В. А. Мамедов, А. А. Калинин, А. Т. Губайдуллин, И. А. Литвинов, Я. А. Левин

α-ЗАМЕЩЕННЫЕ З-БЕНЗИЛ-1,2-ДИГИДРО-2-ОКСО-ХИНОКСАЛИНЫ В РЕАКЦИИ КОРНБЛЮМА. СИНТЕЗ И СТРОЕНИЕ З-БЕНЗОИЛ-2-ОКСО-1,2-ДИГИДРОХИН-ОКСАЛИНА

Разработан метод получения 3-бензоил-2-оксо-1,2-дигидрохиноксалина превращением 3-(α-хлорбензил)-1,2-дигидрохиноксалина в условиях реакции Корнблюма в соответствующее α-азидопроизводное и кислотным расщеплением последнего. Строение целевого кетона подтверждено данными РСА.

Ключевые слова: 3-(α-азидобензил)-2-оксо-1,2-дигидрохиноксалин, 3-бензоил-2-оксо-1,2-дигидрохиноксалин, 2-оксо-3-(α-тиоцианатобензил)-1,2-дигидрохиноксалин, 2-оксо-3-(α-хлорбензил)-1,2-дигидрохиноксалин, реакция Корнблюма.

3-Хлорбензильная функция в 2-оксо-3-(а-хлорбензил)-1,2-дигидрохиноксалине (1) обеспечивает высокий синтетический потенциал этого соединения благодаря возможности легкого введения вместо атома хлора различных активных групп, способных далее участвовать в аннелировании различных гетероциклических систем к a и b сторонам хиноксалинового цикла [1-3]. Трансформация группы PhCHCl в бензоильную позволяет использовать образовавшийся 3-бензоил-2-оксо-1,2-дигидрохиноксалин (2) не только в разнообразных реакциях нуклеофильного присоединения по карбонильной группе, но также и как перспективный синтон с β-дикарбонильной системой. Легкая доступность соединения 1 [4] делает привлекательной разработку именно на его базе метода синтеза кетона 2. До сих пор последний был получен с выходом лишь 30% окислением 3-бензил-2-оксо-1,2-дигидрохиноксалина CrO₃ [5] или выделен с выходом 70% дробной перекристаллизацией из смеси продуктов, образующихся при нагревании 3-(α-тиоциано)-2-оксо-1,2-дигидрохиноксалина 3 в ДМСО [3].

Настоящая работа посвящена разработке метода получения соединения 2 на основе соединения 1 и исследованию его строения.

 $1 X = Cl, 3 X = SCN, 5 X = N_3$

1704

В условиях, обычно применяемых для проведения окисления по Корнблюму (нагревание органического галогенида или его аналога в ДМСО в присутствие ацетата натрия [6, 7]), выход бензоилхиноксалинона 2 из хлорида 1 достигает 84%, в то время как в отсутствие ацетата независимо от дозировки реагентов и времени проведения реакции он не превышает 30%. Это означает, что успех упомянутого выше синтеза соединения 2 нагреванием роданида 3 при 150 °C в течение 1 ч в ДМСО без добавления основания не может быть объяснен только приведенной в работе [3] схемой, где роль основания играет гетероциклический фрагмент молекулы 3. Возможно, что параллельно реализуется другой путь, ведущий к продукту 2, специфичный для роданопроизводного 3, включающий тиоцианато-изотиоцианатную изомеризацию, прототропное превращение и взаимодействие с ДМСО промежуточно образующегося тиоформилиминного производного 4.

Наиболее удобным методом получения оказалось двустадийное превращение хлорпроизводного 1 в бензоилпроизводное 2 через 3-α-азидобензилхиноксалинон-2 (5) посредством термической или кислотной обработки последнего. Превращение азида 5 в кетон 2, как и рассмотренные выше реакции, ведущие к бензоилпроизводному 2, является разновидностью реакции Корнблюма. Получение азида 5, его кислотное расщепление и термолиз протекают с высокими выходами. По-видимому, расщепление проходит через промежуточное образование имина 6 по схеме, в общих чертах аналогичной обычно принятой при обсуждении образования иминов [8], или с предварительным прототропным смещением, как в приведенной выше схеме с участием изотиоцианата.

Рис. 1. Геометрия молекулы соединения 2 в кристалле

Расхождение в температурах плавления на 20 °C бензоилдигидрохиноксалинонов 2, синтезированного нами разными способами на основе α -хлорбензилпроизводного 1 и описанного в работе [4], побудило нас для окончательного установления структуры полученного вещества провести его PCA.

Геометрия соединения **2** (рис. 1) подтверждает предложенную структуру, в том числе и вывод о существовании соединения **2** в форме лактама. Геометрические параметры молекулы **2** приведены в табл. 1–3.

Дигидрохиноксалиновый цикл – плоский в пределах экспериментальной погрешности (0.07(1)Å) и образует диэдральный угол с плоскостью фенильного заместителя C(10)–C(15), равный 85.39(6)°. При этом плоскость бензольного кольца находится практически в одной плоскости с кислородом карбонильной группы (торсионный угол O(9)C(9)C(10)C(11) равен –5.4(2)°), что способствует образованию внутримолекулярного контакта C–H…O – расстояние O(9)…H(11) равно 2.46(2) Å.

Протон H(1) при атоме N(1) хиноксалинового цикла однозначно выявлен из разностного ряда электронной плотности при уточнении структуры. Образование водородных связей между этим протоном и

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
O2–C2	1.225(1)	C5–C6	1.373(2)	C10-C15	1.396(2)
O9–C9	1.210(2)	C5-H5	1.08(3)	C11–C12	1.377(2)
N1-C2	1.358(1)	C6–C7	1.400(2)	C11-H11	0.90(2)
N1–C8a	1.376(1)	C6–H6	0.97(2)	C12-C13	1.386(3)
N1-H1	0.88(2)	C7–C8	1.374(2)	C12-H12	1.05(2)
N4-C3	1.290(1)	C7–H7	0.96(2)	C13-C14	1.389(2)
N4–C4a	1.392(2)	C8–C8a	1.408(2)	C13-H13	0.97(2)
C2–C3	1.475(2)	C8–H8	0.97(2)	C14-C15	1.379(2)
С3–С9	1.522(2)	C9-C10	1.479(2)	C14–H14	1.00(2)
C4a–C5	1.399(2)	C10-C11	1.396(2)	C15-H15	1.07(2)
C4a–C8a	1.396(2)				
1706	I I	1	1	1	I

Длины связей (d) в молекуле 2

Таблица 1

1706

Таблица 2

Валентный угол	ω, град	Валентный угол	ω, град
C2-N1-C8a	123.4(1)	C7–C8–C8a	119.1(1)
C2-N1-H1	113.4(9)	С7-С8-Н8	119(1)
C8a-N1-H1	123.2(9)	C8a–C8–H8	122(1)
C3-N4-C4a	117.8(1)	N1-C8a-C4a	118.9(1)
O2-C2-N1	124.2(1)	N1-C8a-C8	121.1(1)
O2-C2-C3	122.8(1)	C4a-C8a-C8	120.0(1)
N1-C2-C3	113.04(9)	O9–C9–C3	119.2(1)
N4-C3-C2	125.8(1)	O9-C9-C10	122.3(1)
N4-C3-C9	117.4(1)	C3-C9-C10	118.5(1)
C2-C3-C9	116.85(9)	C9-C10-C11	118.5(1)
N4-C4a-C5	119.8(1)	C9-C10-C15	122.6(1)
N4–C4a–C8a	120.49(9)	C11-C10-C15	118.9(1)
C5–C4a–C8a	119.7(1)	C10-C11-C12	120.5(1)
C4a-C5-C6	120.2(1)	C10-C11-H11	116(1)
C4a-C5-H5	112(1)	C12-C11-H11	123(1)
C6C5H5	127(1)	C11-C12-C13	120.5(2)
C5-C6-C7	119.8(1)	C11-C12-H12	124(1)
С5-С6-Н6	118(1)	C13-C12-H12	116(1)
С7-С6-Н6	122(1)	C12-C13-C14	119.2(2)
C6-C7-C8	121.1(1)	C12-C13-H13	123(1)
С6С7Н7	121.9(9)	C14-C13-H13	117(1)
С8-С7-Н7	116.6(9)	C13-C14-C15	120.7(2)
C13-C14-H14	118.(1)	C10-C15-H15	118(1)
C15-C14-H14	121(1)	C14-C15-H15	122(1)
C10-C15-C14	120.1(1)		

Валентные углы (оо) в молекуле 2

атомом O(2) (d (H(1)...O(2)) 1.99(2) Å, \angle (N(1)–H(1)...O(2)) 171.6(1)°) двух связанных центром симметрии молекул приводит к возникновению водородно-связанных димеров (рис. 2).

Рис. 2. образование димеров в кристалле соединения **1**. пунктиром показаны водородные связи, нумерация дана только для атомов азота, кислорода и протонов, участвующих в водородных связях

Таблица З

Торсионный угол	τ, град	Торсионный угол	τ, град
C8a–N1–C2–O2	175.2(1)	H6-C6-C7-H7	-1(1)
C8a-N1-C2-C3	-6.5(2)	C6–C7–C8–C8a	0.2(2)
H1-N1-C2-O2	-2(1)	С6С7С8Н8	178(1)
H1-N1-C2-C3	176(1)	H7–C7–C8–C8a	-174(1)
C2-N1-C8a-C4a	1.1(2)	Н7-С7-С8-Н8	5(2)
C2-N1-C8a-C8	-179.5(1)	C7-C8-C8a-N1	178.2(1)
H1-N1-C8a-C4a	178(1)	C7–C8–C8a–C4a	-2.4(2)
H1-N1-C8a-C8	-3(1)	H8-C8-C8a-N1	0(1)
C4a-N4-C3-C2	-1.3(2)	H8–C8–C8a–C4a	180(1)
C4a-N4-C3-C9	178.1(1)	O9-C9-C10-C11	-5.4(2)
C3-N4-C4a-C5	177.7(1)	O9-C9-C10-C15	174.0(1)
C3-N4-C4a-C8a	-4.9(2)	C3-C9-C10-C11	173.5(1)
O2-C2-C3-N4	-174.8(1)	C3-C9-C10-C15	-7.0(2)
02C2C3C9	5.8(2)	C9-C10-C11-C12	-179.9(2)
N1-C2-C3-N4	6.8(2)	C15-C10-C11-C12	0.6(2)
N1-C2-C3-C9	-172.6(1)	C9-C10-C15-C14	-179.7(1)
N4-C3-C9-O9	99.5(1)	C11-C10-C15-C14	-0.3(2)
N4-C3-C9-C10	-79.5(1)	C10-C11-C12-C13	0.5(2)
C2-C3-C9-O9	-81.1(1)	C11-C12-C13-C14	-1.9(3)
C2-C3-C9-C10	99.9(1)	C12-C13-C14-C15	2.2(2)
N4-C4a-C5-C6	175.7(1)	C13-C14-C15-C10	-1.1(2)
N4-C4a-C5-H5	-4(1)	C4a-C5-C6-C7	-0.6(2)
C8a-C4a-C5-C6	-1.6(2)	C4a-C5-C6-H6	175(1)
C8a-C4a-C5-H5	179(1)	H5-C5-C6-C7	179(1)
N4-C4a-C8a-N1	5.2(2)	H5-C5-C6-H6	-6(2)
N4-C4a-C8a-C8	-174.2(1)	C5-C6-C7-C8	1.3(2)
C5-C4a-C8a-N1	-177.5(1)	С5-С6-С7-Н7	175(1)
C5–C4a–C8a–C8	3.1(2)	H6-C6-C7-C8	-175(1)
	•	•	

Торсионные уголы (т) в молекуле 2

Упаковка молекул в кристалле (рис. 2), по-видимому, в значительной степени определяется взаимодействиями π - π -типа между электронными системами хиноксалиновых циклов. Взаимное расположение димеров способствует тому, что бензольный фрагмент молекулы участвует во взаимодействии с пиразиновым циклом соседней молекулы, связанной операцией трансляции на -1 по оси 0Y, а пиразиновый цикл – с бензольным фрагментом молекулы, сдвинутой на +1 по той же оси. Это приводит к образованию наклонных стопок димеров молекул в направлении кристаллографической оси *b* (рис. 3). При этом фенильные группы бензоильного заместителя молекул, связанных операцией симметрии (2–*x*, 1–*y*, 1–*z*), также участвуют в π – π -взаимодействии.

Рис. 3. Упаковка молекул соединения 1 в кристалле. Вид вдоль оси 0У

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре UR-20. Спектр ЯМР ¹Н записан на спектрометре Bruker MCL-250 (250 МГц). Внутренний стандарт ДМСО-d₆. При синтезе соединения **2** разными способами тождественность полученных образцов устанавливалась по совпадению физических и спектральных свойств, а также по отсутствию депрессии температуры плавления смешанной пробы.

Температуры плавления определены на столике Boetius.

Рентгеноструктурный анализ выполнен на автоматическом четырехкружном дифрактометре Enraf–Nonius CAD-4. Кристаллы соединения **2**, $C_{15}H_{10}N_2O_2$, – моноклинные. При 20 °C a = 14.47(3), b = 5.604(2), c = 15.09(1) Å, $\beta = 105.02(7)^\circ$, V = 1182(2) Å³, Z = 4, $d_{\rm выч} = 1.41$ г/см³, пространственная группа $P2_1/n$. Параметры ячеек и интенсивности 3076 отражений, из которых 2386 с $I \ge 3\delta$, измерены при температуре 20 °C; λCuK_a , графитовый монохроматор, $\omega/2\theta$ -сканирование, $\theta \le 26.3^\circ$. Падения интенсивностей трех контрольных отражений за время съемки не наблюдалось. Проведен эмпирический учет поглощения (µCu 7.40 см⁻¹). Структуры расшифрованы прямым методом по программе SIR [9] и уточнены вначале в изотропном, затем в анизотропном приближении. Впоследствии из разностных рядов электронной плотности выявлены атомы водорода, которые в заключительных циклах МНК были уточнены в изотропном приближении. Окончательные значения факторов расходимости: R = 0.048, Rw = 0.064 по 1795 независимым отражениям с $F^2 \ge 3\delta$. Все расчеты выполнены с помощью программы PLATON [11].

3-(α-Азидобензил)-2-оксо-1,2-дигидрохиноксалин (5). Раствор 2.10 г (8 ммоль) соединения 1 в 20 мл ДМСО перемешивают 6 ч при комнатной температуре с 0.78 г (12 ммоль) NaN₃. Последний постепенно переходит в раствор, затем выпадает осадок. Реакционную смесь выдерживают при той же температуре ~16 ч, после чего выливают в воду, выпавшие кристаллы продукта 5 отфильтровывают, промывают водой и пропанолом-2. Выход 2.11 г (98%). Т. пл. 206–208 °C (диоксан). ИК спектр (вазелин), v, см⁻¹: 1655 (C=O), 2120 (N₃), 2580–3220 (NH). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м. д., *J* (Гц): 6.18 (1H, с, С<u>Н</u>Ph); 7.41–7.52 (7H, м, H_{Ph}-7, H_{Ph}-8); 7.67 (1H, д. д. д. *J* = 7.48, 7.48, 1.27, H_{Ph}-6); 7.96 (1H, д. *J* = 7.75, H_{Ph}-5); 12.70 (1H, с, NH). Найдено, %: С 65.36; Н 3.90; N 25.43. C₁₅H₁₁N₅O. Вычислено, %: С 64.97; Н 4.00; N 25.26.

3-Бензоил-2-оксо-1,2-дигидрохиноксалин (2). А. Раствор 0.50 г (1.80 ммоль) соединения **1** в 5 мл ДМСО кипятят 1 ч, затем охлаждают, выливают в воду и добавляют раствор соды. Выпавшие кристаллы продукта **2** отфильтровывают и промывают водой. Выход 0.14 г (30%).

Б. Раствор 0.50 г (1.80 ммоль) соединения 1 и 0.18 г (2.0 ммоль) ацетата натрия в 5 мл ДМСО кипятят 45 мин. Затем реакционную смесь охлаждают и выливают в воду. Выпавшие кристаллы продукта 2 отфильтровывают, промывают водой. Выход 0.39 г (84%).

В. Раствор 0.30 г (1.10 ммоль) азида 5 в 5 мл ДМСО кипятят 30 мин, затем охлаждают, выливают в воду, выпавшие кристаллы продукта 2 отфильтровывают, промывают водой. Выход 0.22 г (81%).

Г. Раствор 1.10 г (4.0 ммоль) азида 5 в 10 мл АсОН кипятят 30 мин, затем охлаждают, выпавшие кристаллы продукта 2 отфильтровывают, промывают пропанолом-2. Фильтрат выливают в воду, выпавшие кристаллы продукта 2 отфильтровывают, промывают водой и пропанолом-2. Суммарный выход 0.9 г (95%).

Д. Раствор 1.10 г (4.0 ммоль) азида **5** в 20 мл 6.1 М HCl кипятят 30 мин, затем охлаждают, кристаллы продукта **2** отфильтровывают, промывают водой, 5% раствором соды и снова водой. Выход 0.97 г (98%).

Характеристики соединения 2 и способ его очистки приведены в работе [3].

СПИСОК ЛИТЕРАТУРЫ

- 1. А. А. Калинин, В. А. Мамедов, Я. А. Левин, в кн. *Химия и применение фосфор-, сера*и кремнийорганических соединений, Петербургские встречи-98, 1998, 102.
- В. А. Мамедов, А. А. Калинин, А. Т. Губайдуллин, И. З. Нурхаметова, И. А. Литвинов, Я. А. Левин, *XГС*, 1664 (1999).
- В. А. Мамедов, А. А. Калинин, И. Х. Ризванов, Н. М. Азанчеев, Ю. Я. Ефремов, Я. А. Левин, XTC, 1279 (2002).
- 4. В. А. Мамедов, И. А. Нуретдинов, Ф. Г. Сибгатуллина, *Изв. АН СССР. Сер. хим.*, 1412 (1989).
- 5. В. Д. Романенко, С. И. Бурмистров, *XГС*, 852 (1973).
- 6. N. Kornblum, W. J. Jones, G. J. Anderson, J. Am. Chem. Soc., 81, 4113 (1959).
- 7. N. Kornblum, H. W. Frazier, J. Am. Chem. Soc., 88, 865 (1966).
- 8. Дж. Теннант, в кн. Общая органическая химия, под ред. Д. Бартона, У. Д. Оллиса, Химия, Москва, 1982, **3**, 498.
- 9. A. Altomare, G. Cascarano, C. Giacovazzo, Acta Crystallogr., A47, 744 (1991).
- 10. L. H. Straver, A. J. Schierebeek, *MolEN. Structure Determination System*, 1, Program Description, Nonius, Delft, 1994.
- 11. A. L. Spek, Acta Crystallogr., A46, C34 (1990).

Институт органической и физической химии им. А. Е. Арбузова Казанского научного центра РАН, Казань 420088, Россия e-mail: mamedov@iopc.kcn.ru Поступило в редакцию 15.05.2000