В. В. Кузнецов, А. Н. Новиков, И. С. Рублев, П. Ю. Марколенко

КОНФОРМАЦИОННЫЙ СОСТАВ 2,5-ДИЗАМЕЩЕННЫХ 1,3,2-ДИОКСАБОРИНАНОВ

С помощью данных спектров ЯМР ¹Н, а также расчетных методов ММ+ и АМ1 показано, что конформационное равновесие молекул 2,5-дизамещенных 1,3,2-диоксаборинанов, включающее две формы *софы*, смещено в сторону экваториального конформера. Установлены значения ΔG^0 для ряда заместителей у атома С₍₅₎ кольца.

Ключевые слова: 1,3,2-диоксаборинан, конформер, конформационное равновесие, *софа*, свободная конформационная энергия.

Известно, что шестичленные циклические эфиры борных кислот благодаря особенностям строения обладают мезоморфными свойствами (образуют смектическую и нематическую фазы в широком температурном интервале [1–3]) и являются удобными модельными соединениями для изучения влияния гетероатомов на изменение конформационных характеристик гетероаналогов циклогексана [4]. Ранее [4–8] было показано, что молекулы 2,5-дизамещенных 1,3,2-диоксаборинанов пребывают в конформации *софы* с преимущественно экваториальной алкильной, аллильной либо фенильной группами у атома C₍₅₎ кольца. Настоящая работа посвящена дальнейшему исследованию конформационного состава отдельных циклических борных эфиров этого ряда **1–10**, а также оценке свободной конформационной энергии заместителей у атома C₍₅₎ с помощью данных спектров ЯМР ¹Н и расчетных методов ММ+, а также AM1 – в приближении ограниченного метода Хартри–Фока – в рамках программного обеспечения HyperChem [9].

1 R = Et, **2** R = *i*-Pr, **3** R = CH₂=CH–CH₂, **4** R = Bu, **5** R = *i*-Bu, **6** R = *t*-Bu, **7** R = C₅H₁₁, **8** R = C₆H₁₁, **9** R = Ph, **10** R = PhCH₂

2-Метилзамещенные эфиры выбраны в качестве модельных для анализа конформационных свойств 2-изопропил- и 2-изобутилпроизводных [4–7], поскольку характер заместителя у атома бора не оказывает существенного влияния на параметры конформационного равновесия молекул обсуждаемых веществ [10].

Данные расчетов оптимальной геометрии и энергии молекул исследуемых соединений свидетельствуют о том, что на поверхности потенциальной энергии присутствуют только два минимума, отвечающие конформерам софы Се и Са, из которых первый является главным (табл. 1).

Расчетные различия в энергии этих форм (ΔE) в определенной мере зависят от характера и конформационного объема заместителя у атома C₍₅₎. Конформационные свойства равновесной формы C_e, описанные с помощью параметров складчатости Зефирова–Палюлина–Дашевской (S – степень складчатости, Θ и Ψ – полярные углы, характеризующие тип конформации [11]), близки к таковым для канонической конформации *софы*. Наиболее стабильная конформация вторичной алкильной группы у C₍₅₎ для формы C_e (эфиры **2**, **8**) предполагает асимметричную *гош*ориентацию β-углеродной связи (1), которая в рамках обоих расчетных методов на 0.3–0.5 ккал/моль устойчивее симметричной ориентации (2). Для фенильной группы эфира **9** "биссектральная" ориентация фенильного кольца (3) стабильнее "ортогональной" формы (4).

В случае эфира **10** соответствующее значение ΔE составляет 0.7 ккал/моль (MM+) в пользу "биссектральной" ориентации. Для формы C_a наиболее устойчивая конформация группы R предполагает "наружную" (от гетероциклического кольца) ориентацию β -атома углерода.

Таблица 1

Соеди-	ΔE , кка	л/моль	Параме	тры складчато	ости С _е *
нение	MM^+	AM1	S	Θ	Ψ
1	0.9	1.3	0.76	38.3	2.1
2	0.9	1.6	0.75	36.0	0.1
3	0.8	1.2	0.76	40.1	0.6
4	0.8	1.3	0.76	38.3	2.3
5	0.9	1.3	0.77	39.3	0.9
6	1.9	2.9	0.78	36.3	1.1
7	0.9	1.4	0.76	38.7	2.4
8	1.1	2.2	0.78	36.4	0.1
9	1.2	2.2	0.77	36.3	0.1
10	0.7	0.8	0.77	36.6	1.4

Различия в энергии (ΔE) конформеров С_e и С_a и параметры складчатости формы С_e молекул циклических борных эфиров 1–10

* Получены по данным оптимальной геометрии (эндоциклические торсионные углы) методом MM^+ . Для идеальной *софы* $\Theta = 45^\circ$, $\Psi = 0^\circ$ [11].

ΔG^0 , ΔG^0 ,	иль, ками поль, н. 1,3-диоксанов	14	0.67-0.81								0.98-1.10								1							
$\nabla Q_{Q_{i}}$	сред	13	1.0								1.2								0.3							
ΔG^{0} ,	ккал/моль	12	0.96		1.24		0.68		06.0		1.03		1.71		0.83		1.11		0.39		0.41		0.23		0.22	
2	2	11	0.838		0.894		0.763		0.824		0.854		0.950		0.807		0.871		0.663		0.671		0.598		0.595	
СВ, Ј, Гц	³ J _{BX}	10	4.2								4.5								3.9							
Эксп. КС	${}^{3}J_{AX}$	6	10.3								10.0								8.7							
СВ, Ј, Гц	³ J _{BX}	8	4.7	3.4	4.0	3.0	5.5	2.1	4.7	2.1	4.1	3.8	3.6	3.2	5.0	2.4	4.3	2.3	4.6	3.3	4.0	2.9	5.4	2.1	4.7	2.1
Расч. КС	${}^{3}J_{AX}$	7	11.5	2.3	11.4	3.9	11.7	3.7	11.3	5.4	11.6	3.7	11.3	3.7	11.6	3.3	11.3	4.8	11.5	2.4	11.4	4.0	11.7	3.8	11.3	5.5
Ур-нис	KCCB	9	A		ц		A		ц		A		Ъ		A		ы		۷		Ъ		V		р	
φ _{BX.}	град.	5	56.4	65.2			51.1	75.6			59.9	62.9			53.9	73.0			56.8	66.0			51.4	76.1		
φax.	град.	4	179.4	57.0			173.4	46.4			176.5	58.7			176.5	48.8			179.8	56.3			173.6	45.7		
Конфор-	мация	3	Ů	° C	ບໍ	C _a	రి	ບຶ	ථ	C_a	ڻ	C _a	ڻ	Ca	ථ	C,	ပံ	Ca	ပံ	C _a	ڻ	Ca	C°	° C	°,	C°
Метод	расчета	2	MM ⁺				AMI				MM ⁺				AMI				+ WW				AMI	_	_	_
Соеди-	нение	-	1								1								e							-

Рассчитанные торсионные углы между протонами, КССВ и параметры конформационного равновесия (N, ΔG^{0*}) молекул эфиров 1–10 при 293 К

Таблица 2

4	+WW	C,	179.4	56.4	A	11.5	4.7	10.2	4.3	0.838	0.96	1.0	0.91
		C_a	57.1	65.1		2.3	3.4						
		ပီ			Ы	11.4	4.0			0.894	1.24		
		C_a				3.9	3.0						
	AMI	, ٹ	173.4	51.2	A	11.7	5.5			0.763	0.68		
		Ca	46.3	75.6		3.7	2.1						
		ڻ			Ъ	11.3	4.7			0.824	0.90		
	<u> </u>	C_a				5.4	2.1						
S	₩W	ບໍ	179.3	56.8	A	11.5	4.6	10.8	4.3	0.905	1.31	1.4	-
		C_a	56.5	65.6		2.3	3.3						
		ပံ			ഥ	11.4	4.0			0.965	1.93		
		C,	_			4.0	2.9						
	AMI	ථ	173.9	51.5	A	11.7	5.4			0.984	1.24		
		C_{a}	46.3	75.7		5.4	2.1						
		ပံ			ц	11.3	4.7			0.894	1.24		
		C_a				5.4	2.1						
9	₩W	ပံ	176.5	59.4	A	11.6	4.2	11.0	4.1	0.931	1.51	1.3	1.36-1.97
		C_a	52.0	69.2		2.9	2.8						
		ථ			ы	11.3	3.6			1.030	I	-	
		C_a				4.6	2.6						
	AMI	ບໍ	176.6	53.7	A	11.6	5.1			0.848	1.00		
		C _a	41.3	80.0		4.5	1.7	•••••					
		ů			Ъ	11.3	4.4			0.922	1.44		
		C"				6.1	1.9						
7	↓WW	ပံ	179.4	56.4	V	11.5	4.7	10.3	4.0	0.821	0.89	0.0	1
		° C	57.2	65.0		2.2	3.4						
		ပံ			B	11.4	4.0			0.871	1.11		
		C ^a				3.9	3.0						
	AMI	ບໍ	173.5	51.2	A	11.7	5.5			0.746	0.63		
		° C	46.3	75.6		3.7	2.1						
		ڻ ڻ			ы	11.3 5.4	4.7 21			0.800	0.81		
-	-	5)	-		-	;	- i			-			

Окончание таблицы 2

14									1.03								ı								
13	1.1								2.0								1.6								
12	1.08	-	1.49		0.79		1.06		2.67		I		1.30		I		1.45		2.57		0.94		1.41		
=	0.864		0.928		0.795		0.860		0.990		1.091		0.904		1.000		0.924		0.988		0.835		0.918		
10	4.2								4.9								4.5								
6	10.5					•			10.1						,		10.8								
~	4.5	3.8	3.9	3.3	5.3	2.4	4.6	2.2	4.0	3.0	3.5	2.7	4.8	1.7	4.3	1.7	4.6	3.3	4.0	2.9	5.5	2.1	4.7	2.1	
2	11.6	2.0	11.4	3.7	11.7	3.4	11.3	5.1	11.1	2.1	10.8	3.9	11.2	3.9	10.7	5.8	11.5	2.3	11.4	4.0	11.7	3.6	11.3	5.4	
9	A		ы		A		ы		A		р		A		Ъ		A		Ъ		A		ഥ		
5	57.5	62.4			52.1	73.2			58.6	66.8			52.5	80.7			56.8	65.8			51.2	76.0			
4	177.2	59.1			174.7	48.6			178.1	55.3			174.9	41.5			179.6	56.6			173.5	46.7			
m	Č	C,	ů,	Ca	C,	C,	ر د	C,	C°	C,	Ů	C"	ပံ	C,	ر د	C,	ථ	°,	Ů	°,	ر د	C,	ပံ	Ca	
2	MM ⁺				AMI				⁺ MM				IMA				₩W				AMI				
-	×								6								10								

430

Неизвестные значения свободной конформационной энергии заместителей R (ΔG^0) можно оценить, опираясь на экспериментальные ([4, 6–8] и данные настоящей работы) и расчетные (стандартные) значения КССВ ${}^{3}J_{AX}$ и ${}^{3}J_{BX}$. Последние получены на основе торсионных углов φ между соответствующими протонами (данные оптимальной геометрии форм Се и С_а при наиболее устойчивой конформации заместителя R) по уравнениям [12] (А) и [13] (Б) с использованием значений электроотрицательности атомов и групп, замещающих рассматриваемый этановый фрагмент, из работ [14–16]. Оценка изменений значений ϕ_{AX} и ϕ_{BX} , а также КССВ ${}^{3}J_{AX}$ и ${}^{3}J_{BX}$ при свободном вращении заместителя R вокруг связи С₍₅₎-С_а на примерах эфиров 1, 4 и 9 показала, что максимальное отклонение среднего значения ф от отвечающего оптимальной конформации R (Дф) в рамках MM+ и AM1 не превышает 2.7°; соответствующее значение ΔJ для обоих использованных расчетных уравнений составляет не более 0.3 Гц. Для количественной оценки состояния конформационного равновесия применен известный подход, сравнивающий средневзвешенные (экспериментальные) и стандартные КССВ [17].

Полученные результаты (табл. 2) сопоставлены с известными значениями ΔG^0 R ближайших неборных аналогов – 1,3-диоксанов [18–21]. Нетрудно видеть, что в большинстве случаев значение ΔG^0 борных эфиров выше, чем в молекулах циклических ацеталей и кеталей; это обусловлено характерными различиями в ориентации неподеленных электронных пар атомов кислорода кольца [4, 10]. В то же время ΔG^0 *t*-Bu (эфир 6) практически совпадает с нижней границей значений в 1,3-диоксанах. Для самих борных эфиров наблюдаются практически неизменное значение ΔG^0 неразветвленных алкильных групп (0.9–1.0 ккал/моль), близкое к данным MM⁺ (табл. 1), и рост значений ΔG^0 *i*-Pr, *t*-Bu, *i*-Bu, Ph и Bn. В настоящее время сложно однозначно объяснить как достаточно высокие значения ΔG^0 трех последних заместителей, так и низкое значение свободной конформационной энергии аллильной группы (эфир 3). Можно лишь отметить, что конформационное равновесие молекул соединений 1–10 исключает заметное присутствие альтернативных гибких форм, не учитываемых в рамках рассматриваемой бинарной модели: по данным расчетов [10] все конформации, отличные от *софы* (*полукресло*, 1,4- и 2,5-*mвист*), реализуются лишь при условии фиксации торсионных углов в гетероатомной части кольца и поэтому отвечают точкам на восходящем участке кривой двухмерного сечения поверхности потенциальной энергии и не являются локальными минимумами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для уточнения отдельных экспериментальных КССВ были получены спектры ЯМР ¹Н описанных ранее [22] 2-изопропил-5-аллил- и 5-фенил-1,3,2-диоксаборинанов, которым соответствуют модельные эфиры **3** и **9**. Спектры измерены на приборе Bruker AM-250 для 10% растворов исследуемых соединений в CDCl₃ относительно TMC (внутренний стандарт).

СПИСОК ЛИТЕРАТУРЫ

- 1. В. С. Безбородов, *ЖОрХ*, **25**, 2168 (1989).
- 2. В. С. Безбородов, М. Ф. Гребенкин, В. И. Лапаник, *ЖОрХ*, **27**, 385 (1991).
- 3. H. Matsubara, K. Seto, T. Tahara, Sh. Takahashi, Bull. Chem. Soc. Jpn., 62, 3896 (1989).
- 4. А. И. Грень, В. В. Кузнецов, *Химия циклических эфиров борных кислот*, Наукова думка, Киев, 1988.
- 5. В. В. Кузнецов, А. И. Грень, А. В. Богатский, С. П. Егорова, В. И. Сидоров, *XГС*, 26 (1978).
- 6. В. В. Кузнецов, К. С. Захаров, И. В. Петровский, А. И. Грень, ХГС, 1107 (1990).
- 7. В. В. Кузнецов, А. Р. Калюский, А. И. Грень, *ЖОрХ*, **31**, 439 (1995).
- 8. В. В. Кузнецов, Е. А. Алексеева, А. И. Грень, *ЖОХ*, **67**, 423 (1997).
- 9. HyperChem 5.02. Trial version. http://www.hyper.com.
- 10. В. В. Кузнецов, ЖОХ, 69, 417 (1999).
- 11. N. S. Zefirov, V. A. Palulin, E. E. Dashevskaya, J. Phys. Org. Chem., 3, 143 (1990).
- 12. C. A. G. Haasnoot, F. A. A. M. de Leeuw, C. Altona, Tetrahedron, 36, 2783 (1980).
- 13. P. L. Durette, D. Horton, Org. Magn. Reson., 3, 417 (1971).
- 14. M. L. Huggins, J. Am. Chem. Soc., 75, 4123 (1953).
- 15. С. С. Бацанов, Успехи химии, 51, 1201 (1982).
- 16. Ф. Кери, Р. Сандберг, Углубленный курс органической химии, Химия, Москва, 1981, 1, 21.
- 17. Н. С. Зефиров, В. С. Благовещенский, И. В. Казимирчик, О. П. Яковлева, *ЖОрХ*, **7**, 594 (1971).
- 18. M. Anteunis, D. Tavernier, T. Borremans, Heterocycles, 4, 293 (1976).
- 19. Внутреннее вращение молекул, под ред. В. Дж. Орвилл-Томаса, Мир, Москва, 1977, 355.
- 20. А. И. Грень, в кн. *Вопросы стереохимии*. Межвед. науч. сб., Киевский ун-т, Киев, 1973, **3**, 60.
- Д. Л. Рахманкулов, Д. М. Сыркин, Р. А. Караханов, Е. А. Кантор, С. С. Злотский, У. Б. Имашев, Физико-химические свойства 1,3-диоксанов, Химия, Москва, 1980, 194.
- В. В. Кузнецов, Физико-химический ин-т АН УССР, Одесса, 1983. Деп. в ВИНИТИ 14.10.83, № 5646-83; РЖХим, № 5, Ж 343 (1984).

Поступило в редакцию 24.04.2000

Физико-химический институт им. А. В. Богатского НАН Украины, Одесса 65080 e-mail: physchem@paco.odessa.ua