А. О. Буланов, Б. Б. Сафоклов^а, Б. С. Лукьянов, В. В. Ткачев^а, В. И. Минкин, С. М. Алдошин^а, Ю. С. Алексеенко

ФОТО- И ТЕРМОХРОМНЫЕ СПИРОПИРАНЫ

22*. СПИРОПИРАНЫ РЯДА 4-ОКСО-3,4-ДИГИДРО-3H-1,3-БЕНЗОКСАЗИНА, СОДЕРЖАЩИЕ π-АКЦЕПТОРНЫЕ ЗАМЕСТИТЕЛИ В ПОЛОЖЕНИИ 8'

Новые спиропираны бензоксазинонового ряда синтезированы с использованием модификаций формильной группы соединений, содержащих асимметрический спироатом углерода. Показано, что идентификацию методом ЯМР ¹Н спиропиранов, содержащих π -акцепторные гидразонные заместители, следует проводить при повышенных температурах с отслеживанием наличия и полноты последующего "возврата". По данным РСА, в зависимости от растворителя, применяемого для кристаллизации гидразонов спиропиранов, могут образовываться кристаллосольваты.

Ключевые слова: бензоксазинон, кристаллосольват, спиропиран.

Достаточно хорошо изученное получение спиропирановых структур из соединений, не содержащих спироатома углерода, является в общем виде конденсацией метиленовых оснований азотистых гетероциклов или их предшественников с *орто*-гидроксиароматическими альдегидами [2].

Особый интерес представляют синтез и исследование фотохимических и кристаллографических свойств ряда соединений, содержащих в качестве гетарильного компонента не индолиновый фрагмент [3]. Фотохромные свойства спиропиранов определяются не только вкладом гетаренового фрагмента, но в большей мере заместителями в 2Н-хроменовой части молекулы. Что касается метода модификации спиропиранов на основе уже готовых спироциклических структур, то он применяется крайне редко (известно галогенирование, нитрование и азосочетание 1,3,3-триметилиндолиноспиропирана в положение 6 [4]). Реакции же функциональных заместителей, за исключением восстановления нитрогруппы в аминогруппу [5], не использовались. Представляет интерес использование отличных от нитрогуппы π -акцепторных заместителей, влияние которых на фотохромные свойства спиропиранов недостаточно изучено до настоящего времени [2]. Ценные характеристики спиропиранов, содержащих в положении 8' π-акцепторную формильную группу [1, 6], стимулировали интерес к получению их производных. Спиропираны с формильной группой ранее были препаративно недоступны и вследствие этого мало изучены.

В этой связи на основе 2,6-диформил-4-крезола (1) по разработанной нами ранее методике [7] мы синтезировали 3,6-диметил-8'-формилспиро-4-оксо-3,4-дигидро-2H-1,3-бензоксазин-2,2'-[2H]хромен (2) со свободной

^{*} Сообщение 21 см. [1].

формильной группой в положении 8', проявляющий фотохромные свойства в растворах и в адсорбированном состоянии [1], а из него, с использованием реакций формильной группы, получили соединения **3** (табл. 1), сохранившие спиропирановый цикл и содержащие в положении 8' нетрадиционные объемные *π*-акцепторные заместители – производные алифатических, ароматических и феноксиуксусных кислот.

3 a $R = C_5H_{11}$, b $R = C_9H_{19}$, c $R = C_{13}H_{27}$, d $R = C_{17}H_{35}$, e R = Ph, f $R = 4-C_6H_4$ -Me, g $R = 4-C_6H_4OMe$, h $R = 4-C_6H_4$ -NO₂, i $R = 3-C_6H_4$ -Br, j $R = PhOCH_2$, k $R = 4-C_6H_4(Me)OCH_2$, l $R = 2,4-C_6H_3(Br)_2OCH_2$

Таблица 1

Соеди- нение	Брутто- формула	Найдено, %				Т. пл., °С, ЛМФА	Выход.
		вычислено, %					%
	1.1.2.	C	Н	N	Br		
3a	C22H27N3O4	66.29	6.65	16.22	_	217	72
		66.49	6.80	16.12			
3h	$C_{24}H_{25}N_2O_4$	68 77	7 64	14 10	_	230	60
0.0	020113311304	68.87	7 72	13.57		250	00
2	CUNO	70.92	9.51	12.44		225	40
30	$C_{30}H_{43}N_{3}O_{4}$	<u>70.85</u>	8.51	12.44	_	255	48
		/0./2	8.44	12.57			
3d	$C_{34}H_{51}N_3O_4$	72.09	<u>8.88</u>	<u>7.49</u>	-	233	40
		72.21	9.09	7.43			
3e	C26H21N3O4	70.91	4.99	9.63	_	228	84
		71.05	4.78	9.56			
3f	CarHanNaO	71 30	1 93	932	_	248	82
51	02/112311304	$\frac{71.55}{71.51}$	5.07	0.26		240	02
	<i>a w w a</i>	/1.51	5.07	9.20			-
3g	$C_{27}H_{23}N_3O_5$	<u>68.95</u>	<u>4.82</u>	<u>9.03</u>	-	228	79
		69.07	4.90	8.95			
3h	$C_{26}H_{20}N_4O_5$	64.57	4.29	11.43	_	256	75
		64.46	4.13	11.56			
3i	C26H20BrN2O4	60.12	3.95	7.98	15.27	223	71
	02011202011304	60.24	3.86	8 10	15.41	220	
2.	CUNO	60.24	1.00	0.10	13.41	222	72
3]	$C_{26}H_{23}N_3O_5$	08.15	<u>4.92</u>	9.04	_	223	15
		68.27	5.03	9.19			
3k	C27H25N3O5	<u>68.66</u>	5.22	<u>8.99</u>	-	228	75
		68.78	5.30	8.91			
31	C26H21Br2N3O5	50.61	3.50	6.90	25.77	231	68
	,	50.73	3.41	6.82	26.01		

Спиропираны 3

Эти соединения представляют несомненный интерес, так как дают потенциальную возможность стабилизации открытых окрашенных форм за счет хелатирования ионов металлов.

В ИК спектрах соединений **3** наряду с полосой поглощения 1670 см⁻¹ (валентные колебания карбонильной группы фрагмента –СО–N(CH₃)– оксазинонового кольца исходного соединения **2**) появляются две полосы поглощения, характерные для валентных колебаний групп СО (амид-1) и NH во фрагменте NH–CO соединений **3** (табл. 2).

Однозначное отнесение всех сигналов в спектрах ЯМР ¹Н гидразонов, содержащих спиропирановый фрагмент, затруднено. Сложный вид спектра спиропирана **3a** (рис. 1*a*) дает основание предполагать наличие *синанти*-изомеров и водородных связей. При нагревании до 120 °C (рис. 1*b*) спектр соответствует структуре **3a**. Охлаждение до 30 °C – "возврат" – приводит к спектру, идентичному изображенному на рис. 1*a*. Процесс *синанти*-изомеризации следует исключить, так как он является высокобарьерным и необратимым. В связи с этим, следует предположить наличие только форм с водородными связями. В спектрах при 20 °C (рис. 1*a*) и возвратном спектре просматриваются все формы, а также их возможные суперпозиции, в спектре же при 120 °C (рис. 1*b*) только одна форма **3a** с полностью разрушенными водородными связями. Таким образом, идентификацию методом спектроскопии ЯМР ¹Н спиропиранов, содержащих гидразоновый фрагмент, следует проводить при повышенных температурах с отслеживанием наличия и полноты последующего "возврата".

Таблица 2

	-				
Соеди- нение	ИК спектр, v, см ⁻¹			УФ спектр, λ_{max} , нм (lg ε)	
	NH	C=O	C=N	(в пропаноле-2)*	
2	-	1692, 1638**	-	238 (4.52); 265 (5.14); 294 пл (3.55); 340 (3.58)	
3a	3234	1715, 1674***	1634	298 (4.52); 345 (3.91); 451 (3.77)	
3b	3247	1717, 1674***	1624	298 (4.51); 359 (3.95); 456 (3.80)	
3c	3300	1720, 1660***	1620	301 (4.50); 344 (3.97); 451 (3.74)	
3d	3314	1715, 1662***	1620	291 (4.42); 370 (3.92); 464 (3.67)	
3e	3268	1726, 1660***	1625	298 (4.52); 345 пл (3.91); 451 (3.77)	
3f	3268	1720, 1690***	1632	291 (4.51); 368 (3.94); 452 (3.45)	
3g	3230	1723, 1662***	1620	301 (4.60); 350 пл (3.93); 451 (3.74)	
3h	3300	1720, 1660***	1610	291 (4.42); 370 (3.93); 464 (3.67)	
3i	3284	1715, 1680***	1625	291 (4.49); 359 (3.89); 456 (3.64)	
3j	3247	1687, 1660***	1634	255 (4.44); 340 (3.42); 357 (3.29)	
2k	3260	1700, 1660***	1620	260 (4.02); 292 (3.93); 326 (2.01); 340 (3.40)	
31	3300	1700, 1665***	1618	272 (5.46); 340 (4.19); 357 (4.02)	

Спектральные характеристики исходного спиропирана 2 и спиропиранов 3

* λ_{max} фотоиндуцированной формы спиропирана 2 426, 556 нм

** v_{C=O} формильной группы.

^{***} v_{C=0} гидразонового фрагмента.

Рис. 1. Спектр ЯМР ¹Н спиропирана **За** в ДМСО-d₆ при 20 (*a*) и 120 °С (*b*)

Chart	<i>d</i> ,	Å	Chara	d, Å	
Связь	3a	3a'	Связь	3a	3a'
N(3)-C(4)	1.367(2)	1.378(4)	O(1')-C(8A')	1.379(4)	1.392(3)
C ₍₄₎ -O ₍₂₎	1.224(2)	1.234(4)	C(3')-C(4')	1.309(4)	1.310(3)
C(4)-C(10)	1.465(2)	1.459(5)	C(4')-C(4A')	1.459(4)	1.452(3)
O(1)-C(9)	1.379(2)	1.394(3)	C(10')-C(8')	1.469(4)	1.461(2)

Основные значения длин связей бензоксазинового и гидразидного фрагментов соединений За и За'

Для выяснения влияния строения спиропиранов на их фотохромные свойства были проведены рентгеноструктурные исследования монокристалла спиропирана **3a** и его кристаллосольвата **3a'** с диоксаном (рис. 2 и 3, табл. 3). По данным РСА, в молекулах бензопирановый и бензоксазиноновый фрагменты в **3a** и **3a'**, как и в исследованных ранее индолиновых и бензоксазиноновых производных спиропиранов [1, 8], расположены примерно ортогонально друг другу и индивидуально не планарны. В соединении **3a** бензоксазиноновый фрагмент имеет перегиб по линии N(3)...O(1) на угол $\phi = 34.7^{\circ}$, а в соединении **3a'** – на 34.2° ; бензопирановый фрагмент по линиям C(3')–O(1') и C(4')–O(1') – на $\alpha = 22.6^{\circ}$, $\beta = 7.5^{\circ}$ и $\alpha = 23.1^{\circ}$, $\beta = 12.9^{\circ}$ для **3a** и **3a'** соответственно. Атомы O(1), C(4), N(3), O(2) расположены в плоскости бензольного кольца C(5)C(6)C(7)C(8)C(9).

Таким образом, геометрическое строение узла Сспиро и бензопиранового фрагмента в соединениях За и За' аналогично строению индолиновых спиропиранов. Однако включение в бензоксазиноновый фрагмент спиропирана карбонильной группы C(4)=O(2) приводит к существенному изменению электронной и геометрической картины строения узла N(3). Выход атома N(3) из плоскости координирующих атомов C(2'2)C(4)C(12) составляет 0.06 Å, сумма валентных углов при N(3) равна 356.2 и 355.9° в 3а и 3а' соответственно. Такое строение узла N(3), несмотря на перегиб бензоксазинонового цикла по линии O(1)...N(3) и торсионного поворота вокруг связи C(4)–N(3) атома C(2'2) [торсионный угол O(2)–C(4)–N(3)–C(2'2) равен 13.5 (**3a**) и 10.5° (**3a'**)], обусловлено одновременно поворотом вокруг этой связи метиленовой группы C(12) [торсионный угол O(2)-C(4)-N(3)-C(12) равен 15.1 (**3a**) и 12.3° (**3a**')]. Угол между плоскостями O(2)C(4)C(10)N(3) и N(3)C(2'2)C(12) составляет 19.2 и 16.7° для структур За и За' соответственно. Таким образом, векторы электронных облаков C(4) и O(2), участвующие в образовании π-связи С(4)=О(2), непараллельны неподеленной электронной паре атома N(3). Тем не менее, длина амидной связи N(3)-C(4) 1.367(2) (3a) и 1.378(4) Å (3a') свидетельствует о заметном сопряжении неподеленной электронной пары атома N(3) с π-связью карбонильной группы.

Амидное сопряжение существенно ослабляет взаимодействие неподеленной электронной пары атома N(3) с σ^* -орбиталью связи C(2'2)–O(1'). Кроме того, геометрическое положение связи C(2'2)–O(1') по отношению к координационной плоскости атома N(3) – C(2'2)C(4)C(12) становится менее благоприятным для орбитальных $n-\sigma^*$ -взаимодействий. 354

Рис. 2. Общий вид молекулы спиропирана За в кристалле

Рис. 3. Общий вид молекулы спиропирана **3а** и молекулы растворителя в кристаллосольвате **3а'**

Кроме того, проведенное замещение в 8'-формильной группе существенно уменьшило электроноакцепторное влияние этой группы на атом O(1'). Об этом свидетельствует удлинение связи O(1')–C(8a') до 1.379(4) и 1.392(3) Å для кристаллов **3a** и **3a**', соответственно, по сравнению с 1.439(2) Å аналогичной связи C(2'2)–O(1') в спиропиранах [2]. Ослабление электроноакцепторного влияния заместителя в положении 8' уменьшает полярность связи C(2'2)–O(1') и дополнительно ослабляет $n-\sigma^*$ -взаимодействие по сравнению с таковыми спиропиранов [1]. В результате этого длины связей C(2'2)–O(1') 1.421(2) (**3a**) [1.424(2) (**3a**')] и C(2'2)–O(1) 1.415(2) (**3a**) [1.425(2) Å (**3a**')] оказываются практически одинаковыми и исследуемые спиропираны **3** не проявляют фотохромные свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на призменном двухлучевом спектрометре Specord IR-71. Калибровка прибора проведена по полистиролу.

Электронные спектры исследуемых соединений при комнатной температуре получены на спектрофотометре Varian Carry. Спектры поглощения до и после облучения регистрировали на спектрофотометре Specord UV-vis, снабженном специальным криостатом для низкотемпературных измерений; в качестве возбуждающего источника использовалась ртутная лампа ДРШ-250 со светофильтрами, выделяющими свет с λ_{max} 313 и 365 нм. Спектры ЯМР ¹Н зарегистрированы на спектрометрах Bruker-250 (250 МГц) и Varian Unity 300 (300 МГц).

Кристаллы для РСА соединения **За** получены кристаллизацией из изопропилового спирта, а **За'** – из диоксана. Рентгенодифракционный эксперимент проведен на автоматическом четырехкружном дифрактометре КҮМА при температуре 293 К (Мо K_{α} излучение) в интервале углов θ 1.59–25.04°(для **За**) и (Си K_{α} излучение) θ 3.14–74.94° (для **За'**).

Основные кристаллографические данные структуры **3a**: $(C_{25}H_{27}N_3O_4)$ (рис. 2), a = 8.556(4), b = 10.862(4) Å, $c = 13.077(7), \alpha = 94.17(4), \beta = 99.66(5), \gamma = 104.01(3)^\circ,$ V = 1154.3(9) Å³, Z = 2, P-1 (триклинная), d = 1.247 г/см³, F(000) = 460, M = 433.50.Структура **3a** решена прямыми методами и уточнена МНК по F^2 до R = 0.047 ($R_W = 0.084$ Goof = 1.164) по 3253 отражениям с $I > 2\sigma(I)$ в анизотропном приближении комплексом программ SHELXL-93 [9]. Атомы водорода выявлены в разностном синтезе Фурье и для них уточнялись только позиционные параметры.

Основные кристаллографические данные структуры **3a**': ($C_{29}H_{27}N_3O_6$) (рис. 3), a = 10.308(4), b = 15.020(4) Å, $c = 10.294(7), \alpha = 76.34(4), \beta \square = 70.64(5), \gamma = 70.09(3)^\circ$, V = 1407.6(12) Å³, Z = 2, d = 1.247 г/см³, F(000) = 460, M = 513.54. Структура **3a'** была найдена прямыми методами и затем полученный массив был пересчитан и уточнен полноматричным МНК по F^2 до R = 0.069 по 2580 отражениям с $I > 2\sigma(I)$ в анизотропном приближении комплексом программ SHELXL-93 [9]. Для атомов водорода, выявленных в разностном синтезе Фурье, уточнены лишь позиционные параметры.

Энергия кристаллов посчитана методом атом-атомных потенциалов по программе PCM [10] с использованием потенциалов 6-ехр, предложенных А. И. Китайгородским. Энергия кристаллической решетки кристалла соединения **За** E = -58 ккал/моль, кристалла соединения **За**' E = -53 ккал/моль.

Свободный объем в элементарной ячейке на каждую молекулу составляет ~ 189 и ~ 197 Å³ для соединения **За** и **За'** соответственно.

3,6-Диметил-8'-формилспиро(4-оксо-3,4-дигидро-2H-1,3-бензоксазин-2,2'-[2H]-хромен (2) получен по методике [1, 7].

Спиропираны (3). К 0.1 г (0.33 ммоль) соединения 2 в 1 мл горячего этанола добавляют эквивалентное количество соответствующего гидразида кислоты, смесь кипятят 15 мин и оставляют стоять до выпадения осадка. Выпавший осадок отфильтровывают, высушивают и перекристаллизовывают из ДМФА. Температуры плавления, выходы и данные элементного анализа приведены в табл. 1.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты 00-03-32415, 02-03-81011 Бел 2000) и Министерства образования Российской Федерации (грант Е 00-5.0-111).

СПИСОК ЛИТЕРАТУРЫ

- 1. Б. Б. Сафоклов, Б. С. Лукьянов, А. О. Буланов, А. В. Метелица, В. И. Минкин, В. В. Ткачев, С. М. Алдошин, *Изв. АН, Сер. хим.*, 431 (2002).
- 2. *Photochromism. Molecules and Systems*, Eds. H. Duerr and H. Bouas-Laurent, Elsever, Amsterdam, 1990, 1068.
- 3. С. М. Алдошин, *Успехи химии*, **59**, 1144 (1990).
- 4. Н. П. Самойлова, М. А. Гальберштам, *ХГС*, 1065 (1977).
- 5. Э. Р. Захс, А. А. Звенигородская, Н. Г. Лешенюк, *XГС*, 1320 (1977).
- 6. О. Хисатакэ, Н. Тиаки, Пат. Японии 28889; РЖХим, 18H726П (1971).
- Б. С. Лукьянов, Ю. И. Рябухин, Г. Н. Дорофеенко, Л. Е. Ниворожкин, В. И. Минкин, XГС, 161 (1978).
- 8. С. М. Алдошин, И. И. Чуев, О. С. Филипенко, А. Н. Утенышев, Г. Арие, В. Локшин, А. Сама, Р. Гуглиметти, Ж. Пеп, *Изв. АН, Сер. хим.*, 1129 (1998).
- 9. G. M. Sheldrick, *SHELXL-93*, Program for Refinement of Crystal Structures, Univ. of Göttingen, Göttingen, 1993.
- 10. А. В. Дзябченко, Кристаллография, 28, 788 (1983).

Научно-исследовательский институт физической и органической химии Ростовского государственного университета, Ростов-на-Дону 344090, Россия e-mail: bluk@ipoc.rsu.ru Поступило в редакцию 25.03.2002

^аИнститут проблем химической физики РАН, Черноголовка 142432, Московской обл.