂ (элюент CHCl₃). Выход 3.54 г (76%), белые кристаллы, т. пл. 61–64°С. Спектр ЯМР ¹Н (ДМСО-*d*₆), δ. м. д. (J. Гш): 4.00 (2Н. т. J = 6.1. СН₂): 3.75 (2Н. д. д. *J* = 10.1, *J* = 3.3, CH₂); 3.22–3.09 (2H, м, CH₂); 2.46 (2H, т, J = 6.0, CH₂); 2.36 (2H, с, CH₂); 1.80 (2H, д, J = 12.9, CH₂); 1.50 (2H, д. д, J = 14.6, J = 2.8, CH₂); 1.45 (9H, с, С(СН₃)₃). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д.: 206.8; 154.8; 79.6; 74.9; 60.4; 52.7; 41.7; 39.1; 34.4; 28.4. Maccспектр, *m/z*: 270 [M+H]⁺.

1-[(4-трет-Бутилфенил)метил]пиперидин-4-он (6). К суспензии 2.31 г (16.73 ммоль) К₂СО₃ в 50 мл CH₂Cl₂ добавляют 1.29 г (8.36 ммоль) гидрохлорида гидрата пиперидин-4-она и прикапывают при перемешивании 1.9 г (8.36 ммоль) 4-трет-бутилбензилбромида. Реакционную смесь перемешивают при комнатной температуре в течение ночи, затем выливают в 100 мл насыщенного водного раствора NaHCO₃ и экстрагируют CH_2Cl_2 (3 × 50 мл), объединенные органические экстракты сушат над безводным Na₂SO₄, фильтруют и упаривают при пониженном давлении. Остаток очищают методом колоночной хроматографии на SiO₂ (элюент CH₂Cl₂-МеОН, 5%). Выход 1.89 г (92%), прозрачное масло. Спектр ЯМР ¹Н (ДМСО-*d*₆), б, м. д. (*J*, Гц): 7.36 (2Н, д, J = 8.3, H Ar); 7.26 (2H, μ , J = 8.3, H Ar); 3.56 (2H, c, NCH₂Ar): 2.66 (4H. T. J = 6.1. H-3): 2.34 (4H. T. J = 6.1. H-2); 1.28 (9H, с, С(СН₃)₃). Спектр ЯМР ¹³С (ДМСО-*d*₆), δ, м. д. (Ј, Гц): 208.9; 149.8; 135.7; 128.9; 125.4; 60.8; 55.3; 52.7; 41.0; 34.6; 31.6.

Гидрохлорид 4,4-дифтор-1-окса-9-азаспиро[5.5]ундекана (7). Получение интермедиата *трет*-бутил4,4-дифтор-1-окса-9-азаспиро[5.5]ундекан-9-карбоксилата (условия v, схема 2). К раствору 1 г (3.71 ммоль) трет-бутил-4-оксо-1-окса-9-азаспиро[5.5]ундекан-9карбоксилата (5) в 80 мл абсолютного CH₂Cl₂ при 0°C прикапывают 1 мл (7.42 ммоль) диэтиламинотрифторида серы и перемешивают при комнатной температуре в течение 18 ч. Реакционную смесь выливают в 100 мл насыщенного водного раствора NaHCO3 и экстрагируют CH_2Cl_2 (3 × 50 мл), объединенные органические экстракты сушат над безводным Na₂SO₄, фильтруют и упаривают при пониженном давлении. Остаток очищают методом колоночной хроматографии на SiO₂ (элюент CHCl₃). Выход 0.43 г (40%), белые кристаллы, т. пл. 54–55°С. Спектр ЯМР 1 Н (ДМСО- d_{6}), δ, м. д. (*J*, Гц): 3.74 (2H, т, *J* = 5.6, CH₂); 3.66–3.55 (2H, м, CH₂); 3.01 (2H, т, J = 12.4, CH₂); 2.04–1.86 (4H, м, СН₂); 1.76 (2H, д, J = 13.9, CH₂); 1.52–1.43 (2H, м, CH₂); 1.39 (9H, с, С(СН₃)₃). Спектр ЯМР ¹³С (ДМСО-*d*₆), б, м. д. (*J*, Гц): 154.3; 122.6 (д, *J* = 28.6); 79.0; 71.5 (т, *J* = 4.5); 57.5 (т, *J* = 4.7); 42.8 (т, *J* = 21.7); 34.1 (т, *J* = 22.3); 34.0; 28.5. Macc-спектр, *m/z*: 293 [M+H]⁺.

Получение гидрохлорида 4,4-дифтор-1-окса-9-азаспиро[5.5]ундекана (7) из интермедиата трет-бутил-4,4-дифтор-1-окса-9-азаспиро[5.5]ундекан-9-карбоксилата (условия vi, схема 2). К раствору 0.4 г (1.37 ммоль) трет-бутил-4,4-дифтор-1-окса-9-азаспиро[5.5]ундекан-9-карбоксилата в 3 мл диоксана прикапывают 3 мл 3 М раствора HCl в диоксане, перемешивают в течение ночи, растворитель упаривают, полученный осадок перекристаллизовывают из *i*-PrOH. Выход 0.3 г (95%), белые кристаллы, т. пл. 120-121°С. Спектр ЯМР ¹Н (DCl-D₂O), б. м. д. (*J*. Ги): 3.79–3.76 (2Н. м. CH₂): 3.28– 3.07 (4Н, м, СН₂); 2.10 (2Н, д, J = 15.9, СН₂); 1.99 (4Н, т, J = 14.9, CH₂); 1.87–1.74 (2H, м, CH₂). Спектр ЯМР ¹³С $(DCl-D_2O + MeOD-d_4), \delta, м. д. (J, Гц): 122.9 (д, J = 5.1);$ 65.8; 54.0; 37.8 (т, J = 21.7); 35.6; 35.5; 29.0 (т, J = 23.0); 26.0. Масс-спектр, *m/z*: 193 [М+Н]⁺.

Изучение противотуберкулезной активности соединений 2а-і проведено в соответствии с ранее описанным протоколом.¹¹ Связывающие конфигурации лигандов предсказаны с помощью метода индуцированного соответствия (induced-fit docking), предполагающего структурную гибкость белка. Ячейка сетки стыковки рассчитана на основе позиционирования и размера референтного лиганда,¹⁸ присутствующего в файлах базы данных Protein Data Bank (PDB). В качестве эталонного белка-мишени выбрана кристаллическая структура MmpL3, полученная путем криоэлектронной микроскопии (PDB, 7WNX). Моделирование межмолекулярных взаимодействий выполнено с помощью программы Schrodinger Suite 2022-4.

Файл сопроводительных материалов, содержащий спектры $\text{ЯМР}^{-1}\text{H}$ и ^{13}C всех синтезированных соединений, доступен на сайте http://hgs.osi.lv.

Данная работа выполнена при финансовой поддержке Санкт-Петербургского государственного научноисследовательского института фтизиопульмонологии в рамках государственного задания Министерства здравоохранения Российской Федерации (№ 121112600145-2).

Спектры ЯМР зарегистрированы с использованием оборудования Центра коллективного пользования Российского технологического университета при поддержке Министерства науки и высшего образования Российской Федерации в рамках соглашения № 075-15-2021-689 от 01.09.2021 г., уникальный идентификационный номер 2296.61321X0010.

Список литературы

- Batista, V. F.; Pinto, D.; Silva, A. M. S. *Expert Opin. Drug* Discovery 2022, 17, 603.
- Hiesinger, K.; Dar'in, D.; Proschak, E.; Krasavin, M. J. Med. Chem. 2021, 64, 150.
- Zheng, Y.; Tice, C. M.; Singh, S. B. Bioorg. Med. Chem. Lett. 2014, 24, 3673.
- 4. Zheng, Y. J.; Tice, C. M. Expert Opin. Drug Discovery 2016, 11, 831.
- Wei, W.; Cherukupalli, S.; Jing, L.; Liu, X.; Zhan, P. Drug Discovery Today 2020, 25, 1839.
- 6. Talele, T. T. J. Med. Chem. 2020, 63, 13291.
- Moshnenko, N.; Kazantsev, A.; Chupakhin, E.; Bakulina, O.; Dar'in, D. *Molecules* 2023, 28, 4209
- Krasavin, M.; Lukin, A.; Bagnyukova, D.; Zhurilo, N.; Zahanich, I.; Zozulya, S.; Ihalainen, J.; Forsberg, M. M.; Lehtonen, M.; Rautio, J.; Moore, D.; Tikhonova, I. G. *Bioorg. Med. Chem.* 2016, 24, 5481.
- Lukin, A.; Kramer, J.; Hartmann, M.; Weizel, L.; Hernandez-Olmos, V.; Falahati, K.; Burghardt, I.; Kalinchenkova, N.; Bagnyukova, D.; Zhurilo, N.; Rautio, J.; Forsberg, M.; Ihalainen, J.; Auriola, S.; Leppanen, J.; Konstantinov, I.; Pogoryelov, D.; Proschak, E.; Dar'in, D.; Krasavin, M. *Bioorg. Chem.* 2018, *80*, 655.

- Lukin, A.; Chudinov, M.; Vedekhina, T.; Rogacheva, E.; Kraeva, L.; Bakulina, O.; Krasavin, M. *Molecules* 2022, 27, 4864.
- Krasavin, M.; Lukin, A.; Vedekhina, T.; Manicheva, O.; Dogonadze, M.; Vinogradova, T.; Zabolotnykh, N.; Rogacheva, E.; Kraeva, L.; Sharoyko, V.; Tennikova, T. B.; Dar'in, D.; Sokolovich, E. *Eur. J. Med. Chem.* **2019**, *166*, 125.
- Guardia, A.; Baiget, J.; Cacho, M.; Perez, A.; Ortega-Guerra, M.; Nxumalo, W.; Khanye, S. D.; Rullas, J.; Ortega, F.; Jimenez, E.; Perez-Herran, E.; Fraile-Gabaldon, M. T.; Esquivias, J.; Fernandez, R.; Porras-De Francisco, E.; Encinas, L.; Alonso, M.; Giordano, I.; Rivero, C.; Miguel-Siles, J.; Osende, J. G.; Badiola, K. A.; Rutledge, P. J.; Todd, M. H.; Remuinan, M.; Alemparte, C. J. Med. Chem. 2018, 61, 11327.
- 13. Domenech, P.; Reed, M. B.; Barry, C. E., 3rd. Infect. Immun. 2005, 73(6), 3492.
- 14. Williams, J. T.; Abramovitch, R. B. *Microb. Drug Resist.* (*Larchmont*, *N.Y.*, *U. S.*) **2023**, *29*(5), 190.
- 15. North, E. J.; Schwartz, C. P.; Zgurskaya, H. I.; Jackson, M. Expert Opin. Drug Discovery 2023, 18, 707.
- Togre, N. S.; Vargas, A. M.; Bhargavi, G.; Mallakuntla, M. K.; Tiwari, S. Int. J. Mol. Sci. 2022, 23, 10669.
- Lukin, A.; Bagnyukova, D.; Kalinchenkova, N.; Zhurilo, N.; Krasavin, M. *Tetrahedron Lett.* 2016, 57, 3311.
- O'Connor, C.; Patel, P.; Brady, M. F. *Isoniazid*; 2024. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; PMID: 32491549.
- Palomino, J. C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Antimicrob. Agents Chemother. 2002, 46, 2720.
- Hu, T.; Yang, X.; Liu, F.; Sun, S.; Xiong, Z.; Liang, J.; Yang, X.; Wang, H.; Yang, X.; Guddat, L. W.; Yang, H.; Rao, Z.; Zhang, B. *Structure* **2022**, *30*(10), 1395 e4.