В. А. Мамедов, А. А. Калинин, А. Т. Губайдуллин, И. А. Литвинов, Я. А. Левин

3-БЕНЗОИЛХИНОКСАЛИН-2(1Н)-ОН В РЕАКЦИИ КОСТАНЕЦКОГО–РОБИНСОНА. СИНТЕЗ И СТРОЕНИЕ 2-ОКСО-4-ФЕНИЛПИРАНО[2,3-*b*]ХИНОКСАЛИНА

3-Бензоилхиноксалин-2(1Н)-он циклизуется уксусным ангидридом в присутствии пиридина в 2-оксо-4-фенилпирано[2,3-*b*]хиноксалин.

Ключевые слова: пиранохиноксалин, реакция Костанецкого–Робинсона, реакция Перкина.

Пиранохиноксалины исследованы мало [1-4]. Из возможных аннелированных систем, включающих хиноксалиновый и пирановый фрагменты, относительно более изучены пирано[3,4-b]хиноксалины [1], получение которых в основном базируется на внутримолекулярной конденсации хиноксалинов, содержащих в положениях 2 и 3 заместители со спиртовыми и/или сложноэфирными группами [3, 4]. Классический метод аннелирования α -пиронов по Перкину (типа синтеза α -кумаринов) в хиноксалиновом ряду не известен.

При попытке ацетилирования бензоилхиноксалинона 1 уксусным ангидридом в присутствии пиридина нами обнаружено, что происходит замыкание цикла с образованием пирано[2,3-*b*]хиноксалина 2. С учетом возможности наличия в равновесии с лактамом 1 его лактимного таутомера и образования *о*-ацетилппроизводного 3, это превращение можно рассматривать как вариант получения кумаринов по Костанецкому– Робинсону [5, 6], являющегося, в свою очередь, частным случаем реакции Перкина. Обычно в условиях межмолекулярной реакции Перкина ангидриды реагируют с ароматическими альдегидами и с их винилогами, но не с кетонами [7], поэтому из двух показанных на схеме путей образования пиронохиноксалина путь (2) с образованием интермедиата 4 представляется менее вероятным, чем путь (1) через интермедиат 3.

В противоположность многим случаям реакции Костанецкого–Робинсона образование пирано[2,3-*b*]хиноксалина 2 достаточно избирательно, но хороший выход конечного соединения достигается только в результате кипячения реакционной смеси в течение 20 ч, при комнатной температуре реакция не идет. Строение выделенного продукта подтверждено элементным анализом и комплексом спектральных методов (ИК, ЯМР ¹H и ¹³C). Проявление одной карбонильной полосы поглощения в ИК спектре, единственного сигнала ядер углерода той же группы С=О и двух сигналов двух разных азометиновых групп в спектре ЯМР ¹³С, а также синглетного сигнала протона виниленовой группы в спектре ЯМР ¹H

101

вполне согласуется с предложенной для полученного продукта структурой. Для окончательного ее подтверждения было проведено исследование продукта методом PCA.

Симметрически независимую часть элементарной ячейки кристалла соединения 2 составляет одна молекула, находящаяся в общем положении (рис. 1). Пиранохиноксалиновая система – плоская в пределах экспериментальной погрешности (0.05(1) Å), диэдральный угол трициклического фрагмента с плоскостью фенильного кольца равен 43.42(7)°. Молекула не образует водородных связей классического типа. Из других взаимодействий следует отметить внутримолекулярную связь С–Н…N между протоном H(12) фенильной группы и атомом N(5), со следующими параметрами: $d H(12) \dots N(5) 2.560(15) Å, \angle C(12)-H(12) \dots N(5) 106(1)°.$

Упаковка молекул в кристалле определяется взаимодействиями π-π-типа между электронными системами трициклов и характеризуется укладкой молекул в бесконечные молекулярные слои с параллельным расположением в них трициклов (рис. 2). Бензофрагменты пиранохиноксалиновой системы участвуют в п-п-взаимодействиях только с бензофрагментами соседних молекул с расстоянием между центрами циклов 3.667(2) Å, и диэдральным углом между их плоскостями 0.0(2)°. В то же время фенильный заместитель вступает в п-п-взаимодействия только с пирановыми фрагментами двух соседних с ним молекул (связанных между собой трансляцией вдоль кристаллографической оси ОУ) с расстояниями между центрами соседних циклов 3.83(1) Å и диэдральными углами между их плоскостями 3.92(2)°. Соседние молекулярные слои, образованные стопками, повернуты друг относительно друга на угол, соответствующий диэдральному углу между фенильным заместителем и плоскостью трицикла. При этом в кристалле может быть выделено избранное направление вдоль кристаллографической оси ОХ, поскольку плоскости циклов паралельны этому направлению. Подобное

Рис. 1. Геометрия молекулы соединения 2

Рис. 2. Упаковка молекул 2 в кристаллической ячейке

Координаты атомов структуры пиронохиноксалина 2 и их эквивалентные изотропные температурные параметры $B = 4/3 \cdot \sum_{i=1}^{3} \sum_{j=1}^{3} (\mathbf{a}_{i} \cdot \mathbf{a}_{j}) B(i, j)$

Атом	x	у	z	$B, Å^2$
01	0.2690(1)	0.0355(2)	0.65399(7)	4.12(3)
O2	0.1484(1)	0.1394(2)	0.52238(8)	5.34(4)
N5	-0.2101(1)	-0.6081(2)	0.63652(8)	2.94(3)
N10	0.3978(1)	-0.0771(2)	0.78362(9)	3.73(4)
C2	0.1565(2)	0.0921(3)	0.5999(1)	3.83(4)
C3	0.0604(2)	0.0895(3)	0.6410(1)	3.41(4)
C4	-0.0731(1)	-0.4725(2)	0.7734(1)	2.74(4)
C4a	-0.1916(1)	-0.5382(2)	0.7195(1)	2.76(4)
C5a	0.3240(1)	-0.1641(2)	0.9096(1)	2.89(4)
C6	0.3481(1)	-0.2413(3)	0.9978(1)	3.53(4)
C7	-0.4615(2)	-0.7925(3)	0.4535(1)	4.27(5)
C8	0.5548(2)	-0.2717(3)	1.0081(1)	4.63(5)
C9	-0.5346(1)	-0.7027(3)	0.5777(1)	4.28(5)
C9a	0.4179(2)	-0.1458(2)	0.8706(1)	3.30(4)
C10a	0.2878(2)	-0.0276(2)	0.7423(1)	3.20(4)
C11	0.0295(1)	-0.4743(2)	0.7358(1)	2.72(4)
C12	-0.0165(1)	0.0795(2)	0,8542(1)	3.10(4)
C13	-0.1144(2)	0.0849(3)	0.8859(1)	3.78(4)
C14	-0.2273(2)	0.0362(3)	0.8287(1)	4.09(5)
C15	-0.2405(2)	-0.0195(3)	0.7398(1)	3.84(5)
C16	0.1430(2)	-0.5243(2)	0.7926(1)	3.27(4)
H3	0.983(1)	0.140(2)	0.6041(9)	4.1(4)*
H6	0.716(1)	0.251(2)	0.4765(9)	4.4(4)*
H7	0.522(1)	0.158(2)	0.392(1)	5.5(4)*
H8	0.366(1)	0.194(2)	0.459(1)	5.6(4)*
H9	0.405(1)	0.189(2)	0.103(1)	4.8(4)*
H12	0.060(1)	0.112(2)	0.8944(9)	3.9(4)*
H13	0.895(1)	0.123(2)	0.9471(9)	3.7(4)*
H14	0.707(1)	0.043(2)	0.854(1)	5.4(4)*
H15	0.320(2)	0.058(2)	0.301(1)	6.2(5)*
H16	0.151(1)	0.062(2)	0.3523(9)	4.3(4)*

* Уточнены в изотропном приближении.

расположение молекул в кристалле приводит к их плотнейшей упаковке, о чем свидетельствуют также и расчеты свободного объема в ячейке, потенциально доступного для молекул растворителя.

ЭКСПЕРЕМЕНТАЛЬНАЯ ЧАСТЬ

Температура плавления определена на столике Boetius. ИК спектр снят на спектрометре UR-20 (паста в вазелине). Спектр ЯМР ¹Н записан на спектрометре Bruker MCL-250 (250 МГц), спектр ЯМР ¹³С – на спектрометре Bruker WV-400 (100 МГц). Химические сдвиги приведены относительно ДМСО- d_6 .

3-Бензоилхиноксалин-2(1Н)-он (1) получен окислением по Корнблюму 2-оксо-3-(α-хлорбензил)хиноксалин-2(1Н)-она диметилсульфоксидом [8].

2-Оксо-4-фенилпирано[2,3-*b*]хиноксалин (2). Раствор 1.00 г (4.00 ммоль) бензоилхиноксалинона 1 в 20 мл уксусного ангидрида и 2 мл пиридина кипятят 20 ч, выливают в воду, кристаллы отфильтровывают, промывают водой (2 × 10 мл) и *i*-PrOH (2 × 5 мл). Выход 0.67 г (73%). Т. пл. 232–235 °С (из АсОН). ИК спектр, v, см⁻¹: 1612 (С=N), 1728 (С=O). Спектр ЯМР ¹Н, δ, м. д.: 7.00 (1H, с, CH пироновый); 7.37–8.05 (9H, м, C₆H₅ и C₆H₄). Спектр ЯМР ¹³С (ДМСО), δ, м. д. (*J*, Гц): 120.96 (д. С₍₃₎, *J* = 173.4); 127.59 (д. д. С₍₉₎ или C₍₆₎, *J* = 161.8; *J* = 7.6); 128.23 (д. м, С_{*m*}, *J* = 160.9); 129.33 (д. д. С₍₈₎ или С₍₇₎, *J* = 162.2; *J* = 7.4); 129.61 (д. д. С₍₇₎ или С₍₈₎, *J* = 160.6; *J* = 6.8); 129.82 (д. м, С_{*o*}, *J* = 161.3); 130.13 (д. т, С_{*p*}, *J* = 160.5; *J* = 7.9); 132.59 (д. д. С₍₆₎ или С₍₉₎, *J* = 165.6; *J* = 10.7); 133.04 (м, С_{*i*}); 135.47 (д. С₍₄₎, *J* = 9.2); 139.47 (м, С_{(9а} или С_(5а)); 139.99 (м, С_(5а) или С_{(9а})); 152.32 (м. С_(4а)); 152.65 (уш. м, С_{(10а})); 158.87 (д. С₍₂₎, *J* = 3.6). Найдено, %: С 73.86; Н 3.35; N 9.69. С₁₇H₁₀N₂O₂. Вычислено, %: С 74.44; Н 3.68; N 10.21.

В отсутствие пиридина реакция не протекает.

Рентгеноструктурный анализ. Кристаллы пиронохиноксалина 2, $C_{17}H_{10}N_2O_2$, моноклинные. При 20 °C параметры элементарной ячейки следующие: a = 11.6835(9), b = 7.5584(6), c = 15.171(2) Å, $\beta = 108.1(5)^\circ$, V = 1273.0(2) Å³, Z = 4, $d_{выч} = 1.43$ (г/см³), пространственная группа $P_{2_1/c}$. Параметры ячейки и интенсивности 1740 отражений, 1205 из которых с $I \ge 3\sigma$, измерены на автоматическом 4-кружном дифрактометре Enraf-Nonius CAD-4 при температуре 20 °C (λ Мо K_{α} , графитовый монохроматор, $\omega/2\theta$ -сканирование, $\theta \le 23^\circ$). Падения интенсивностей трех контрольных отражений за время съемки эксперимента не наблюдалось. Структуры расшифрованы прямым методом по программе SIR [9] и уточнены вначале в изотропном, затем в анизотропном приближении. Впоследствии из разностных рядов электронной плотности выявлены все атомы водорода, вклад которых в структурные амплитуды учитывался на заключительной стадии с фиксированными температурными и позиционными параметрами. Окончательные значения факторов расходимости R = 0.034, $R_w = 0.042$ по 1205 независимым отражениям с $F^2 \ge 3\sigma$. Все расчеты выполнены по комплексу программ MolEN [10] на компьютере Alpha Station 200. Рисунки выполнены с помощью программы PLATON [11].

Таблица 2

Связь	<i>d</i> , Å	Валентный угол	ω, град.	Торсионный угол	τ, град.		
O1–C2	1.383(2)	C2-O1-C10a	121.3(1)	C10a–O1–C2–O2	-177.6(2)		
O1–C10a	1.374(2)	C9a-N10-C10a	114.9(2)	C10a-O1-C2-C3	2.6(2)		
O2–C2	1.204(2)	O1C2O2	116.2(2)	C2-O1-C10a-N10	179.3(2)		
N5–C4a	1.320(2)	O1-C2-C3	117.6(1)	C10a-N10-C9a-C5a	1.6(2)		
N10–C9a	1.369(2)	O2-C2-C3	126.2(2)	C9a-N10-C10a-O1	-178.0(1)		
N10-C10a	1.297(2)	C4a-C4-C11	121.5(1)	C11-C4-C4a-N5	2.7(2)		
C2–C3	1.444(3)	N5-C4a-C4	121.0(2)	C4a-C4-C11-C16	-138.2(1)		
C4–C4a	1.458(2)	C6–C5a–C9a	119.4(1)	C6-C5a-C9a-N10	177.7(2)		
C4-C11	1.480(3)	N10-C9a-C5a	121.5(1)	H12-C12-C13-C14	-179(1)		
C5a–C6	1.405(2)	O1C10aN10	113.9(2)	C12-C13-C14-C15	0.6(3)		
C5a–C9a	1.406(3)	C4C11C16	119.6(1)				
C11–C16	1.390(2)	C13-C12-H12	120(1)				
C12–C13	1.372(3)	C12-C13-C14	120.6(2)				
C12-H12	0.95(1)	C13-C14-C15	119.3(2)				
C13-C14	1.385(2)						
C14–C15	1.374(3)						

Длины связей (d), валентные (ω) и торсионные углы (т)пирронохиноксалина 2

СПИСОК ЛИТЕРАТУРЫ

- 1. S. Fukushima, K. Morinaga, S. Sato, H. Kobayashi, K. Noro, *Yakugaku Zasshi*, **99**, 813 (1979); *Chem. Abstr.*, **92**, 41885 (1980).
- F. Eiden, H. Mueller, G. Bachmann, Arch. Pharm. (Weinheim), 305, 2 (1972); Chem. Abstr., 76, 126920 (1972).
- 3. N. Morita, K. Inoue, H. Hayashi, M. Takagi, *Agric. Biol. Chem.*, **47**, 2053 (1983); Chem. Abstr., **100**, 86002 (1984).
- 4. H. Hartung, W. Duerckheimer, W. Raether, E. Schrinter, Заявка 2052279 ФРГ; *Chem. Abstr.*, **77**, 34572 (1972).
- 5. С. Вавзонек, *Гетероциклические соединения*, под ред. Р. Эльдерфилда, Изд-во иностр. лит., Москва, 1954, **2**, 134.
- 6. Ч. Р. Хаузер, Ф. В. Свэмор, Дж. Т. Адамс, *Органические реакции*, под ред. Р. Адамса, Изд-во иностр. лит., Москва, 1950, **2**, 90.
- 7. Дж. Джонсон, *Органические реакции*, под ред. Р. Адамса, Изд-во иностр. лит., Москва, 1948, **1**, 267.
- 8. В. А. Мамедов, А. А. Калинин, И. Х. Ризванов, Н. М. Азанчеев, Ю. Я. Ефремов, Я. А. Левин, *ХГС*, 1279 (2002).
- 9. A. Altomare, G. Cascarano, C. Giacovazzo, D. Viterbo, Acta Crystallogr., A47, 744 (1991).
- L. H. Straver, A. J. Schierbeek, *MolEN. Structure Determination System.*, 1. Program Description, B. V. Nonius, Delft, 1994, 180.
- 11. A. L. Spek, Acta Crystallogr., A46, 34 (1990).

Институт органической и физической химии им. А. Е. Арбузова Казанского научного центра РАН, Казань 420083 e-mail: Mamedov@iopc.kcn.ru Поступило в редакцию 27.03.2000