В. Д. Дяченко, Э. Б. Русанов^а

СИНТЕЗ И КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 5-АМИНО-8-ИЗОБУТИЛ-7-ИЗОПРОПИЛ-6-ТИОКАРБАМОИЛ-4-ЦИАНО-2-АЗАБИЦИКЛО[2.2.2]ОКТ-5-ЕН-3-ТИОНА

Конденсацией изовалерианового альдегида с цианотиоацетамидом синтезирован 5-амино-8-изобутил-7-изопропил-6-тиокарбамоил-4-циано-2-азабицикло[2.2.2]окт-5-ен-3-тион, строение которого установлено с помощью РСА.

Ключевые слова: 5-амино-8-изобутил-7-изопропил-6-тиокарбамоил-4циано-2-азабицикло[2.2.2]окт-5-ен-3-тион, изовалериановый альдегид, цианотиоацетамид, конденсация, РСА.

Арилметиленцианотиоацетамиды, получаемые по реакции Кневенагеля [1–4], уже несколько десятилетий успешно используются химиками-синтетиками для получения серосодержащих гетероциклических соединений, среди которых доминируют функционально замещенные пиридинтионы [5–7]. В то же время алкилметиленцианотиоацетамиды до настоящего времени неизвестны [5].

С целью получения и изучения свойств алкилметиленцианотиоацетамидов нами изучена конденсация изовалерианового альдегида (1) с цианотиоацетамидом (2) в этаноле при 20 °С в присутствии морфолина. Обнаружено, что продуктом указанной реакции является 5-амино-8-изобутил-7-изопропил-6-тиокарбамоил-4-циано-2-азабицикло[2.2.2]окт-5-ен-3-тион (3), изоструктурный полученному нами ранее 5-амино-1,8,8-триметил-4,6-дициано-3-дицианометилен-2-азабицикло[2.2.2]окт-5-ену взаимодействии окиси мезитила с малононитрилом [8].

Вероятный механизм образования трициклической системы 3 представлен на приведенной ниже схеме.

Первоначально образуется алкен 4, как результат конденсации по Кневенагелю. В дальнейшем происходит его димеризация по Михаэлю, включающая образование карбаниона 5 и соответствующего аддукта 6. Последний циклизуется в замещенный пиперидинтион 7, претерпевающий под действием основания дальнейшую трансформацию через анионы 8 и 9 в трициклический имин 10, а он, в свою очередь, стабилизируется в виде структуры 3. Отметим, что арилметиленцианотиоацетамиды димеризуются по пути $[2_s+4_s]$ -циклоприсоединения в замещенные 3,4-дигидро-2Нтиопираны [4].

Строение соединения **3** было установлено РСА. Основные геометрические параметры молекулы **3** приведены в табл. 1, ее общий вид показан на рис. 1. В центральной трициклической каркасной системе все три

гетероцикла $N_{(1)}C_{(1-5)}$, $C_{(2-5,7,8)}$ и $N_{(1)}C_{(1,2,8,7,5)}$ имеют конформацию практически неискаженной твист-ванны. Модифицированные параметры Кремера–Попла [9] для данных гетероциклов составляют: S = 0.99, 1.00 и 0.93, θ = 89.49, 86.99 и 88.15°, ψ = 4.90, 3.07 и 2.65° (идеальной твистванне соответствуют параметры θ = 90.0° и ψ = 60·*n*, где *n* = 0, 1, 2...[9]). Атомы $N_{(1)}$, $N_{(3)}$ и $N_{(4)}$ имеют плоскотригональную конфигурацию связей – сумма валентных углов при каждом из них в пределах ошибки эксперимента составляет 360°. Группировка $S_{(1)}N_{(3)}C_{(9)}C_{(5)}C_{(7)}C_{(8)}N_{(4)}C_{(2)}$ планарна (максимальный выход атомов из среднеквадратичной плоскости не превышает 0.022 Å). При этом аминогруппы $N_{(3)}H_2$ и $N_{(4)}H_2$ развернуты относительно указанной плоскости лишь на 14.4 и 4.2° соот-ветственно. Распределение длин связей в группировке свидетельствует

Рис. 1. Общий вид молекулы 3 с нумерацией атомов

о существенной делокализации электронной плотности, обусловленной эффектами $n-\pi$ - и π - π -сопряжения. Так, связи $N_{(3)}$ - $C_{(9)}$ 1.328(4) Å и $N_{(4)}$ - $C_{(8)}$ 1.327(4) Å значительно укорочены по сравнению со стандартным для одинарной связи $C(sp^2)$ - $N(sp^2)$ значением 1.45 Å [10, 11]. Аналогичным образом связь $C_{(7)}$ - $C_{(9)}$ 1.423(4) Å короче значения 1.476 Å, типичного для одинарной связи $C(sp^2)$ - $C(sp^2)$ [12]. В то же время длина связи $C_{(7)}$ = $C_{(8)}$ 1.368(4) Å заметно превышает среднестатистическое значение двойной связи углерод-углерод (1.33 Å [11, 12]) и приближается к длине связи в ароматических соединениях (1.39 Å). Отметим, что и связь $C_{(9)}$ = $S_{(1)}$ длиннее связи $C_{(1)}$ = $S_{(2)}$ на 0.055 Å.

Таблица 1

Связь	<i>d</i> , Å	Угол	ω, град.
S(1)-C(9)	1.706(3)	C(1)-N(1)-C(5)	118.2(3)
S(2)-C(1)	1.651(3)	N ₍₁₎ -C ₍₁₎ -C ₍₂₎	108.9(2)
N(1)-C(1)	1.308(4)	N(1)-C(1)-S(2)	126.4(2)
N(1)-C(5)	1.467(4)	$C_{(2)}-C_{(1)}-S_{(2)}$	124.6(2)
N(2)-C(6)	1.140(4)	$C_{(8)}$ - $C_{(2)}$ - $C_{(1)}$	106.6(2)
N(3)-C(9)	1.328(4)	C ₍₈₎ -C ₍₂₎ -C ₍₃₎	108.2(2)
N(4)-C(8)	1.327(4)	$C_{(1)}-C_{(2)}-C_{(3)}$	107.0(2)
C(1)-C(2)	1.537(4)	C(2)-C(3)-C(4)	108.2(2)
$C_{(2)} - C_{(3)}$	1.580(4)	$C_{(3)}$ - $C_{(4)}$ - $C_{(5)}$	107.7(2)
C(2)-C(6)	1.462(5)	N ₍₁₎ -C ₍₅₎ -C ₍₇₎	108.0(2)
C(2)-C(8)	1.535(4)	N(1)-C(5)-C(4)	107.8(2)
$C_{(3)} - C_{(4)}$	1.542(4)	$C_{(4)}$ - $C_{(5)}$ - $C_{(7)}$	108.2(2)
C(4)-C(5)	1.542(4)	N(2)-C(6)-C(2)	174.6(3)
C ₍₅₎ –C ₍₇₎	1.513(4)	C ₍₅₎ -C ₍₇₎ -C ₍₈₎	110.9(2)
C ₍₇₎ –C ₍₈₎	1.368(4)	C ₍₂₎ -C ₍₈₎ -C ₍₇₎	113.0(2)
C(7)-C(9)	1.423(4)	$S_{(1)} - C_{(9)} - N_{(3)}$	117.1(2)
		$S_{(1)} - C_{(9)} - C_{(7)}$	124.5(2)
		N(3)-C(9)-C(7)	118.4(3)

Основные длины связей (d) и валентные углы (w) в молекуле соединения 3

Атом	x	у	Z	$U_{ m экв}$, Å 2
$\mathbf{S}_{(1)}$	1214(1)	6785(1)	906(1)	46(1)
S ₍₂₎	7944(1)	8398(1)	-1717(1)	54(1)
N(1)	5798(3)	6629(3)	-1811(2)	35(1)
N(2)	4200(4)	12125(3)	-1582(2)	54(1)
N(3)	2220(4)	4727(3)	-267(2)	44(1)
N(4)	2470(4)	9516(4)	-155(2)	43(1)
C ₍₁₎	5999(4)	8016(3)	-1748(2)	35(1)
C ₍₂₎	4112(4)	9262(3)	-1700(2)	32(1)
C ₍₃₎	3072(4)	9322(3)	-2633(2)	34(1)
C ₍₄₎	2887(4)	7638(3)	-2616(2)	34(1)
C ₍₅₎	3951(4)	6497(4)	-1747(2)	32(1)
C ₍₆₎	4243(4)	10850(4)	-1640(2)	39(1)
C ₍₇₎	3053(4)	7083(3)	-840(2)	30(1)
C ₍₈₎	3118(4)	8601(3)	-821(2)	32(1)
C ₍₉₎	2221(4)	6166(3)	-127(2)	33(1)
C(11)	231(4)	10998(4)	-3632(2)	50(1)
C(10)	1265(4)	10675(4)	-2712(2)	39(1)
C(12)	1282(7)	11548(7)	-4511(3)	76(1)
C(13)	-1617(6)	12255(6)	-3546(4)	79(1)
C(14)	3306(5)	7032(4)	-3580(2)	48(1)
C(15)	5274(7)	6706(7)	-3927(3)	84(2)
C(16)	2650(9)	5594(6)	-3565(3)	83(2)
H(1)	6688(40)	5802(36)	-1788(20)	37(9)
H _(3.1)	2774(40)	4343(35)	-788(23)	48(10)
H _(3.2)	1787(37)	4222(34)	124(21)	27(9)
H _(4.1)	2636(41)	10378(41)	-176(22)	45(11)
H _(4.2)	1936(50)	9068(46)	320(28)	77(14)
H ₍₃₎	3808(35)	9556(30)	-3139(20)	33(8)
H ₍₄₎	1652(37)	7725(30)	-2477(18)	30(7)
H(5)	4071(30)	5408(31)	-1753(16)	18(6)
H _(10.1)	1473(36)	11656(37)	-2662(19)	42(9)
H _(10.2)	471(36)	10446(31)	-2168(21)	38(8)
H(11)	33(38)	9964(37)	-3736(20)	49(9)
H _(12.1)	599(58)	11702(51)	-5091(34)	108(15)
H(12.2)	2473(62)	10717(55)	-4604(30)	109(16)
H _(12.3)	1557(56)	12502(54)	-4373(29)	97(16)
H _(13.1)	-1302(56)	13358(55)	-3470(30)	106(15)
H(13.2)	-2303(58)	12492(51)	-4124(33)	103(15)
H _(13.3)	-2285(57)	11987(50)	-2981(32)	100(16)
H (14)	2560(36)	7922(33)	-4063(20)	39(8)
H _(15.1)	5339(53)	6408(47)	-4524(31)	94(14)
H _(15.2)	5753(77)	7648(72)	-3862(40)	165(26)
H _(15.3)	6020(61)	5720(56)	-3533(32)	108(17)
H _(16.1)	2734(52)	5287(46)	-4201(31)	93(13)
H(16.2)	3367(53)	4717(49)	-3148(30)	89(14)
H _(16.3)	1360(64)	5779(54)	-3266(35)	113(19)

Координаты атомов ($\times 10^4)$ и эквивалентные изотропные тепловые параметры $U_{\rm _{3KB}}(\times 10^3)$ в структуре ${\bf 3}$

В кристалле молекулы соединения **3** объединены в центросимметричные димеры посредством водородных связей $S_{(1)} \cdots H_{(1)} - N_{(1)}$ (S··N 3.279(3), S···H 2.52(3), $N_{(1)} - H_{(1)} 0.83(3)$ Å, $S_{(1)} \cdots H_{(1)} - N_{(1)} 152(2)^{\circ}$). Упаковка молекул в кристалле показана на рис. 2.

Рис. 2. Кристаллическая упаковка (проекция *bc*) соединения **3**. Штриховыми линиями изображены водородные связи

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектр ЯМР ¹Н зарегистрирован на приборе Bruker WP-100 SY (100 МГц). ИК спектр записан на приборе ИКС-29 (в вазелиновом масле). Температура плавления определена на блоке Кофлера. Контроль за ходом реакции осуществлялся методом TCX на пластинках Silufol UV-254 в системе ацетон–гексан, 3:5, проявитель – пары иода.

Рентгеноструктурное исследование монокристалла соединения 3 с линейными размерами $0.30 \times 0.34 \times 0.44$ мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (λ MoK_a-излучение, графитовый монохроматор, отношение скоростей сканирования $\omega/2\theta$ 1.2, θ_{max} 24°, сегмент сферы $0 \le h \le$ 7, $-9 \le k \le 9$, $-16 \le l \le 16$). Для определения параметров элементарной ячейки и матрицы ориентации было использовано 22 рефлекса с 12 < 0 < 13°. Всего было собрано 2322 отражения, из которых 2081 являются независимыми (*R*-фактор усреднения 0.022). Кристаллы соединения **3** триклинные, a = 7.749(1), b = 8.873(9), c = 14.148(3) Å, $\alpha = 79.28(5)$, $\beta = 85.80(2)$, $\gamma = 71.65(5)^\circ$, V = 907.1(9) Å³, Z = 2, $d_{\text{выч}} = 1.232$ г/см³, $\mu = 0.296$ мм⁻¹, F(000) = 360, пространственная группа Р-1 (№ 2). Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием программ SHELXS и SHELXL93 [13, 14]. В уточнении использовано 1688 отражений (295 уточняемых параметров, число отражений на параметр 5.72, весовая схема $ω = 1/[σ^2(Fo^2) + (0.044P)^2 + 0.262],$ где $P = (Fo^2 + 2Fc^2)/3$, отношение максимального (среднего) сдвига к погрешности в последнем цикле 0.001(0)). Была включена поправка на аномальное рассеяние; учет поглощения в кристалле не проводился. Все атомы водорода выявлены объективно из разностного синтеза электронной плотности и уточнены изотропно. Окончательные значения факторов расходимости R1(F) 0.0356 и $R_W(F^2)$ 0.0836, GOF 1.080. Остаточная электронная плотность из разностного ряда Фурье 0.20 и -0.14 е/ Å³. Координаты атомов приведены в табл. 2.

5-Амино-8-изобутил-7-изопропил-6-тиокарбамоил-4-циано-2-азабицикло[2.2.2]окт-5-ен-3-тион (3). Смесь 1 г (10 ммоль) цианотиоацетамида (2), 1.1 мл (10 ммоль) изовалерианового альдегида (1) и 0.9 мл (10 ммоль) морфолина в 15 мл этанола перемешивают при 20 °C 1 ч и далее выдерживают в тех же условиях 48 ч. Образовавшийся осадок продукта (3) в виде желтых кубиков отфильтровывают, промывают этанолом и гексаном. Выход 1.2 г (71%), т. пл. 228–230 °C. ИК спектр (тонкий слой), v, см⁻¹: 3400, 3512 (NH, NH₂), 1635 (δ NH₂), 2250 (C=N). Спектр ЯМР ¹H (ДМСО-d₆), δ , м. д., *J* (Гц): 11.6 (1H, д, *J* = 5.3, NH); 9.0 (2H, уш. с, NH₂); 8.2 (2H, уш. с, NH₂); 4.9 (1H, д, *J* = 5.3, C₍₁₎H); 0.9–1.8 (18H, м, H_{алиф}). Найдено, %: C 56.85; H 7.03; N 15.12. C₁₆H₂₄N₄S₂. Вычислено, %: C 57.11; H 7.19; N 15.29.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. Я. Гринштейн, Л. А. Шеринь, Изв. АН ЛатвССР. Сер. хим., 469 (1963).
- 2. A. Gazit, P. Yaish, C. Gilton, A. Levitzki, J. Med. Chem., 32, 2344 (1989).
- 3. D. Villemin, B. Martin, Synth. Commun., 23, 2259 (1993).
- 4. J. S. A. Brunskill, A. De, D. F. Ewing, J. Chem. Soc., Perkin Trans. 1, 629 (1978).
- 5. В. П. Литвинов, *Успехи химии*, **68**, 817 (1999).
- 6. Я. Озолс, Б. Виганте, Г. Дубурс, *XГС*, 1603 (1994).
- 7. В. Д. Дяченко, Дис. докт. хим. наук, Москва, 1998.
- 9. Н. С. Зефиров, В. А. Палюлин, ДАН, **252**, 111, (1980).
- 10. R. W. Alder, N. C. Goode, T. J. King, J. M. Mellor, B. W. Miller, J. Chem. Soc. Chem. Commun., 173 (1976).
- 11. M. Burke-Laing, M. Laing, Acta Crystallogr., B32, 3216 (1976).
- 12. A. I. Kitaigorodskii, Molecular Crystals and Molecules, Acad. Press, New York, 431 (1973).
- 13. G. M. Sheldrick, *SHELXS-86*, Program for the Solution of Crystal Structures, University of Gottingen, Gottingen, Germany, 1986.
- 14. G. M. Sheldrick, *SHELXL-93*, Program for the Refinement of Crystal Structures, University of Gottingen, Gottingen, Germany, 1993.

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 91011, Украина e-mail: chem@lgpu.lg.ua Поступило в редакцию 18.09.2000

^aИнститут органической химии НАН Украины, Киев-94, 253660 e-mail: iochkiev@ukrpact.net