Т. В. Головко, Н. П. Соловьева^а, О. С. Анисимова^а, В. Г. Граник

СИНТЕЗ И ИССЛЕДОВАНИЕ ЛАКТИМНЫХ ЭФИРОВ 3,4-ДИГИДРОКАРБОСТИРИЛА И 2,3,4,5-ТЕТРАГИДРОБЕНЗ[*b*]АЗЕПИНОНА-2

Алкилирование 3,4-дигидрокарбостирила и 2,3,4,5-тетрагидробенз[b]азепинона-2 диметилсульфатом и фторборатом триэтилоксония приводит к образованию соответствующих лактимных эфиров. Изучены реакции лактимных эфиров с различными соединениями, имеющими первичную аминогруппу, включая аммиак, алкил-, аралкил-, ариламины, аминокислоты и родственные соединения. Синтезированы новые гетероциклические соединения на основе лактимных эфиров.

Ключевые слова: дигидрокарбостирил, лактимный эфир, тетрагидробенз[*b*]азепинон, фторборат триэтилоксония, алкилирование.

Одним из плодотворных направлений развития химии гетероциклических соединений является трансформация лактамов в соответствующие лактимные эфиры, высокая реакционная способность которых в сочетании с их препаративной доступностью обеспечила новые подходы к синтезу различных амидиновых и енаминовых производных и на их основе - к получению разнообразных азагетероциклов [1]. В то же время данные по применению бензаннелированных лактимных эфиров, не имеющих функциональных заместителей в лактамном цикле, крайне ограничены. Из опубликованных исследований следует отметить: синтез О-этил-3,4-дигидрокарбостирила (1) из 2-хлорхинолина [2] и реакцией алкилирования 3,4-дигидрокарбостирила (2) фторборатом триэтилоксония [3]; получение тем же способом 1-этоксииндоленина (3) [4], О-этилбенз[1.4]тиазанона-3 (4) [3]; синтез 2-метокси-3,4-дигидрохинолина (5) [5] из соответствующего хлоримида. Получение 2-окси-4,5-дигидро-3Н-бензазепина (6) алкилированием соответствующего лактама – 2,3,4,5-тетрагидробензазепинона-2 (7) – фторборатом триэтилоксония описано только в работе [6]. Свойства полученных ранее лактимных эфиров 1, 3-6 описаны также весьма фрагментарно [4-6].

Целью настоящей работы явилось изучение реакций лактимных эфиров **1**, **6** с различными соединениями, имеющими первичную аминогруппу, включая аммиак, алкил-, аралкил-, ариламины, аминокислоты и родственные соединения. На первом этапе работы было изучено алкилирование лактамов **2** и **7**. Оказалось, что шестичленный лактам **2** не взаимодействует с диметилсульфатом при нагревании в дихлорэтане, в то время как семичленный аналог **7** в этих же условиях подвергается частично О-алкилированию, и, по данным спектров ЯМР ¹Н, через 8 ч образуется смесь соответствующего метилсульфатного комплекса **8а** и исходного лактама в соотношении 1:2. Фторборат триэтилоксония, обладающий более сильным алкилирующим потенциалом [7] по сравнению с диметилсульфатом, гладко алкилирует оба лактама с образованием соответствующих фторборатных солей **8b**,c, которые при щелочной обработке гладко превращаются в лактимные эфиры **1**, **6**.

В отличие от данных [5], согласно которым лактимный эфир **5** не реагирует с циклогексиламином, эфиры **1** и **6** в обычных условиях реагируют с различными аминами с образованием соответствующих амидинов. Так, взаимодействием эфиров **1**, **6** с аммиаком и различными аминами синтезированы амидины **9а–g**, **10а–h**:

9 *n* = 1, **10** *n* = 2; **9**, **10 a** R = H, **b** R = *n*-Bu, **c** R = PhCH₂, **d** R = гомовератрил, **e** R = Ph, **f** R = *p*-MeC₆H₄, **g** R = *p*-MeOC₆H₄, **10 h** R = CH₂CH₂NEt₂

Структуры полученных производных охарактеризованы данными спектроскопии ЯМР ¹Н, масс-спектрометрии (табл. 1 и 2). Интересно отметить, что в спектре ЯМР ¹Н соединения **9a** присутствует широкий сигнал при 6.60 м. д. интенсивностью 2H, относящийся к аминогруппе, что может быть связано с тем, что таутомерное равновесие $\mathbf{A} \leftrightarrow \mathbf{B}$ существенно сдвинуто в сторону аминоформы В. Для соединений 9е, 10е в спектрах, снятых в ДМСО-d₆ при комнатной температуре, наблюдаются сильно уширенные сигналы орто-протонов N-фенильных заместителей (~7.80 м. д.), причем уширение столь значительно, что не проявляется их мультиплетность, в то время, как *мета*-протоны проявляются в спектре в виде узких сигналов с четкой мультиплетностью. Для шестичленного соединения 9е уширение наблюдается и для ароматических протонов 6- и 8-Н, а также заметно уширены сигналы протонов группы 4-СН2 насыщенного кольца, в то время как протоны звена 3-CH₂ проявляются как узкий мультиплет. В спектре ЯМР ¹Н анализируемого раствора, снятого при повышенной температуре (70 °C), ранее уширенные сигналы заметно сужаются: орто-протоны группы N-Ph в этих условиях представлены уширенным дублетом с одновременным смещением его в более сильное поле. При охлаждении раствора спектр полностью соответствует исходному спектру. Такие изменения, вероятно, связаны с относительно медленным амино-иминным равновесием $(\mathbf{A} \leftrightarrow \mathbf{B}).$ Объяснить отмеченную выше зависимость формы сигналов в спектрах от температуры съемки влиянием затруднения "вращения" по связям PhN=C-

или N–Ph в иминоформе A нерезонно, так как в первом случае это отразилось бы на форме сигналов группы 3-CH₂ (в данном случае узкие мультиплеты, не меняющиеся при повышенной температуре съемки образца), а во втором случае были бы маловероятны изменения, произошедшие с формой сигналов 6- и 8-Н.

Лактимные эфиры вступают в реакции не только с первичными аминами, но и с гидроксиламином, фенилгидразином, цианамидом – в этих случаях образуются соответствующие производные **11а–с**, **12а–с**:

n = 1, 2; **a** X = NHPh; **b** X = OH; **c** X = CN

Достаточно гладко протекают и реакции с алифатическими аминокислотами с образованием амидинокислот **13а–d**, **14а–e**:

n = 1, 2; **a** Y = -CH₂-, **b** Y = -CH₂CH₂-, **c** Y = -(CH₂)₃-, **d** Y = -(CH₂)₅-, **e** Y = -CH(Me)-

Данные спектров ЯМР ¹Н соединений **11–14** представлены в табл. 1.

На следующем этапе работы была предпринята попытка синтеза гетероциклов на основе лактимных эфиров **1**, **6**. Взаимодействием эфира **1** с гидразином предполагалось получить соответствующий гидразон, который далее мог быть превращен в производные триазола и тетразола [1]. Однако в этом случае был выделен лишь азин **15**, охарактеризованный масс-спектром, спектром ЯМР ¹Н и данными элементного анализа.

В спектре ЯМР ¹Н соединения **15** присутствуют сигналы: 2.63 (2H, к, 3-H); 2.80 (2H, к, 4-H); 6.75–7.10 (4H, м, 5-, 6-, 7-, 8-H); 9.02 м. д. (1H, с, NH). Судя по масс-спектру, данное соединение имеет структуру димера. Поскольку в спектре ЯМР ¹Н наблюдается один набор сигналов, естественно предположить, что, во-первых, димер имеет симметричную структуру, а, во-вторых, в нем должны быть минимальными стерические взаимодействия, т. е., повидимому, имеет место *транс*-расположение бициклических фрагментов

неустойчиво: при стоянии раствора образуются продукты гидролиза.

В других исследованных процессах отчетливо проявились различия в ходе реакций в зависимости от величины насыщенного цикла [9] лактимных эфиров **1**, **6**. Так, при взаимодействии соединения **1** с антраниловой кислотой получен амидин **16**, который не циклизуется в условиях реакции (согласно масс-спектральным данным помимо M⁺ 266 наблюдается пик 391

Спектры ЯМР ¹Н и ¹³С синтезированных соединений

Соеди-	δ, м. д. (<i>J</i> , Гц), в ДМСО-d ₆							
1	2							
9a	2.25 (2H, т, 3-H); 2.64 (2H, т, 4-H); 6.60 (2H, шир. с, NH ₂); 6.72–6.78, 6.96–7.04 (два м по 2H, 5-, 6-, 7-, 8-H)							
9b	0.90 (3H, т, CH ₃ боковой цепи); 1.35 (2H, м, CH ₂ боковой цепи); 1,50 (2H, м, CH ₂ боковой цепи); 3.27 (2H, т, CH ₂ боковой цепи; NCH ₂ CH ₂ CH ₂ CH ₃); 2.24 (2H, т, 3-H); 2.61 (2H, т, 4-H); 6.86 (1H, уш. с, NH); 6.73 (1H, т, 6-H); 6.80 (1H, д, 8-H); 6.95 (1H, д, 5-H); 7.00 (1H,							
9d	т, 7-Н) 2.84 (2H, м, 3-H); 2.90 (2H, м, 4-H); 2.91 (2H, т, CH ₂ боковой цепи); 3.87 (2H, уш. т, CH ₂ боковой цепи; NCH ₂ CH ₂); 3.68 (3H, с, OCH ₃); 3.76 (3H, с, OCH ₃); 6.80–6.97 (2H, м); 7.06 (1H, расщепл. с); 7.10 (1H, т); 7.20–7.24 (2H, м); 7.70 (1H, д, Н аром.); 10.60 (1H, уш. с,							
9e	NH); 11.68 (1H, уш. с, NH ⁺) 2.48 (2H, т, 3-H); 2.74 (2H, уш. т, 4-H); 6.95 (1H, т, <i>p</i> -H аром.); 7.27 (2H, т, <i>m,m</i> '-H аром.); 7.94 (2H, сильно уш. с, <i>o,o</i> '-H аром.; NPh); 6.85 (1H, сильно уш. т, 6-H); 6.97 (1H, сильно уш. л. 8-H); 7.05 (1H л. 5-H); 7.09 (1H т. 7-H); 9.05 (1H сильно уш. с. NH)							
9f	2.46 (2H, т, 3-H); 2.73 (2H, уш. т, 4-H); 2.24 (3H, с, CH ₃); 7.80 (2H, сильно уш. с, <i>o</i> , <i>o</i> '-H аром.); 7.07 (2H, д, <i>m</i> , <i>m</i> '-H аром.; N–C ₆ H ₄ –CH ₃ - <i>p</i>); 6.84 (1H, уш. т, 6-H); 6.94 (1H, уш. д, 8-H); 7.03 (1H, д, 5-H); 7.08 (1H, т, 7-H); 9.00 (1H, сильно уш. с, NH)							
9g	2.46 (2H, т, 3-H); 2.74 (2H, т, 4-H); 3.72 (3H, с, OCH ₃); 6.86 (2H, д, <i>m</i> , <i>m</i> '-H аром.); 7.80 (2H, сильно уш. с, <i>o</i> , <i>o</i> '-H аром.; N–C ₆ H ₄ –OCH ₃ - <i>p</i>); 6.82 (1H, уш. т, 6-H); 6.92 (1H, уш. д, 8-H); 7.04 (1H, д, 5-H); 7.08 (1H, т, 7-H); 8.92 (1H, сильно уш. с, NH)							
10d	2.00 (4H, м, 3-, 4-H); 2.40 (2H, уш. т, 5-H); 2.80 (2H, т, CH ₂ боковой цепи); 3.44 (2H, уш. т, CH ₂ боковой цепи; NCH ₂ CH ₂); 3.71, 3.73 (3H, две OCH ₃); 6.72–6.79 (3H, м); 6.85 (1H, расщепл. с); 6.86 (1H, д); 7.00–7.09 (2H, м, <i>o</i> , <i>o</i> '-H аром., <i>m</i> -H аром., 6-, 7-, 8-, 9-H); 6.95 (1H, уш. суцурад. NH)							
10e	2.18 (2H, уш. м, 2-, 4-H); 2.25 (2H, уш. т, 5-H); 2.51 (2H, уш. т, 3-H); 6.81–6.88, 7.08–7.16 (два м по 2H, 6-, 7-, 8-, 9-H); 6.94 (1H, т, <i>p</i> -H аром.); 7.26 (2H, т, <i>m</i> , <i>m</i> '-H аром.); 7.80 (2H, сильно уш. с, <i>o</i> , <i>o</i> '-H аром.; NC ₆ H ₅); 9.10 (1H, сильно уш. с, NH)							
10f	2.16 (2H, м, 4-H); 2.24 (2H, т, 3-H); 2.50 (2H, т, 5-H); 2.24 (3H, с, CH ₃); 7.68 (2H, сильно уш. с, <i>o,o</i> '-H аром.); 7.07 (2H, д, <i>m,m</i> '-H аром.; N–C ₆ H ₄ –CH ₃ - <i>p</i>); 6.80–6.88, 7.08–7.16 (два м по 2H, 6-, 7-, 8-, 9-H); 9.00 (1H, сильно уш. с, NH)							
10h	2.20 (2H, м, 2-, 4-H); 2.46 (2H, τ, 3-H); 2.74 (2H, τ, 5-H); 1.27 (6H, τ, CH ₃ , CH ₃); 3.22 (4H, yui. κ, CH ₂ , CH ₂ ; N(CH ₂ CH ₃) ₂); 3.47 (2H, yui. τ, β-CH ₂); 4.10 (2H, yui. κ _B , α-CH ₂ ; NHCH ₂ CH ₂ N); 7.22–7.40 (4H, м, 6-, 7-, 8-, 9-H); 10.98 (2H, yui. c); 11.72 (1H, yui. c; NH, 2NH ⁺)							
11 a	3.00 (2H, т, 3-H); 3.15 (2H, т, 4-H); 6.92 (1H, т, <i>p</i> -H аром.); 7.00 (2H, д, <i>o</i> , <i>o</i> '-H аром.); 7.27 (2H, т, <i>m</i> , <i>m</i> '-H аром.); 9.00 (1H, c, NH; NHC ₆ H ₅); 7.13 (1H, т); 7.24 (1H, т); 7.28 (1H, д); 7.42 (1H, д, 5-, 6-, 7-, 8-H); 11.81 (1H, c, 1-NH); 12.60 (1H, уш. с, NH ⁺)							
11b	2.37 (2H, т, 3-H); 2.71 (2H, т, 4-H); 6.72 (1H, м); 6.98–7.06 (3H, м, 5-, 6-, 7-, 8-H); 8.78 (1H, с); 9.44 (1H, с, NH, OH)							
11c	2.80–3.00 (4H, м, 3-, 4-H); 6.95–7.05, 7.15–7.22 (два м по 2H, 5-, 6-, 7-, 8-H); 11.36 (1H, с, NH)							
13a*	2.65 (2H, т, 3-H); 2.77 (2H, т, 4-H); 3.89 (2H, с, CH ₂ боковой цепи); 6.90 (1H, т, 6-H); 7.00 (1H, д, 8-H); 7.07–7.17 (2H, м, 5-, 7-H)							
13b*	2.40 (2H, τ, 3-H); 2.69 (2H, τ, 4-H); 2.50 (2H, τ, β-CH ₂); 3.48 (2H, τ, α-CH ₂ ; NCH ₂ CH ₂ COOH); 6.80–6.95, 7.03–7.10 (Два м по 2H, 5-, 6-, 7-, 8-H)							
13c*	2.35 (2H, τ, 3-H); 2.68 (2H, τ, 4-H); 1.72 (2H, м, β-CH ₂); 2.27 (2H, τ, γ-CH ₂), ~3.30** (2H, α-CH ₂); (NCH ₂ CH ₂ CH ₂ -COOH); 6.80 (1H, τ, 6-H); 6.90 (1H, д, 8-H); 7.01 (1H, д, 5-H); 7.05 (1H, τ, 7-H)							
13d*	2.27 (2H, τ, 3-H); 2.63 (2H, τ, 4-H); 1.33 (2H, м); 1.52 (4H, м, β-, γ-, σ-CH ₂ боковой цепи); 2.19 (2H, τ, ω-CH ₂ боковой цепи); 3.27 (2H, τ, α-CH ₂ боковой цепи; NCH ₂ ,CH ₂ CH ₂ CH ₂ CCH ₂ COOH); 6.72–6.86, 6.95–7.04 (два м по 2H, 5-, 6-, 7-, 8-H)							
14a*	2.17 (2H, м, 4-H); 2.33 (2H, т, 3-H); 2.58 (2H, т, 5-H); 3.90 ^{***} (с, CH ₂ боковой цепи); 6.98 (1H, д, 9-H); 7.03 (1H, т, 7-H); 7.20–7.26 (2H, м, 6-, 8-H)							
14b*	2.08 (2H, м, 4-H); 2.16 (2H, т, 3-H); 2.50 (2H, т, 5-H); 2.46 (2H, т, β-CH ₂); 3.48 (2H, т, α-CH ₂ ; NCH ₂ CH ₂ COOH); 6.86–6.98, 7.10–7.20 (два м по 2H, 6-, 7-, 8-, 9-H)							
392								

1	2
14c*	2.10 (2H, м, 4-H); 2.12 (2H, т, 3-H); 2.47 (2H, т, 5-H); 1.78 (2H, м, β-CH ₂); 2.27 (2H, т,
	γ-CH ₂); 3.30 (2H, т, α-CH ₂ ; NCH ₂ CH ₂ CH ₂ COOH); 6.81–6.90, 7.06–7.16 (два м по 2H, 6-, 7-,
	8-, 9-H)
16*	2.71 (2Н, уш. т, 3-Н); 2.80 (2Н, уш. т, 4-Н); 7.80 (1Н, сильно уш. с, о-Н аром.); 7.99 (1Н, д);
	7.54 (1Н, т, <i>m,m</i> '-Н аром.); 7.14 (1Н, т, <i>p</i> -Н аром.; NC ₆ H ₄ -СООН- <i>o</i>); 6.94 (1Н, т, 6-Н); 7.03
	(1Н, д, 8-Н); 7.15 (1Н, д, 5-Н); 7.16 (1Н, т, 8-Н)
17* ⁴	1.96 (1Н, м, 6-Н); 2.20 (1Н, м, 6-Н); 2.30 (1Н, м, 7-Н); 2.58 (1Н, м, 7-Н); 2.71 (2Н, м, 5-Н);
	7.40 (3Н, м); 7.47 (1Н, м); 7.53 (1Н, м); 7.67 (1Н, д с расщепл.); 7.84 (1Н, т с расщепл.);
	8.16 (1H, д с расщепл., аром. протоны).
	$[28.4 (T, {}^{1}J_{CH} = 132) \text{ M } 28.5 (T, {}^{1}J_{CH} = 132, C_{(6)} \text{ M } C_{(7)}); 33.2 (T, {}^{1}J_{CH} = 132, C_{(5)}); 126.9 (C_{(11)}),$
	127.0, 127.1, 128.1, 129.1, 129.2 (С аром.), 121.2 (к, $C_{(12a)}$), 134.9 (д, $J_{CH} = 162, C_{(12)}$), 135.6
10.4	$[135.8 (M, C_{(4a)} H C_{(14a)}), 147.2 (K, C_{(8a)}), 156.4 (M, C_{(7a)}), 160.6 (c pacuenti, C=O)]$
18*	$2.40-2.30$ (2H, M, 5-H); $2.08-2.80$ (2H, M, 4-H); 5.05 , 5.98 (2H, $4Ba$ C, CH_2CN)*; $0.70-7.20$
	(411, m, 11 apom.), 9.00, 9.08 (111), 10.00, 10.20 (111) $[24.2, (^{1}L) = 125.8), 25.1, (^{1}L) = 126.6$ CH CN), 25.0, 25.2, (¹ L) = 125.0, C), 27.0, 27.5
	$[24.5 (J_{CH} = 155.6), 25.1 (J_{CH} = 150.0, C_{H2}CN), 25.0, 25.2 (J_{CH} = 125.7, C_{(3)}), 27.0, 27.5 (J_{CH} = 127.4 C_{CN}); 114.9, 115.4 (apont C): 116.6, 116.7 (CN); 121.4, 121.6 (apont C): 127.5$
	$(2C_{\rm H} = 127.4, C_{(4)}), 114.9, 115.4 (apom. C), 110.0, 110.7 (C(y), 121.4, 121.0 (apom. C), 127.5, 127.6 (apom. C); 128.4 (128.8 (apom. C)) (C(y), C(y), C(y); 123.8 (124.2) (C(y)); 138.1.$
	$137.9 (C_{(8a)}): 143.9. 151.5 (C_{(2)}): 158.4. 164.2 (CO)]$
19* ⁴	2.12 (2H, 5-H); 2.32 (2H, 4-H), 2.68, 2.98 (два шир, сигнала по 1H, 6-H); 4.30, 4.50 ((два
	ушир. сигнала по 1H, CH ₂ CN), 7.42–7.58 (4H, м, Н аром.)
	$[10.8 (T, {}^{1}J_{CH} = 138, CH_2CN); 16.8 (T, {}^{1}J_{CH} = 132.7, C_{(5)}); 24.4, 24.8 (два T, {}^{1}J_{CH} = 129.0, C_{(4)})$
	и C ₍₆₎); 110.7 (т, ${}^{2}J_{CN,CH2} = 11$, CN); 119.0, 123.6, 125.0, 126.3 (четыре д, C ₍₇₎ , C ₍₈₎ , C ₍₉₎ ,
	$C_{(10)}$; 128.6 (M, $C_{(6a)}$); 131.8 (M, $C_{(10a)}$); 140.2 (T, ${}^{2}J_{2-C,CH2} = 8.4, C_{(1)}$); 151.4 (M, $C_{(4a)}$)]
*]	Подвижные протоны групп NH и СООН участвуют в быстром обмене между собой
	и с водой растворителя и образуют в спектре общий интенсивный сильно
	уширенный сигнал (3.30–5.50 м. д.).
**	Сигнал протонов α-CH2 частично перекрывается интенсивным сигналом воды
	растворителя (3.30 м. д.).

*** Интенсивность сигнала не указана, так как на него частично накладывается сигнал воды растворителя.

*⁴ В квадратных скобках приведены данные спектров ЯМР ¹³С.

*⁵ Минорным формам соответствуют сигналы группы CH₂CN при 3.67 и 3.87 м. д.; суммарная интегральная интенсивность четырех сигналов протонов группы CH₂CN соответствует 2H.

М⁺248, однако количество этого вещества незначительно и оно может образовываться в условиях съемки масс-спектра). В спектре ЯМР ¹Н соединения 16 (табл. 1) присутствует сильно уширенный (мультиплетность не проявляется) сигнал *орто*-протона N-(*о*-карбокси)фенильного заместителя при 7.80 м. д. При съемке спектра при 70 °С сигнал заметно сужается, не меняя своего положения. Подвижные протоны при гетероатомах наблюдаются в виде общего сигнала при 3.60 м. д. (из-за быстрого обмена между собой и с водой растворителя). Значительно уширен мультиплет группы 3-CH₂ при 2.71 м. д., в меньшей степени – мультиплет группы 4-CH₂ при 2.80 м. д. Такое уширение сигналов характерно для амидинов из-за возможной син-анти-изомеризации относительно двойной связи C=N-. Процесс изомеризации ускоряется при нагревании, и при съемке спектра при повышенной температуре сигналы становятся узкими. Следует отметить, что в преобладающей конформации протоны группы 3-CH₂ пространственно сближены с N-арильными заместителями, о чем свидетельствует эксперимент по ядерному эффекту Оверхаузера (ЯЭО): облучение сигналов протонов группы 3-СН₂ (2.71 м. д.) вызывает заметное увеличение интенсивности мультиплетов мета-393 протонов фрагмента N–C₆H₄–СООН-*р* при 7.59 (на 30%) и 7.99 м. д. (на 4%). Эффект для *орто*-протона не наблюдается из-за значительного уширения сигнала последнего (см. выше). Облучение сигнала группы 4-CH₂ при 2.80 м. д. приводит к увеличению интенсивности сигнала 5-Н при 7.15 м. д. (д) на 10%.

Иная картина наблюдается при проведении реакции лактимного эфира **6** с антраниловой кислотой. В этом случае гладко и с высоким выходом образуется 6,7,13,14-5H-тетрагидробенз[*f*]азепино[1,2-b]хиназолинон-13 (**17**), строение которого следует из данных спектров ЯМР ¹H и ¹³C (табл. 1) и масс-спектра.

Поскольку конденсация семичленного лактимного эфира 6 с антраниловой кислотой, приводящая к образованию тетрацикла 17, проходит в более жестких условиях, нежели шетичленного лактимного эфира 1 (см. табл. 3), нами осуществлены реакции конденсации с антраниловой кислотой соединения 1 в условиях получения тетрацикла 17 и соединения 6 в условиях получения амидина 16, а также изучены реакционные массы методом спектроскопии ЯМР ¹Н.

Согласно спектру ЯМР ¹Н реакционной массы семичленного производного (в ДМСО- d_6), в исследуемом растворе помимо сигналов самого тетрацикла **17** присутствуют сигналы только исходных соединений (лактимного эфира **6** и антраниловой кислоты) и этилового спирта.

Иная ситуация наблюдается при анализе реакционной массы, образующейся при получении шестичленного производного. В спектре ЯМР ¹Н наряду с интенсивными сигналами, отвечающими нециклическому производному **16**, отчетливо идентифицируются малоинтенсивные сигналы циклического производного (аналогично соединению **17**) в соотношении 10:1. В растворе также присутствуют в небольшом количестве как исходные соединения **1** и антраниловая кислота, так и этиловый спирт. Таким образом, и в случае шестичленного лактимного эфира **1** в ходе исследуемой реакции отмечается образование тетрациклического продукта, хотя его содержание существенно меньше, нежели нециклического соединения **16**.

Различия в поведении лактимных эфиров 1 и 6 сохраняются и при изучении их реакций с гидразидом циануксусной кислоты – в случае эфира 1 образуется соединение 18, которому соответствуют данные масс-спектра (табл. 2).

Соединение **18**, судя по числу сигналов метиновых протонов фрагмента CH_2CN в спектре ЯМР ¹Н, представляет собой смесь четырех ротамеров. Спектры ЯМР 1Н двух основных ротамеров приведены в табл. 1. Нагревание анализируемого раствора приводит к упрощению спектра: в спектре раствора, нагретого до 60 °C, отчетливо наблюдаются сигналы двух ротамеров (на примере группы $CH_2CN - 3.62$ и 3.93 м. д.). Спектр ЯМР ¹Н охлажденного раствора **18** полностью соответствует исходному спектру.

Таблица 2

N	Іасс-спектр	ры синтези	рованных	соединений*

Соеди- нение	m/z (I, %)
9b	202 M ⁺ (93), 201 [M–H] ⁺ (44), 173 [M–C ₂ H ₅] ⁺ (60), 159 [M–C ₃ H ₇] ⁺ (80), 146 [C ₄ H ₈] ⁺ (100), 130 [M–C ₄ H ₁₀ N] ⁺ (56), 118 [CH ₂ CHC ₆ H ₄ NH] ⁺ (10), 106 [CH ₂ C ₆ H ₄ NH ₂] ⁺ (54), 103 [CH ₂ CHC ₆ H ₄] ⁺ (20), 77 [Ph] ⁺ (21)
9d	$\begin{array}{l} 310 \ M^{+}(15), \ 164 \ [CH_{2}{=}CHC_{6}H_{3}(OCH_{3})_{2}]^{+}(100), \ 159 \ [M-CH_{2}C_{6}H_{3}(OCH_{3})_{2}]^{+}(20), \\ 151 \ [CH_{2}C_{6}H_{3}(OCH_{3})_{2}]^{+}(10), \ 146 \ [M-CH_{2}{=}CHC_{6}H_{3}(OCH_{3})_{2}]^{+}(23), \\ 130 \ [M-NH(CH_{2})_{2}C_{6}H_{3}(OCH_{3})_{2}]^{+}(15), \ 106 \ [CH_{2}C_{6}H_{4}NH_{2}]^{+}(8), \ 77 \ [Ph]^{+}(7) \end{array}$
9f	236 M^+ (70), 235 $[M-H]^+$ (100), 130 $[M-NH-C_6H_4CH_3]^+$ (8), 117 $[M-H_2C-NC_6H_4CH_3]^+$ (10), 91 $[CH_2Ph]^+$ (10)
12a	251 M ⁺ (100), 159 [M–NHPh] ⁺ (8), 144 [M–N ₂ H ₂ Ph] ⁺ (68), 133 [M–C=N–NHPh] ⁺ (10), 106 [CH ₂ C ₆ H ₄ NH ₂] ⁺ (17), 93 [PhNH ₂] ⁺ (19)
12c	185 M ⁺ (80), 157 [M–C ₂ H ₄] ⁺ (5), 144 [M–NHCN] ⁺ (100), 116 [M–NHCN–C ₂ H ₄] ⁺ (15), 106 [CH ₂ C ₆ H ₄ NH ₂] ⁺ (13), 91 [C ₆ H ₄ NH] ⁺ (8), 77 [Ph] ⁺ (10)
13b	218 M ⁺ (90), 217 [M–H] ⁺ (57), 173 [M–COOH] ⁺ (100), 159 [M–CH ₂ COOH] ⁺ (22), 146 [M–CH ₂ CHCOOH] ⁺ (60), 130 [M–NHCH ₂ CH ₂ COOH] ⁺ (50), 106 [CH ₂ C ₆ H ₄ NH ₂] ⁺ (40), 77 [Ph] ⁺ (20)
16	266 [M] ⁺ (75), 265 [M–H] ⁺ (30), 247 [M–H–H ₂ O]+ (80), 221 [M–COOH]+ (100), 130 [M–NHC ₆ H ₄ COOH]+ (12), 116 [M–HC–NC ₆ H ₄ COOH]+ (15), 77 [Ph]+ (15)
17	262 M ⁺ (80), 261 [M–H] ⁺ (100), 247 [M–CH ₃] ⁺ (7), 234 [M–CO] ⁺ (10), 233 [M–H–CO] ⁺ (7), 205 [M–H–CO–C ₂ H ₄] ⁺ (6), 89 [C ₇ H ₅] ⁺ (7)
18	228 $[M]^+(70)$, 227 $[M-H]^+(40)$, 210 $[M-H_2O]^+(10)$, 188 $[M-CH_2CN]^+(100)$, 160 $[M-COCH_2CN]^+(14)$, 146 $[M-NCOCH_2CN]^+(19)$, 143 $[M-H-NH_2COCH_2CN]^+(23)$, 130 $[M-H_2NNCOCH_2CN]^+(55)$, 118 $[M-CHNNHCOCH_2CN]^+(12)$, 106 $[CH_2C_6H_4NH_2]^+(12)$, 77 $[Ph]^+(15)$
19	224 $[M]^+$ (100), 223 $[M-H]^+$ (43), 209 $[N-CH_3]_+$ (16), 196 $[M-C_2H_4]^+$ (20), 184 $[M-CH_2CN]^+$, 168 $[M-C_2H_4-N_2]^+$ (10), 157 $[M-CH_2CN-HCN]^+$ (12), 143 $[M-CH_2CN-CHN_2]^+$ (10), 130 $[M-NCCH_2C_2H_2N_2]^+$ (45), 116 $[M-NCCH_2CHN_2-HCN]^+$ (12), 103 $[M-CH_2CNC_2H_2N_2-HCN]^+$ (20), 77 $[Ph]^+$ (15)

^{*} Масс-спектр ДХИ: **14b** – [МН]⁺ 233, **14c** – [МН]⁺ 247.

Co-	Молярное	Условия		Co-	Молярное	Условия		
еди-	соотно-	реакции		еди-	соотно-	реакции		
не-	шение	Время,	T °C	не-	шение	Время,	T °C	
ние	1 (6) : амин	МИН	1, C	ние	1 (6) : амин	МИН	1, C	
9c	1:1.03	40	120-125	10h	1:1	90	~170	
9d	1:1	60	155-160	11a	1:1	180	195-200	
9e	1:1	45	~200	11c	1:0.86	30	~100	
9f	1.02:1	60	~130	12a	1:1	180	195-200	
9g	1:1	60	~160	12c	1:0.86	30	~100	
10c	1:1.03	40	120-125	16	1:0.83	10	~100	
10d	1:0.83	60	125-130	17**	1:0.78	40	~110	
10e	1:1	45	~200	18	1:1	30	95-100	
10f	1.02:1	60	~150	19	1:1	20	95-100	
10g	1:1	60	~160					

Условия реакции лактимных эфиров с аминами*

* Для соединений **9е-g** и **10е-g** реакцию проводят в присутствии каталитических количеств *p*-TsOH.

** Реакционную массу затем нагревают 15 мин при 130 °С до полного исчезновения антраниловой кислоты (по TCX).

Аналогичная сложная ситуация наблюдается для соединения **18** и в его спектре ЯМР ¹³С. Как и в случае спектра ЯМР ¹Н, в спектре ЯМР ¹³С для ряда сигналов присутствует учетверенный набор. Для характеристики исследуемого соединения приводим сигналы двух преобладающих ротамеров. Как и в случае спектров ЯМР ¹Н съемка раствора, нагретого до 60 °С, приводит к упрощению спектра ¹³С, и в нем наблюдаются сигналы двух форм. Спектр ЯМР ¹³С охлажденного раствора полностью идентичен начальному спектру.

Таким образом, приведенные выше спектральные характеристики однозначно указывают на то, что соединение **18** является бициклом. Однако при использовании в этой реакции семичленного лактимного эфира **6** протекает циклизация с участием иминоэфирного и гидразидного фрагментов с образованием 1-цианометил-4H,5,6-дигидро-1,2,4-триазоло[4,3-*a*]бенз[*f*]азепина (**19**). Строение трицикла **19** следует из данных масс-спектра (табл. 2) и спектров ЯМР ¹Н и ¹³С (табл. 1).

К особенностям спектра ЯМР ¹Н относятся очень широкие сигналы метиленовых протонов семичленного цикла: 2.12 (2H, 5-H), 2.32 м. д. (2H, 4-H) и два равноинтенсивных широких сигнала при 2.68 и 2.98 м. д. (по 1Н каждый, 6-H). Метиленовые протоны фрагмента CH₂CN в спектре представлены также двумя сильноуширенными сигналами при 4.30 и 4.50 м. д. (по 1Н каждый).

При добавлении к анализируемому раствору 2 капель DCl/D₂O наблюдается заметное уменьшение интенсивности последних сигналов (интенсивность остальных сигналов остается неизменной), что связано с дейтерообменом кислых протонов группы CH₂CN. В спектре, снятом при 70 °C,

Таблица 4

Соеди-	Брутто-	<u>H</u>	<u>Найдено, %</u> Вычислено, %		T Q	Растворитель	Вы-
нение*	формула	С			1. пл., °С	для перекри- сталлизании	ход, %
1	2	3	4	5	6	7	8
9a	$C_9H_{10}N_2$	$\frac{73.99}{73.94}$	<u>6.83</u>	<u>19.35</u> 19.16	109–112	Гептан	70
9b	$C_{13}H_{18}N_2$	<u>77.22</u> 77.18	<u>9.00</u> 8.97	<u>13.97</u> 13.85	58–60	Гептан	77
9c	$C_{16}H_{16}N_2$	<u>81.38</u> 81.32	<u>6.90</u> 6.82	<u>11.77</u> 11.85	130–133	Гептан	75
9d	$C_{19}H_{22}N_2O_2\bullet HCl$	<u>65.96</u> 65.79	<u>6.87</u> 6.68	<u>8.25</u> 8.08	233–234.5	Этанол	79
9e	$C_{15}H_{14}N_2$	<u>80.78</u> 81.05	<u>6.44</u> 6.35	$\frac{12.64}{12.60}$	160–162	Пропанол-2	~100
9f	$C_{16}H_{16}N_2$	<u>81.15</u> 81.32	<u>6.93</u> 6.83	<u>11.86</u> 11.85	165–167	Гептан	85
9g	$C_{16}H_{16}N_2O$	<u>76.01</u> 76.16	<u>6.46</u> 6.39	<u>11.11</u> 11.10	181-182	Пропанол-2	87
10a	$C_{10}H_{12}N_2$	$\frac{74.90}{74.96}$	<u>7.72</u> 7.55	<u>17.47</u> 17.49	124–127	Гептан	72
10b	$C_{14}H_{20}N_2$	77.56 77.73	<u>9.57</u> 9.32	<u>12.66</u> 12.95	69–72	Гептан	73
10c	$C_{17}H_{18}N_2$	81.44 81.56	7.63 7.25	<u>11.01</u> 11.19	123-125	Гептан	~100
10d	$C_{20}H_{24}N_2O_2$	74.00 74.04	7.51 7.46	<u>8.61</u> 8.64	121-123	33% водный пропанол-2	15
106	$C_{16}H_{16}N_2$	81.57 81.32	<u>7.01</u> 6.82	<u>11.52</u> 11.85	143-147	Гептан	56
101 10g	$C_{17}H_{18}N_2$	81.56 76.38	$\frac{7.32}{7.25}$	$\frac{11.24}{11.19}$	140-147.5	Гептан	55
10g	C. H. N. 2HCl	76.66 57.90	6.81 8.20	$\frac{10.54}{10.52}$	236-239	Ацетонитрил	54
11a	C ₁₆ H ₂₅ N ₃ •2HCl	57.83 65.98	8.19 5.70	12.64 15.65	230-237	Этанол	76
11b		<u>65.90</u> <u>65.81</u> 66.55	5.89 6.18	15.35 17.28	126-129	Ацетонитрил	90
11c	C10H9N3	66.65 70.06	6.22 5.43	17.27 24.45	183-185	Пропанол-2	83
12a	C ₁₆ H ₁₇ N ₃ •HCl	70.15 66.71	5.30 6.51	24.55 14.66	245–247	Этанол	42
12b	$C_{10}H_{12}N_2O$	66.77 <u>68.00</u>	6.30 <u>6.90</u>	14.60 15.82	(разл. с 205) 121–122	Ацетонитрил	75
12c	$C_{10}H_9N_3$	68.18 <u>70.06</u>	6.86 <u>5.43</u>	15.90 <u>24.45</u>	183–185	Пропанол-2	83
13a**	$C_{11}H_{12}N_2O_2{}\bullet H_2O$	70.15 <u>59.62</u>	5.30 <u>6.26</u>	24.55 <u>12.62</u>	239–239.5	Вода	78
13b	$C_{12}H_{14}N_2O_2$	59.45 <u>66.13</u>	6.35 <u>6.41</u>	12.61 <u>12.80</u>	236–237	Вода	97
13c	$C_{13}H_{16}N_2O_2$	66.04 <u>67.14</u>	6.47 <u>6.98</u>	12.84 <u>11.80</u>	265.5-270.5	Метанол	80
13d	$C_{15}H_{20}N_2O_2\bullet$	67.22 <u>68.09</u> 68.24	6.94 <u>8.55</u>	12.06 <u>9.20</u>	85–89	Изопропанол	100
14a	•0.5 <i>i</i> -PrOH C ₁₂ H ₁₄ N ₂ O ₂	<u>66.15</u>	8.33 <u>6.61</u>	9.65 <u>13.10</u>	215-217	96% водный	78

Характеристики синтезированных соединений

397

Окончание таблицы 4										
1	2	3	4	5	6	7	8			
14b***	$C_{13}H_{16}N_2O_2\bullet H_2O$	<u>62.27</u> 62.38	<u>7.28</u> 7.25	<u>11.17</u> 11.19	136–140	Вода	77			
14c	$C_{14}H_{18}N_2O_2\bullet i$ -PrOH	<u>66.54</u> <u>66.64</u>	<u>8.43</u> 8.55	<u>9.49</u> 9.14	195–196	Пропанол-2	97			
14d	$C_{16}H_{22}N_2O_2$	$\frac{70.22}{70.04}$	$\frac{8.48}{8.08}$	$\frac{10.33}{10.21}$	165–167	ДМФА	100			
14e	$C_{13}H_{16}N_2O_2$	<u>66.86</u> 67.22	<u>7.01</u> 6.94	<u>12.14</u> 12.06	213–216	ДМФА	26			
15	$C_{18}H_{18}N_4$	<u>74.14</u> 74.45	<u>6.29</u> 6.25	<u>19.54</u> 19.30	214–217.5	Ацетонитрил	80			
16	$C_{16}H_{14}N_2O_2$	71.86 72.16	$\frac{5.37}{5.30}$	$\frac{10.54}{10.52}$	207.5-210.5	ДМФА	94			
17	$C_{17}H_{14}N_2O$	<u>77.61</u> 77.84	<u>5.70</u> 5.38	<u>10.76</u> 10.68	160–161	Пропанол-2	67			
18	$C_{12}H_{12}N_4O$	<u>63.08</u> 63.14	<u>5.05</u> 5.29	<u>24.61</u> 24.55	160–162	Ацетонитрил	96			
19	$C_{13}H_{12}N_4$	<u>69.50</u> 69.63	<u>5.50</u> 5.39	<u>25.11</u> 24.99	182–184	Пропанол-2	89			

* Соединение **9d** – Cl. Найдено %: 10.30. Вычислено, %: 10.22. **10h** – Cl. Найдено %: 21.36. Вычислено, %: 21.34. **11a** – Cl. Найдено %: 13.01 Вычислено, %: 12.95. **12a** – Cl. Найдено %: 12.03. Вычислено, Cl, %: 12.32.

** H₂O. Найдено, %: 7.96. Вычислено, %: 8.10.

*** H₂O. Найдено, %: 7.70. Вычислено, %: 7.20.

наблюдается заметное сужение сигналов протонов групп 4-CH₂ и 6-CH₂, а для протонов группы 5-CH₂ (2.11 м. д.) проявляется их характерная мультиплетность (квинтет). Форма сигналов протонов группы CH₂CN также претерпевает существенное изменение – данные протоны представлены синглетом при 4.34 м. д. интенсивностью в две протонные единицы. Мультиплетность ароматических протонов в интервале 7.42–7.58 м. д. (4H) практически не изменяется при нагревании исследуемого раствора.

Спектр ЯМР ¹³С соединения **19** хорошо согласуется с предложенной структурой. В отличие от спектра ЯМР ¹Н все сигналы в спектре ЯМР ¹³С узкие, что позволяет предположить, что уширение сигналов в протонном спектре связано с замедленной инверсией семичленного цикла. Большая конформационная свобода семичленного кольца, возможно, и является причиной различной реакционной способности лактимных эфиров **1** и **6**, рассмотренной на примере их реакций с антраниловой кислотой и гидразидом циануксусной кислоты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР ¹Н записаны на спектрометре фирмы Varian Unity+400 (рабочая частота 400 (¹H) и 100 МГц (¹³C) в ДМСО-d₆). Внутренний стандарт ТМС. Масс-спектры ЭУ и ДХИ сняты на приборе SSQ–710 Finnigan–MAT при непосредственном вводе образца в источник ионов (ионизирующее напряжение 70 эВ, температура ионизационной камеры 150 °C). Температуры плавления определены на нагревательном столике Boetius.

Физико-химические и спектральные характеристики синтезированных соединенийй приведены в табл. 1, 2 и 4.

Алкилирование 1H,2,3,4,5-тетрагидробенз[с]азепинона-2 диметилсульфатом. Смесь 1.61 г (0.01 моль) соединения 7 и 2.32 г (1.72 мл, 0.018 моль) диметилсульфата в 15 мл дихлорэтана кипятят 3 ч, добавляют 1.2 мл диметилсульфата и кипятят еще 5 ч. Реакционную массу упаривают, остаток промывают гептаном, затем эфиром и сушат в вакууме, получают смесь соединений **8a** и **7** в соотношении 1:2 (по данным спектра ЯМР ¹Н).

Общая методика получения соединений 9с-g, 10с-h, 11а,с, 12а,с, 16–19 (табл. 3). Смесь лактимного эфира 1 или 6 и соответствующего амина нагревают до температуры начала конденсации, выдерживают при этой температуре с отгонкой образующегося спирта до окончания реакции (прекращение отгонки). Реакционную массу растирают с гептаном (для соединений 9с,е-g, 10с,е-g, 11с, 12с, 16), или с гептаном затем с абсолютным эфиром (для соединений 10d, 18, 19), или с пропанолом-2 (для соединения 17). Соединения 9d, 10h и 11а выделяют в виде гидрохлоридов растворением реакционной массы в этилацетате (для соединений 9d и 10h) или в абсолютном эфире (для соединения 11а) с последующим подкислением насыщенным раствором HCl в этилацетате (для соединений 9d и 10h) или в спирте (для соединения 11а).

Общая методика получения соединений 11b и 12b. Смесь соответствующего лактимного эфира 1 или 6, гидроксиламина гидрохлорида и NaHCO₃ (молярное соотношение 1:1.39:1.39) в ДМФА перемешивают при 60 °С (для соединения 11b) или кипятят (для соединения 12b) 3 ч. Осадок отфильтровывают, маточный раствор упаривают, остаток растирают с водой, получают соединения 11b или 12b.

Общая методика получения соединений 13а-d, 14а-е. Смесь лактимного эфира 1 или 6 и соответствующей аминокислоты (молярное соотношение 1 : 0.89) в спирте кипятят 4 ч (для соединений 14b,d), 3 ч 30 мин (для соединения 14a), 6 ч (для соединения 14c), 7 ч (для соединения 14e), 1 ч (для соединений 13b-d) и 1 ч 30 мин (для соединения 13a). Реакционную массу охлаждают, отфильтровывают соответствующие амидины 14a,b,e и 13a-d, или упаривают в вакууме, остаток растирают с эфиром (для соединения 14c) или с гептаном, затем с пропанолом-2 (для соединения 14d).

Общая методика получения соединений 9b, 10b. Смесь лактимного эфира 1 или 6 (11.5 ммоль) и 10 мл бутиламина нагревают в бомбе 4 ч при 115–120 °C. Реакционную массу упаривают, остаток растирают с гептаном, получают соединение 9b или 10b.

Общая методика получения соединений 9а, 10а. Смесь 5 мл лактимного эфира 1 или 6 и 20 мл насыщенного раствора NH_3 в метаноле нагревают в бомбе 6 ч при 120–125 °C. Реакционную массу упаривают, остаток растирают с гептаном, получают соединение 9а или 10а. Соединение 9а дополнительно очищают переосаждением 2 н. NaOH из водного раствора HCl.

N,N,N',N'-Бис(1,2,3,4-тетрагидрохинолен-2)азин (15). К раствору 6 мл гидразингидрата в 10 мл толуола добавляют по каплям раствор 0.95 г (5.4 ммоль) **1** в 10 мл толуола при 105 °C. Реакционную массу кипятят 1 ч 15 мин, охлаждают и отфильтровывают соединение **15**.

Работа выполнена при финансовой поддержке РФФИ (грант № 93-03-33066а).

СПИСОК ЛИТЕРАТУРЫ

- 1. R. G. Gluschkov, V. G. Granik, Adv. Heterocycl. Chem., 12, 185 (1970).
- 2. P. Friedlander, A. Weinberg, Ber., 15, 1421 (1882).
- 3. Б. М. Пятин, В. Г. Граник, Р. Г. Глушков, Хим.-фарм. журн., № 12, 22 (1970).
- 4. Р. Г. Глушков, О. Ю. Магидсон, *XГС*, 85 (1965).
- 5. T. Yamazaki, K. Matoba, M. Yajima, M. Nagata, R. N. Castle, *J. Heterocycl. Chem.*, **12**, 973 (1975).
- 6. K. Joshi, Rao V. Aruna, N. Anand, Indian J. Chem., 11B, 1222 (1973).
- 7. В. Г. Граник, Б. М. Пятин, Р. Г. Глушков, *Успехи химии*, **40**, 1593 (1971).

Государственный научный центр РФ "НИОПИК", Москва 103787, Россия e-mail: makar-d@ropnet.ru Поступило в редакцию 17.11.99 После доработки 17.10.2002

^аВНИХФИ, Москва 119815, Россия