В. И. Сокол, О. А. Якименко^а, В. В. Давыдов^а, Ю. В. Шкляев⁶, В. С. Сергиенко, М. А. Рябов^а

СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И СПЕКТРЫ 3,3-ДИМЕТИЛ-1-(3-МЕТИЛ-1-ФЕНИЛПИРАЗОЛ-5-ОНИЛИДЕН-4)-1,2,3,4-ТЕТРАГИДРОИЗОХИНОЛИНА

Синтезирован 3,3-диметил-1-(3-метил-1-фенилпиразол-5-онилиден-4)-1,2,3,4тетрагидроизохинолин, определены его кристаллическая и молекулярная структуры. Методами ИК и электронной спектроскопии установлено, что в растворах строение этого соединения не меняется.

Ключевые слова: производные антипирина, производные изохинолина, кристаллическая структура, спектроскопическое исследование.

Производные 3,3-диметил-3,4-дигидро- и 3,3-диметил-1,2,3,4-тетрагидроизохинолина [1, 2], а также антипирин (2,3-диметил(1-фенил)пиразолон-5) и его 4-аминопроизводные [3] известны своей фармакологической активностью. В ходе поиска новых эффективных препаратов, влияющих на гемостаз, представляло интерес получить такое производное 3,3-диметил-3,4-дигидроизохинолина, которое содержит пиразолоновый фрагмент в качестве заместителя в положении 1. Настоящая работа посвящена синтезу 3,3-диметил-1-(3-метил-1-фенилпиразол-5-онилиден-4)-1,2,3,4-тетрагидроизохинолина (1) и изучению его строения методами РСА, ИК и электронной спектроскопии и квантово-химическим расчетом в рамках приближения ППП.

Соединение 1 в некоторой степени является аналогом изученного ранее 3,3-диметил-1-N-(2,3-диметил-1-фенил-5-оксо-3-пиразолин-4-ил)имино-1,2,3,4тетрагидроизохинолина (2) [4]. Структурное различие между молекулами 1 и 2 заключается в способе сочленения тетрагидроизохинолинового и пиразолонового фрагментов: в соединении 1 они объединены непосредственно связью С-С, а в соединении 2 – через мостиковый атом N₍₂₎.

Это приводит к существенному различию в строении молекул 1 и 2, хотя в них имеются и сходные черты.

Подобно 2, соединение 1 кристаллизуется в енаминокетонной форме 1a, стабилизированной внутримолекулярной водородной связью $N_{(1)}$ -HN₍₁₎...O₍₁₎.

В обеих молекулах 1 и 2 "подвижный" атом водорода локализован у атома $N_{(1)}$ тетрагидроизохинолинового фрагмента. Однако характер распределения π -электронной плотности по связям С–N и С–С между фрагментами в молекулах 1 и 2 заметно различается. В молекуле 1 наблюдается существенная делокализация π -взаимодействия по связям $N_{(1)}$ – $C_{(1)}$ – $C_{(12)}$, которая позволяет говорить о вкладе в строение изомера 1а предельной биполярной структуры 1а'.

Действительно, длина связи $N_{(1)}-C_{(1)}$ 1.331(4) Å в соединении **1** является промежуточной между длиной стандартной двойной связи $N(sp^2)=C(sp^2)$ (1.311–1.324, средн. 1.316 Å) и длиной одинарной связи $N(sp^2)-C(sp^2)$ (1.363–1.382, средн. 1.371 Å) [5]. Экзоциклическая связь $C_{(1)}-C_{(12)}$ (1.409(4) Å) также соответствует не двойной, а стандартной полуторной связи $C(sp^2) \simeq C(sp^2)$ (1.380 Å).

Подобная делокализация π -взаимодействия по связям $N_{(1)}$ - $C_{(1)}$ и $C_{(1)}$ - $C_{(12)}$, не соответствующая формальному описанию строения молекулы 1 формулой 1а, в еще большей степени проявляется в димедоновых производных 3,4дигидроизохинолина: 3,3-диметил-1-(4,4-диметилциклогекса-2,6-дион-1илиден)-1,2,3,4-тетрагидроизохинолине (3) [6] и других производных. Из данных для семи структурно охарактеризованных соединений этого типа [6–12] видно, что длина внутрициклической связи $N_{(1)}$ - $C_{(1)}$ в указанных соединениях (1.289–1.319 Å) типична для двойной связи $N(sp^2)$ = $C(sp^2)$. Расстояние же $C_{(1)}$ - $C_{(12)}$ (1.435–1.470 Å) приближается к стандартному значению даже не полуторной, а одинарной связи $C(sp^2)$ - $C(sp^2)$ (1.463–1.480 Å средн. 1.470 Å [5]). Таким образом, в этих случаях сдвиг от "чистой" енаминодикетоновой формы **За** к биполярной **За'** выражен в еще большей степени, чем для структуры **1**.

В соединении 2 подобных отклонений в распределении π -электронной плотности по связям N–C от изомера 2а не наблюдается. Внутрициклическая связь N₍₁₎–C₍₁₎ (1.349 Å) существенно длиннее экзоциклической N₍₂₎–C₍₁₂₎ (1.290 Å). Однако протонирование молекулы 2 по атому N₍₂₎, реализованное в сольвате (1:1) трихлорокобальтата 3,3-диметил-1-N-2,3-диметил(1-фенил-5-оксо-3-пиразолин-4-ил)имино-1,2,3,4-тетрагидроизохинолиния с ацетоном (4) [13], приводит к существенной делокализации π -электронной плотности по связям N₍₁₎–C₍₁₎ и N₍₂₎–C₍₁₎, вследствие чего последние практически выравниваются. В структуре 4, по сравнению с 2, связь N₍₁₎–C₍₁₎ укорачивается на 0.034 Å (до 1.315 Å), а N₍₂₎–C₍₁₎ в той же степени (на 0.037 Å) удлиняется (до 1.327 Å).

Так, в структуре **4**, как и в структурах **1** и димедоновых производных гидроизохинолина, проявляется влияние разделения зарядов в молекуле на распределение π-электронного взаимодействия по связям С–С и С–N.

В гидроизохинолиновом фрагменте структуры 1, как в других аналогичных соединениях, связь $N_{(1)}$ – $C_{(9)}$ (1.477(4) Å) значительно длиннее, чем $N_{(1)}$ – $C_{(1)}$ (1.331(4) Å). Связи С–С в этом фрагменте имеют обычные значения, а его конформация сходна с найденной во всех ранее изученных соединениях данного типа. Атомы $N_{(1)}$, $C_{(9)}$ и $O_{(1)}$ смещены от плоскости бензольного кольца и сопряженных с ним атомов $C_{(1)}$ и $C_{(8)}$ в одну сторону (в разных соединениях варьируется лишь величина этих смещений). В структуре 1 атомы $N_{(1)}$, $C_{(9)}$ и $O_{(1)}$ отклонены от указанной плоскости на 0.529, 1.028 и 0.150 Å соответственно.

Подобно соединениям 2, 3 и 4, в молекуле 1 между гидроизохинолиновым и пиразолоновым фрагментами имеется водородная связь $N_{(1)}$ -HN₍₁₎...O₍₁₎, замыкающая почти плоский шестичленный псевдоцикл. По своим геометрическим параметрам (N–H 0.88, N...O 2.649, O...H 1.90 Å, \angle NHO 142°) эта связь близка к H-связи в молекуле 3 (в соединениях 2 и 4 при образовании внутримолекулярной H-связи замыкаются семичленные циклы). Участие атомов кислорода в образовании H-связей в соединениях 1, 2 и 3 приводит к некоторому увеличению расстояний C=O (до 1.256(2), 1.232 и 1.236 Å соответственно) по сравнению с расстоянием C=O в 3 (1.227 Å) во второй карбонильной группе, не участвующей в H-связи.

Следует отметить, что в узлах сочления гидроизохинолинового и пиразолонового фрагментов молекулы **1** (при атомах $C_{(1)}$ и $C_{(12)}$) имеются значительные угловые искажения. В частности, заметно увеличены экзоциклические углы $C_{(2)}C_{(1)}C_{(12)}$ 127.0(3)° и $C_{(1)}C_{(12)}C_{(13)}$ 134.7(3)°, возможно, из-за стерических напряжений или отталкивания неподеленных электронных пар атомов О и N (NH).

Вместе с тем, связевые узлы атомов $C_{(1)}$, $C_{(12)}$, $N_{(1)}$ и $N_{(3)}$ практически плоские: сумма углов при них соответственно равна 359.9, 359.8, 359.6 и 359.9°.

Геометрические параметры пиразолонового цикла структур **1** и **2** различаются в соответствии с реализуемыми таутомерными формами (**1**, **1а** и **2a**). В структуре **2** связи N–C выравнены (1.391 и 1.395 Å), тогда как в молекуле **1** они существенно различаются: $N_{(2)}$ – $C_{(13)}$ на 0.065Å короче, чем $N_{(3)}$ – $C_{(14)}$ (соответственно 1.311(4) и 1.376(4) Å). Наоборот, связи С–С ($C_{(12)}$ – $C_{(13)}$ 1.436(4) и $C_{(13)}$ – $C_{(14)}$ 1.442(4) Å) в структуре **1** равноценны, тогда как в молекуле **2** различаются на 0.114 Å (1.335 и 1.449 Å). Таким образом, в структуре **1** двойная связь локализована между атомами $N_{(2)}$ = $C_{(13)}$, а в **2** – между атомами $C_{(12)}$ = $C_{(13)}$. Расстояния N–N в структурах **1** и **2** близки (1.399(4) и 1.406 Å соответственно).

Связь $N_{(3)}$ – $C_{(16)}$ между пиразолоновым и фенильным циклами в **1** (1.417(4) Å) немного длиннее стандартной связи $C(sp^2)$ – $N(sp^2)$ (1.380 Å) и близка по длине к аналогичной связи в структуре **2** (1.423 Å). Фенильное кольцо лежит в плоскости, почти параллельной бензольному циклу гидроизохинолина (угол между ними составляет 1.5°); относительно плоскости пиразолонового цикла фенильное кольцо повернуто на 33.6°. Угол между средними плоскостями $C_{(1)}$ – $C_{(8)}$ гидроизохинолина и пиразолона (35°) близок к найденному в соединении **3** (32°).

В ИК спектрах поликристаллических образцов соединения **1** (в таблетках КВг и в виде суспензии в нуйоле) наличие внутримолекулярной Н-связи N–H...O=C характеризуется низкочастотным смещением интенсивной полосы v(C=O) в область 1621 см⁻¹ по сравнению с 1662 см⁻¹ в спектре антипирина [14]. Валентные колебания NH проявляются при этом в форме широкой (диффузной) малоинтенсивной полосы в области примерно 3500–2700 см⁻¹.

В области валентных колебаний связей C=O, C=N, C=C и δ (NH) (1621–1500 см⁻¹) наблюдается 6 полос с максимумами 1621, 1604, 1594, 1561, 1521 и 1501 см⁻¹.

В ЭСП поликристаллического образца отмеченное выше π -сопряжение между тремя циклическими фрагментами молекулы 1 приводит к появлению полосы с максимумом 402 нм, отсутствующей в спектрах 1,3,3-триметил-3,4-дигидроизохинолина и антипирина [15, 16]. Следует отметить, что аналогичная полоса наблюдается в спектре соединения 2 [4]. Найденные спектроскопические характеристики являются основой для рассмотрения строения соединения 1 в растворах.

Согласно данным ИК и электронных спектров, форма **1a** соединения **1**, конформация молекулы и внутримолекулярная H-связь, найденные в кристалле соединения **1** в растворах в апротонных растворителях, в целом сохраняются. Действительно, в ИК спектре соединения **1** в CCl₄ положение и форма полос v(C=O) и v(NH) такие же, как в спектре твердых образцов, и не меняются при разбавлении раствора, что свидетельствует о сохранении внутримолекулярной H-связи. В ЭСП соединения **1** в этаноле и MeCN полоса, характеризующая сопряжение между циклическими фрагментами молекулы, сохраняется. Наблюдаемый гипсохромный сдвиг этой полосы по сравнению со спектром в поликристаллическом состоянии (337 и 402 нм соответственно) объясняется, как и в случае соединения **2**, некоторым уменьшением сопряжения между гидроизохинолиновым и антипириновым фрагментами молекулы вследствие уменьшения их копланарности.

Результаты квантово-химического расчета методом ППП плоских моделей соединения **1**, в которых отсутствовали атомы, не содержащие π -электронов, удовлетворительно согласуются с экспериментальными данными. Так расчеты энергий атомизации $\Delta H_{\rm ar}$ ряда возможных изомеров соединения **1** показали, что максимальную энергию атомизации имеет именно енамино-кетонный изомер **1а**.

Расчеты подтверждают также высказанное выше предположение о вкладе биполярной структуры **1**a' в структуру соединения **1**. Рассчитанное суммарное значение π -зарядов на атомах тетрагидроизохинолинового цикла составляет +0.52 э, а на атомах пиразолонового цикла –0.41 э. ЭСП, рассчитанные для плоской модели соединения **1**, удовлетворительно согласуются с экспериментальными. В частности, в спектрах наблюдаются длинноволновые полосы в области 400 и 330 нм, что согласуется со сделанным ранее выводом о наличии сопряжения между тетрагидро-изохинолиновым и пиразолоновым фрагментами.

Связь	<i>d</i> , Å	Угол	ω, град	Угол	ω, град
O(1)-C(14)	1.256(3)	C(1)-N(1)-C(9)	125.4(3)	O ₍₁₎ -C ₍₁₄₎ -C ₍₁₂₎	130.4(3)
$N_{(1)} - C_{(1)}$	1.331(4)	C(13)-N(2)-N(3)	106.3(2)	N ₍₃₎ -C ₍₁₄₎ -C ₍₁₂)	104.8(3)
N(1)-C(9)	1.477(4)	C(14)-N(3)-N(2)	112.2(2)	C(17)-C(16)-C(21)	120.2(3)
N ₍₂₎ -C ₍₁₃₎	1.311(4)	C ₍₁₄₎ -N ₍₃₎ -C ₍₁₆₎	128.9(3)	C(17)-C(16)-N(3)	121.1(3)
N(2)-N(3)	1.393(3)	N(2)-N(3)-C(16)	118.8(2)	C(21)-C(16)-N(3)	118.7(3)
N(3)-C(14)	1.376(4)	N ₍₁₎ -C ₍₁₎ -C ₍₁₂₎	117.5(3)	$C_{(16)}$ - $C_{(17)}$ - $C_{(18)}$	119.2(3)
N(3)-C(16)	1.417(4)	N ₍₁₎ -C ₍₁₎ -C ₍₂₎	115.4(3)	C ₍₁₉₎ -C ₍₁₈₎ -C ₍₁₇₎	120.7(3)
C(1)-C(12)	1.409(4)	$C_{(12)}$ - $C_{(1)}$ - $C_{(2)}$	127.0(3)	C(20)-C(19)-C(18)	119.7(3)
C(12)-C(13)	1.436(4)	N(1)-C(9)-C(10)	105.8(2)	$C_{(19)}$ - $C_{(20)}$ - $C_{(21)}$	120.6(3)
$C_{(12)} - C_{(14)}$	1.442(4)	N ₍₁₎ -C ₍₉₎ -C ₍₁₁₎	110.7(3)	$C_{(20)}$ - $C_{(21)}$ - $C_{(16)}$	119.6(6)
C(16)-C(17)	1.385(4)	N(1)-C(9)-C(8)	106.3(2)		
C(16)-C(21)	1.386(4)	C ₍₁₎ -C ₍₁₂₎ -C ₍₁₃₎	134.7(3)		
$C_{(17)} - C_{(18)}$	1.383(5)	$C_{(1)}$ - $C_{(12)}$ - $C_{(14)}$	120.2(3)		
C(18)-C(19)	1.381(5)	C ₍₁₃₎ -C ₍₁₂₎ -C ₍₁₄₎	104.9(3)		
C(19)-C(20)	1.371(5)	N ₍₂₎ -C ₍₁₃₎ -C ₍₁₂₎	111.6(3)		
C(20)-C(21)	1.382(5)	N ₍₂₎ -C ₍₁₃₎ -C ₍₁₅₎	116.2(3)		
N ₍₁₎ -H ₍₁₎ -(N1)	0.88(5)	O ₍₁₎ -C ₍₁₄₎ -N ₍₃₎	124.9(3)		

Длина связей (d) и валентные углы (w) в структуре 1

Таким образом, совокупность полученных данных позволяет сделать вывод, что соединение **1** как в растворах, так и в кристалле существует только в форме **1**а.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры образцов в кристаллическом состоянии (в таблетках KBr, в суспензии в нуйоле) и в растворах CCl₄ при концентрациях $1 \times 10^{-2} - 1 \times 10^{-3}$ моль/л записаны на спектрометре Specord IR-75. ЭСП образцов в твердом состоянии (в виде суспензии в нуйоле) и в растворах при концентрациях $5 \times 10^{-5} - 1 \times 10^{-3}$ моль/л получены на спектрофотометре Specord UV-vis. Квантово-химические расчеты выполняли методом ППП с оптимизацией межатомных расстояний по минимуму теплот атомизации [17].

Рентгеноструктурный анализ. Кристаллы соединения 1, $C_{21}H_{21}N_3O$, кристаллизуются в виде призм светло-желтого цвета, принадлежат к моноклинной сингонии. Параметры элементарной ячейки: a = 9.617(2), b = 9.810(2), c = 18.668(4) Å, $\beta = 102.19(3)^\circ$, V = 1721.5(6) Å³, $\rho_{(выч)} = 1.279$ г/см³, $\mu_{Mo} = 0.80$ см⁻¹, F(000) = 704, M = 331.41, Z = 4, пр. гр. $P2_1/c$.

Экспериментальные данные получены с ограненного кристалла ($0.48 \times 0.45 \times 0.32$ мм) на автоматическом четырехкружном дифрактометре Enraf-Nonis CAD-4 (Мо K_{α} -излучение, графитовый монохроматор, ω -сканирование, $2\theta_{max} = 55.8^{\circ}$). Всего зарегистрировано 1713 отражений, из них независимых 1657 ($R_{int} = 0.016$); в расчетах использован 1641 рефлекс с $I \ge 2\sigma$ (I).

Структура определена прямым методом (SHELXS-86 [18]) и уточнена методом наименьших квадратов (по F²) в полноматричном анизотропном приближении для неводородных атомов (SHELX-93 [19]).

Атом водорода $HN_{(1)}$ локализован на разностном синтезе Фурье и уточнен изотропно, остальные атомы H рассчитаны геометрически и включены в уточнение в фиксированных позициях ($U_i = 0.08$ Å²).

Окончательные параметры уточнения: R1 = 0.045, $\omega R2 = 0.108$, GOOF = 1.041 для 1641 отражения с $I \ge 2\sigma(I)$ (231 уточняемый параметр), R1 = 0.048, $\omega R2 = 0.113$ для всех 1657 отражений. Коэффициент экстинкции 0.006 (2), $\Delta \rho_{max} = 0.205$; $\Delta \rho_{min} = 0.190 \Rightarrow Å^{-3}$.

Строение молекулы 1

В таблице приведены длины связей и валентные углы в структуре 1; нумерация атомов приведена на рисунке.

3,3-Диметил-1-(3-метил-1-фенилпиразон-5-онилиден-4)-1,2,3-тетрагидроизохинолин (1). Раствор 2.05 г (10 ммоль) 3,3-диметил-1-метилтио-3,4-дигидроизохинолина и 1.74 г (10 ммоль) 1-фенил-3-метилпиразолона-5 в 10 мл ледяной уксусной кислоты нагревают 3 ч, реакционную смесь выливают в 100 мл воды, через 30 мин фильтруют, фильтрат подщелачивают до рН 7. Выделившийся осадок отделяют, сушат и кристаллизуют из минимального количества этанола или этилацетата. Выход 62%. Найдено, %: С 76.00; Н 6.25; N 12.40. С₂₁H₂₁N₃O. Вычислено, %: С 76.10; Н 6.39; N 12.68.

Монокристаллы, использованные для РСА, получали перекристаллизацией соединения 1 из ацетона.

Работа выполнена при финансовой поддержке Федеральной целевой программы "Интеграция" (проект A0129) и Российского фонда фундаментальных исследований (проект 98-03-32689).

СПИСОК ЛИТЕРАТУРЫ

- 1. Р. З. Даутова, В. С. Шкляев, Б. Я. Сыропятов, Б. Б. Александров, А. Г. Михайловский, М. И. Вахрин, *Хим.-фарм. эсурн.*, **23**, № 2, 172 (1989).
- 2. Е. С. Бороненкова, Б. Я. Сыропятов, А. А. Горбунов, В. С. Шкляев, Ю. В. Шкляев, *Хим.-фарм. журн.*, **28**, № 8, 18 (1994).
- 3. Г. А. Мелентьева, Фармацевтическая химия, Медицина, Москва, 1976, 1, 390.
- 4. В. И. Сокол, М. А. Рябов, Н. Ю. Меркурьева, В. В. Давыдов, Ю. В. Шкляев, В. С. Сергиенко, Б. Е. Зайцев, *Кристаллография*, **41**, 483 (1996).
- 5. F. M. Allen, O. Kennard, D. Watson, J. Chem. Soc., Perkin Trans. 2, 81 (1987).

- 6. В. В. Давыдов, В. И. Сокол, Е. В. Балебанова, Ю. В. Шкляев, В. С. Сергиенко, В. А. Никаноров, Б. Е. Зайцев, М. А. Порай-Кошиц, *Изв. АН, Сер. хим.*, 331 (1993).
- В. В. Давыдов, В. И. Сокол, Е. В. Балебанова, В. К. Беляева, Ю. В. Шкляев, И. Н. Маров, Б. Е. Зайцев, М. А. Порай-Кошиц, *Координац. химия*, **19**, 803 (1993).
- В. В. Давыдов, В. И. Сокол, Е. В. Балебанова, Ю. В. Шкляев, В. Ф. Захаров, С. Л. Кузнецов, Б. Е. Зайцев, *XIC*, 922 (1995).
- В. И. Сокол, В. В. Давыдов, Е. В. Балебанова, М. А. Порай-Кошиц, Ю. В. Шкляев, Б. Е. Зайцев, Координац. химия, 21, 325 (1995).
- 10. В. В. Давыдов, В. И. Сокол, Е. В. Балебанова, В. С. Сергиенко, Ю. В. Шкляев, *Журн. неорган. химии.*, **43**, 781 (1998).
- В. И. Сокол, В. В. Давыдов, Е. В. Балебанова, Ю. В. Шкляев, В. С. Сергиенко, Кристаллография, 43, 829 (1998).
- 12. В. В. Давыдов, В. И. Сокол, Е. В. Балебанова, О. А. Якименко, Ю. В. Шкляев, В. С. Сергиенко, *Журн. неорган. химии*, **44**, 940 (1999).
- 13. В. И. Сокол, М. А. Рябов, В. В. Давыдов, Н. Ю. Меркурьева, Ю. В. Шкляев, В. С. Сергиенко, Б. Е. Зайцев, *Журн. неорган. химии*, **43**, 561 (1998).
- 14. T. P. Singh, M. Vijayan, Acta Crystallogr., B29, 714 (1973).
- В. В. Давыдов, Е. В. Балебанова, И. В. Карташева, В. И. Сокол, Ю. В. Шкляев, Б. Е. Зайцев, *Координац. химия*, 21, 489 (1995).
- 16. A. R. Katritzky, F. W. Maine, Tetrahedron, 20, 299 (1964).
- 17. М. Дьюар, Теория молекулярных орбиталей в органической химии, Мир, Москва, 1972, 464.
- 18. G. M. Sheldrick, Acta Crystallogr., A46, 467 (1990).
- 19. G. M. Sheldrick, *SHELX-93*. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Göttingen, 1993.

Институт общей и неорганической химии им. Н. С. Курнакова РАН, Москва 117907, Россия e-mail: sokol @ ionchran.rinet.ru Поступило в редакцию 10.04.2000

^аРоссийский университет дружбы народов, Москва 117198 e-mail: vdavidov @ sci.pfu.edu.ru

⁶Институт технической химии УрО РАН, Пермь 614000, Россия