## А. Т. Солдатенков, С. А. Солдатова\*, Ж. А. Мамырбекова-Бекро<sup>а</sup>, Г. С. Гимранова, А. В. Малкова, К. Б. Полянский, Н. М. Колядина, В. Н. Хрусталев<sup>б</sup>

## СИНТЕЗ И МОЛЕКУЛЯРНОЕ СТРОЕНИЕ ПРОИЗВОДНЫХ 2,3,4,5-ТЕТРАГИДРО-1*Н*-3-БЕНЗАЗЕПИНОВ И ДИМЕТИЛ-4-ЦИАНО-2,3,6,7-ТЕТРАГИДРО-1*Н*-3-БЕНЗАЗОНИН-5,6-ДИКАРБОКСИЛАТА

Изучены направления перегруппировок четвертичных солей 1,2,3,4-тетрагидроизохинолиния под действием оснований в присутствии или в отсутствие диметилового эфира ацетилендикарбоновой кислоты. Эти четвертичные соли, содержащие при атоме азота метиленовую группу, в присутствии оснований превращаются через промежуточные *N*-илиды в продукты перегруппировки по Стивенсу – тетрагидро-3-бензазепины. При добавлении в реакционную смесь электрофильной ловушки – диметилового эфира ацетилендикарбоновой кислоты – происходит её присоединение по карбанионному центру илида с последующей рециклизацией пиперидеинового фрагмента с образованием производного 3-бензазонина с необычным 4,5-расположением олефиновой связи в девятичленном гетероцикле. Методом РСА установлено молекулярное строение 3-метил-2-циано-2,3,4,5-тетрагидро-1*H*-3-бензазепина и диметил-4-циано-2,3,6,7-тетрагидро-1*H*-3-бензазонин-5,6-дикарбоксилата.

Ключевые слова: тетрагидро-3-бензазепины, 2,3,6,7-тетрагидро-1*H*-3-бензазонин-5,6-дикарбоксилат, четвертичные соли 1,2,3,4-тетрагидроизохинолиния, сигматропная перегруппировка.

Сигматропные перегруппировки, протекающие через промежуточные ангидрооснования, позволяют получать весьма сложные по строению и труднодоступные азациклические соединения [1–3], в частности такие синтетические [2, 4, 5] и природные [6–9] вещества, которые имеют в своей структуре тетрагидро-3-бензазепиновый фрагмент.

Важно отметить, что подобные перегруппировки могут происходить с высокой региоселективностью и даже полной передачей стереохимических особенностей исходного вещества полученному продукту. Однако примеры их реализации в присутствии электрофильных ловушек анионного центра промежуточного ангидрооснования исчисляются единицами [3, 10, 11].

Продолжая наши работы по исследованию реакционной способности четвертичных солей пиридиния и его производных [12–18], мы решили изучить направления превращений солей тетрагидроизохинолиния **1** под действием оснований в отсутствие или в присутствии диметилового эфира ацетилендикарбоновой кислоты (АДКЭ). В первом случае (в отсутствие АДКЭ) можно предположить образование 2-замещённых производных тетрагидробензазепинов **2** за счёт сигматропного [1,2]-сдвига эндоциклического бензильного фрагмента на экзоциклический анионный центр промежуточного *N*-илида **A** [15, 16]. Также вероятно образование и α-R-метилпроизводных тетрагидроизохинолина, благодаря [1,2]-сдвигу R-метильной группы на эндоциклический анионный центр промежуточного цвиттер-иона – циклоаммоний илида [18]. Во втором случае, благодаря присутствию в исходной смеси АДКЭ (электрофильной ловушки для экзо- или эндоциклических анионных центров промежуточных *N*-илидов), возникает возможность переключения реакции с указанного выше [1,2]сдвига по Стивенсу [3, 16] на [1,4]-перегруппировку с образованием производных азонина. Это принципиально новое направление реакции, открытое нами недавно на примере солей частично восстановленных индено- и индолопиридиния [10, 11, 17]. В настоящей работе прежде всего были изучены превращения четвертичных солей 1а-е при кипячении (в течение 7-12 ч) их суспензий с NaH в 1,4-диоксане в отсутствие АДКЭ. После соответствующей обработки реакционных смесей и хроматографического разделения на колонках с силикагелем были получены тетрагидро-3-бензазепины 2а-е с выходами 30-95%.



 $\mathbf{a} R = CN$ ,  $\mathbf{b} R = CH=CH_2$ ,  $\mathbf{c} R = C=CH$ ,  $\mathbf{d} R = COC_6H_4Me$ -*p*,  $\mathbf{e} R = COC_6H_4Br$ -*p*;  $\mathbf{a} X = CI$ ,  $\mathbf{b}$ -**e** X = Br

На первой стадии превращений четвертичных солей 1а-е под действием основания образуются *N*-илиды A. Затем они претерпевают [1,2]-сигматропную перегруппировку и превращаются в основном в тетрагидробензазепины 2а-е. Природа заместителей при атоме азота в исходных четвертичных солях 1а-е влияет на селективность образования тетрагидробензазепинов, повышая её в случае электроноакцепторных заместителей в исходных четвертичных солях 1d, е. В случае четвертичной соли 1а, кроме тетрагидробензазепина 2а (выход 60%), был выделен побочный продукт – стирол 3 (10%). Эта параллельная реакция происходит за счёт внутримолекулярного β-элиминирования протона, который переходит на карбанионный центр группы –HC<sup>–</sup>–CN с одновременным разрывом связи N(2)-C(3) (расщепление по Гофману).

Аналогичные эксперименты были осуществлены с четвертичными солями алкалоида лауданозина 4a,b. При этом из реакционных смесей были выделены бензазепины 5а, b (выходы 50 и 40% соответственно), которые имеют структурное сходство с алкалоидами булгарамином и изопавином [6].



**a** R = CN, X = Cl; **b**  $R = COC_6H_4Br-p$ , X = Br



Рис. 1. Общий вид молекулы соединения **2a** HCl в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью. Пунктиром показана водородная связь

Для однозначного подтверждения данного направления реакции и структуры тетрагидробензазепинов 2a-e и 5a,b, выделенных главным образом в виде масел, был получен гидрохлорид тетрагидро-3-бензазепина 2a·HCl и методом PCA изучено его молекулярное строение (рис. 1). Из данных PCA следует, что семичленное гетерокольцо находится в кристалле в конформации "кресло". Цианогруппа занимает аксиальное положение и находится в *гош*-конфигурации к экваториально расположенной *N*-метильной группе, что фиксируется кватернизацией атома азота. Катион [2aH]<sup>+</sup> является хиральным с двумя асимметрическими центрами при атомах углерода C(2) и азота N(3). Кристалл представляет собой рацемат с относительной конфигурацией хиральных атомов – *rac*- $2S^*$ , $3S^*$ .

При проведении аналогичной реакции соли **1а** в присутствии АДКЭ из реакционной смеси с выходом 27% было выделено производное бензазонина **6**. Его структура была однозначно установлена на основании данных спектроскопии ЯМР и РСА. Из этих данных следует, что в присутствии АДКЭ в качестве электрофильной ловушки первоначально генерируемый *N*-илид быстро присоединяет этот электрофил по карбанионному центру и трансформируется в 1,4-цвиттер-ион **B**. Последний затем перегруппировывается с расширением тетрагидропиридинового цикла в тетрагидробензазониновую структуру **6**. Следовало ожидать, что вторая двойная связь в девятичленном гетероцикле, возникающая при введении остатка АДКЭ, должна была располагаться при атомах C(5)–C(6) соединения **6**. Однако данные РСА (рис. 2) и спектра ЯМР <sup>1</sup>Н показали, что она, благодаря прототропному сдвигу, неожиданно позиционировалась при атомах C(4)–C(5). Это, по-видимому, обусловлено по-





Рис. 2. Общий вид молекулы соединения 6 в представлении атомов эллипсоидами тепловых колебаний с 50% вероятностью

явлением в соединении 6 дополнительного  $\pi$ ,*n*-сопряжения этиленовой связи в цианоенаминном фрагменте.

По данным РСА соединения **6**, конформацию девятичленного гетероцикла можно описать в виде "искажённого кресла", в котором атомы N(3), C(4), C(7) и C(7a) задают центральную плоскость, а атомы C(5) и C(6) с одной стороны и C(1), C(2) и C(11a) с другой значительно отклоняются от этой плоскости в разные стороны. Молекула имеет *E*-конфигурацию заместителей при двойной связи C(4)–C(5). Соединение **6** хиральное – содержит асимметрический атом углерода C(6). Кристалл является рацематом.

Таким образом, нами обнаружено, что в отсутствие АДКЭ действие оснований на четвертичные соли тетрагидроизохинолиния приводит к образованию производных тетрагидро-3-бензазепинов (по реакции Стивенса). Также установлена возможность переключения реакции с [1,2]-сигматропного сдвига на [1,4]-перегруппировку использованием электрофильной ловушки АДКЭ, в результате чего образуется тетрагидро-3-бензазонин с необычным расположением в девятичленном гетероцикле этиленовой связи, вводимой с остатком АДКЭ.

## ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на спектрометре Инфралюм ФТ-801 в таблетках КВг. Спектры ЯМР <sup>1</sup>Н зарегистрированы на спектрометре Bruker WP-400 (400 МГц), в ДМСО- $d_6$  (соединения **1а–е**, **4а,b**) и CDCl<sub>3</sub> (соединения **2а–е**, **3**, **5а,b**, **6**), внутренний стандарт – остаточные протоны дейтерированных растворителей (ДМСО- $d_6$  и CDCl<sub>3</sub>,  $\delta$  2.51 и 7.27 м. д. соответственно). Для анализа реакционной смеси и чистоты полученных соединений **2а–е**, **3**, **5а,b**, **6** использован жидкостной хроматограф Agilent 1100 с детекторами DAD, ELSD Sedex 75, совмещённый с масс-спектрометром Agilent LC/MSD VL, ионизация электрораспылением. Элементный анализ проведён на автоматическом анализаторе vario MACRO cube. Температуры плавления определены на приборе Stuart SMP10.

Исходный *N*-метил-1,2,3,4-тетрагидроизохинолин получен *N*-метилированием коммерческого (Aldrich) 1,2,3,4-тетрагидроизохинолина иодистым метилом в присутствии КОН. Алкалоид лауданозин получен по методике [19] из коммерческого (Aldrich) папаверина.

Галогениды *N*-метил-*N*-R-метил-1,2,3,4-тетрагидроизохинолиния 1а–е, 4а,b (общая методика). Раствор смеси 1.47 г (10 ммоль) 2-метил-1,2,3,4-тетрагидроизохинолина (для соединений 1а–е) или 3.57 г (10 ммоль) лауданозина (для соединений 4а,b) и 10 ммоль соответствующего R-метилгалогенида в 20 мл ТГФ кипятят в течение 2 ч в атмосфере азота. Осадок образовавшейся целевой четвертичной соли отфильтровывают, промывают эфиром и сушат на воздухе.

**Хлорид** *N***-метил-***N***-цианометил-1,2,3,4-тетрагидроизохинолиния (1а)**. Выход 2.1 г (95%), бесцветные кристаллы, т. пл. 175–176 °С (ЕtOH) (т. пл. 174–176 °С (ЕtOH) [17]).

Бромид *N*-метил-*N*-(3-пропенил)-1,2,3,4-тетрагидроизохинолиния (1b). Выход 2.60 г (97%), бесцветные кристаллы, т. пл. 185–186 °С (ЕtOH). ИК спектр, v, см<sup>-1</sup>: 1623 (CH=CH<sub>2</sub>). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д. (*J*,  $\Gamma$ ц): 2.89–2.92 (2H, м, 4-CH<sub>2</sub>); 3.22 (3H, с, NCH<sub>3</sub>); 3.88–3.91 (2H, м, 3-CH<sub>2</sub>); 4.03 (2H, с, 1-CH<sub>2</sub>); 4.07 (2H, д. д, <sup>2</sup>*J* = 10.9, <sup>3</sup>*J* = 1.0, NCH<sub>2</sub>CH=CH<sub>2</sub>); 4.97 (1H, д, *J* = 10.2, CH=CH<sub>2</sub>-*quc*); 5.10 (1H, д, *J* = 17.5, CH=CH<sub>2</sub>-*mpanc*); 5.17–5.19 (1H, м, CH=CH<sub>2</sub>); 7.21–7.26 (4H, м, H Ar). Найдено, %: C 58.30; H 6.68; Br 29.71; N 5.22. C<sub>13</sub>H<sub>18</sub>BrN. Вычислено, %: C 58.22; H 6.76; Br 29.79; N 5.22.

Бромид *N*-метил-*N*-(3-пропинил)-1,2,3,4-тетрагидроизохинолиния (1c). Выход 2.50 г (95%), бесцветные кристаллы, т. пл. 187–188 °С (ЕtOH). ИК спектр, v, см<sup>-1</sup>: 2120 (С≡СН). Спектр ЯМР <sup>1</sup>Н, δ, м. д.: 2.02 (1H, с, С≡СН); 3.11–3.15 (2H, м, 4-CH<sub>2</sub>); 3.53 (3H, с, NCH<sub>3</sub>); 3.95–4.03 (2H, м, 3-CH<sub>2</sub>); 4.01 (2H, с, 1-CH<sub>2</sub>); 4.32 (2H, с, NCH<sub>2</sub>C≡C); 7.20–7.26 (4H, м, H Ar). Найдено, %: С 58.47; Н 6.10; Br 30.13; N 5.24. С<sub>13</sub>Н<sub>16</sub>BrN. Вычислено, %: С 58.66; Н 6.06; Br 30.02; N 5.26.

Бромид *N*-метил-*N*-(4-метилбензоилметил)-1,2,3,4,-тетрагидроизохинолиния (1d). Выход 3.50 г (98%), бесцветные кристаллы, т. пл. 197–198 °C (EtOH). ИК спектр, v, см<sup>-1</sup>: 1685 (C=O). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д. (*J*, Гц): 2.15 (2H, т, *J* = 10.2, 4-CH<sub>2</sub>); 2.42 (3H, с, ArCH<sub>3</sub>); 3.33 (3H, с, NCH<sub>3</sub>); 4.15 (1H, д, *J* = 10.2) и 4.32 (1H, д, *J* = 10.2, 3-CH<sub>2</sub>); 4.61 (1H, д, *J* = 10.7) и 5.03 (1H, д, *J* = 10.7, 1-CH<sub>2</sub>); 5.22 (1H, д, *J* = 9.8) и 5.41 (1H, д, *J* = 9.8, NCH<sub>2</sub>CO); 7.21–8.00 (8H, м, H Ar). Найдено, %: C 63.57; H 6.12; Br 22.16; N 3.98. C<sub>19</sub>H<sub>22</sub>BrNO. Вычислено, %: C 63.34; H 6.15; Br 22.18; N 3.89.

Бромид *N*-(4-бромбензоилметил)-*N*-метил-1,2,3,4,-тетрагидроизохинолиния (1е). Выход 4.16 г (98%), бесцветные кристаллы, т. пл. 204–205 °С (ЕtOH). ИК спектр, v, см<sup>-1</sup>: 1685 (С=О). Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д. (*J*, Гц): 2.13 (2H, т, <sup>2</sup>*J* = 11.0, 4-CH<sub>2</sub>); 3.28 (3H, с, NCH<sub>3</sub>); 4.09–4.12 (1H, м) и 4.19–4.21 (1H, м, 3-CH<sub>2</sub>); 4.80 (1H, д, <sup>2</sup>*J* = 10.8) и 5.00 (1H, д, <sup>2</sup>*J* = 10.8, 1-CH<sub>2</sub>); 5.32 (1H, д, <sup>2</sup>*J* = 9.5) и 5.63 (1H, д, <sup>2</sup>*J* = 9.5, NCH<sub>2</sub>CO); 7.21–8.05 (8H, м, H Ar). Найдено, %: С 50.97; H 4.41; Br 37.56; N 3.34. C<sub>18</sub>H<sub>19</sub>Br<sub>2</sub>NO. Вычислено, %: C 50.85; H 4.50; Br 37.59; N 3.29.

Хлорид 1-(3,4-диметоксибензил)-*N*-метил-6,7-диметокси-*N*-цианометил-1,2,3,4тетрагидроизохинолиния (4а). Выход 2.15 г (50%), бесцветные кристаллы, т. пл. 213–214 °C (ЕtOH). ИК спектр, v, см<sup>-1</sup>: 2253 (С $\equiv$ N). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д. (*J*, Гц): 2.92 (2H, т, *J* = 10.4, 4-CH<sub>2</sub>); 3.12 (2H, д, *J* = 7.5, CHC<u>H</u><sub>2</sub>Ar); 3.21 (3H, с, NCH<sub>3</sub>); 3.71 (3H, c), 3.73 (3H, c), 3.74 (3H, с) и 3.76 (3H, с, 4OCH<sub>3</sub>); 4.28 (2H, т, *J* = 10.4, 3-CH<sub>2</sub>); 5.03 (2H, с, NCH<sub>2</sub>CN); 5.82 (1H, т, *J* = 7.5, 1-CH); 6.52–6.81 (5H, м, H Ar). Найдено, %: C 63.54; H 6.82; Cl 8.21; N 6.35; C<sub>23</sub>H<sub>29</sub>ClN<sub>2</sub>O<sub>4</sub>. Вычислено, %: C 63.81; H 6.75; Cl 8.19; N 6.47.

Бромид *N*-(4-бромбензоилметил)-1-(3,4-диметоксибензил)-*N*-метил-6,7-диметокси-1,2,3,4,-тетрагидроизохинолиния (4b). Выход 2.40 г (37%), бесцветные кристаллы, т. пл. 224–225 °C (EtOH). ИК спектр, v, см<sup>-1</sup>: 1685 (C=O). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д. (*J*, Гц): 2.93 (2H, т, *J* = 10.5, 4-CH<sub>2</sub>); 3.12 (2H, д, *J* = 7.8, CHC<u>H</u><sub>2</sub>Ar); 3.21 (3H, с, NCH<sub>3</sub>); 3.69 (3H, с), 3.72 (3H, с), 3.75 (3H, с) и 3.76 (3H, с, 4OCH<sub>3</sub>); 4.65–4.71 (2H, м, 3-CH<sub>2</sub>); 5.10 (2H, с, NCH<sub>2</sub>CO); 5.85 (1H, т, *J* = 7.8, 1-CH); 6.85–7.61 (9H, м, H Ar). Найдено, %: C 54.78; H 5.11; Br 25.24; N 2.10; C<sub>29</sub>H<sub>33</sub>Br<sub>2</sub>NO<sub>5</sub>. Вычислено, %: C 54.82; H 5.23; Br 25.15; N 2.20. Бензазепины 2а–е, 5а,b и аминометилстирол 3 (общая методика). К суспензии 10.0 ммоль соли 1а–е, 4а,b в 50 мл абс. диоксана прибавляют 0.3 г (12.5 ммоль) NaH. Смесь кипятят в инертной атмосфере в течение 7–12 ч, затем охлаждают, избыток NaH нейтрализуют EtOH, растворитель отгоняют в вакууме. Остаток обрабатывают  $H_2O$  и экстрагируют CH<sub>2</sub>Cl<sub>2</sub>. Экстракт сушат, упаривают, а остаток разделяют на колонке с силикагелем. Аминометилстирол 3 вымывают смесью гексан–EtOAc, 9:1, бензазепины 2а–е – смесью гексан–EtOAc, 3:1.

**3-Метил-2-циано-2,3,4,5-тетрагидро-1***H***-3-бензазепин (2а)**. Выход 1.1 г (60%), густое масло. ИК спектр, v, см<sup>-1</sup>: 2253 (СN). Спектр ЯМР <sup>1</sup>Н, δ, м. д. (*J*, Гц): 2.52 (3H, с, NCH<sub>3</sub>); 2.70–3.32 (6H, м, 1,4,5-CH<sub>2</sub>); 4.05 (1H, т, <sup>2</sup>*J* = 6.3, 2-CH); 7.21–7.60 (4H, м, H Ar). Масс-спектр, *m/z*: 187 [М+Н]<sup>+</sup>. Найдено, %: С 77.34; Н 7.47; N 14.85. С<sub>12</sub>H<sub>14</sub>N<sub>2</sub>. Вычислено, %: С 77.38; Н 7.58; N 15.04. Гидрохлорид соединения **2а**: т. пл. 172–174 °С (ЕtOH).

**3-Метил-2-этенил-2,3,4,5-тетрагидро-1***H***-3-бензазепин (2b)**. Выход 0.5 г (27%), густое коричневое масло. ИК спектр, v, см<sup>-1</sup>: 1650 (С=С). Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д. (*J*, Гц): 2.41 (3H, c, NCH<sub>3</sub>); 2.60–3.39 (6H, м, 1,4,5-CH<sub>2</sub>); 3.48–3.51 (1H, м, 2-CH); 4.81 (1H, д. д. <sup>2</sup>*J* = 1.0, <sup>3</sup>*J* = 12.1, CH=C<u>H</u><sub>2</sub>-*quc*); 5.03 (1H, д. д. <sup>2</sup>*J* = 1.0, <sup>3</sup>*J* = 15.0, CH=C<u>H</u><sub>2</sub>-*mpaнc*); 5.77–5.79 (1H, м, C<u>H</u>=CH<sub>2</sub>); 7.03–7.53 (4H, м, H Ar). Масс-спектр, *m/z*: 188 [M+H]<sup>+</sup>. Найдено, %: C 83.35; H 9.12; N 7.65. C<sub>13</sub>H<sub>17</sub>N. Вычислено, %: C 83.37; H 9.15; N 7.48.

**3-Метил-2-этинил-2,3,4,5-тетрагидро-1***H***-3-бензазепин (2с)**. Выход 0.6 г (32%), густое масло. ИК спектр, v, см<sup>-1</sup>: 2100 (С≡С). Спектр ЯМР <sup>1</sup>H, δ, м. д. (*J*, Гц): 2.02 (1H, с, С≡СН); 2.45 (3H, с, NCH<sub>3</sub>); 2.50–2.89 (6H, м, 1,4,5-CH<sub>2</sub>); 3.39 (1H, т, <sup>2</sup>*J* = 8.3, 2-CH); 7.25–7.57 (4H, м, H Ar). Масс-спектр, *m/z*: 186 [М+Н]<sup>+</sup>. Найдено, %: С 84.26; H 8.22; N 7.42. С<sub>13</sub>Н<sub>15</sub>N. Вычислено, %: С 84.28; H 8.16; N 7.56.

**2-(4-Метилбензоил)-3-метил-2,3,4,5-тетрагидро-1***Н***-<b>3-бензазепин** (**2d**). Выход 2.5 г (89%), густое масло. ИК спектр, v, см<sup>-1</sup>: 1683 (С=О). Спектр ЯМР <sup>1</sup>Н, б, м. д. (*J*, Гц): 2.12 (3H, с, ArCH<sub>3</sub>); 2.33 (3H, с, NCH<sub>3</sub>); 2.61–3.25 (6H, м, 1,4,5-CH<sub>2</sub>); 4.07 (1H, т, *J*<sub>1,2</sub> = 10.2, 2-CH); 7.20–8.02 (8H, м, H Ar). Масс-спектр, *m/z*: 280 [М+Н]<sup>+</sup>. Найдено, %: С 81.54; Н 7.33; N 4.98. С<sub>19</sub>Н<sub>21</sub>NO. Вычислено, %: С 81.68; Н 7.58; N 5.01.

**2-(4-Бромбензоил)-3-метил-2,3,4,5-тетрагидро-1***H***-3-бензазепин (2е). Выход 3.27 г (95%), густое масло. ИК спектр, v, см<sup>-1</sup>: 1680 (С=О). Спектр ЯМР <sup>1</sup>Н, δ, м. д. (***J***, Гц): 2.22 (3H, с, NCH<sub>3</sub>); 2.45–3.17 (6H, м, 1,4,5-CH<sub>2</sub>); 4.13 (1H, т, <sup>2</sup>***J* **= 9.8, 2-CH); 7.18–8.08 (8H, м, H Ar). Масс-спектр,** *m/z***: 345 [М+Н]<sup>+</sup>. Найдено, %: С 62.65; Н 5.18; N 3.97. С<sub>18</sub>Н<sub>18</sub>ВгNO. Вычислено, %: С 62.80; Н 5.27; N 4.07.** 

[(2-Этенилбензил)(метил)амино]ацетонитрил (3). Выход 1.8 г (10%), густое желтоватое масло. ИК спектр, v, см<sup>-1</sup>: 2253 (СN). Спектр ЯМР <sup>1</sup>Н,  $\delta$ , м. д. (*J*, Гц): 2.50 (3H, c, NCH<sub>3</sub>); 3.30 (2H, c, ArCH<sub>2</sub>N); 3.60 (2H, c, NCH<sub>2</sub>CN); 5.28 (1H, д. д, <sup>2</sup>*J* = 1.0, <sup>3</sup>*J* = 10.9, CH=C<u>H</u><sub>2</sub>-*yuc*); 5.72 (1H, д. д, <sup>2</sup>*J* = 1.0, <sup>3</sup>*J* = 14.8, CH=C<u>H</u><sub>2</sub>-*mpahc*); 7.21–7.50 (5H, м, C<u>H</u>=CH<sub>2</sub>, H Ar). Масс-спектр, *m/z*: 187 [M+H]<sup>+</sup>. Найдено, %: С 77.36; H 7.46; N 15.30. C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>. Вычислено, %: С 77.38; H 7.58; N 15.04.

**1-(3,4-Диметоксибензил)-3-метил-7,8-диметокси-2-циано-2,3,4,5-тетрагидро-1***H***-3-бензазепин (5а)**. Выход 1.98 г (50%), бесцветные кристаллы, т. пл. 181–182 °С (ЕtOH). ИК спектр, v, см<sup>-1</sup>: 2252 (С $\equiv$ N). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д. (*J*, Гц): 2.13 (3H, с, NCH<sub>3</sub>); 2.81–3.35 (5H, м, 1-CH, 4,5-CH<sub>2</sub>); 3.81 (6H, с, 2OCH<sub>3</sub>); 4.05 (6H, с, 2OCH<sub>3</sub>); 4.15 (1H, д, <sup>2</sup>*J* = 10.0, 2-CH); 4.22 (2H, д, *J* = 7.9, CH<sub>2</sub>Ar); 6.42–7.19 (5H, м, H Ar). Масс-спектр, *m/z*: 397 [М+Н]<sup>+</sup>. Найдено, %: С 69.55; H 7.18; N 7.21. C<sub>23</sub>H<sub>28</sub>N<sub>2</sub>O<sub>4</sub>. Вычислено, %: С 69.68; H 7.12; N 7.07.

**2-(4-Бромбензоил)-1-(3,4-диметоксибензил)-3-метил-7,8-диметокси-2,3,4,5-тетрагидро-1***H***-<b>3-бензазепин (5b)**. Выход 2.2 г (40%), бесцветные кристаллы, т. пл. 186–187 °C (ЕtOH). ИК спектр, v, см<sup>-1</sup>: 1684 (С=О). Спектр ЯМР <sup>1</sup>H, δ, м. д. (*J*, Гц): 2.99 (3H, с, NCH<sub>3</sub>); 3.77 (3H, с, OCH<sub>3</sub>); 3.88 (6H, с, 2OCH<sub>3</sub>); 3.97 (3H, с, OCH<sub>3</sub>); 3.42–4.08 (8H, м, 1,2-CH, 4,5-CH<sub>2</sub>, ArC<u>H<sub>2</sub></u>); 6.59 (1H, с, H-6); 6.62 (1H, с, H-9); 6.64 (1H, с, H Ar); 6.82 (1H, д, *J* = 7.5, H Ar); 6.90 (1H, д, *J* = 7.5, H Ar); 7.39 (2H, д, *J* = 7.6, H Ar); 7.55 (2H, д, *J* = 7.6, H Ar). Масс-спектр, *m/z*: 555 [M+H]<sup>+</sup>. Найдено, %: С 62.95; H 5.69; Br 14.20; N 2.34. С<sub>29</sub>H<sub>32</sub>BrNO<sub>5</sub>. Вычислено, %: С 62.82; H 5.82; Br 14.41; N 2.53.

Диметил-3-метил-4-циано-2,3,6,7-тетрагидро-1*H*-3-бензазонин-5,6-дикарбоксилат (6). Суспензию 2.2 г (10 ммоль) соли 1а в 20 мл CH<sub>2</sub>Cl<sub>2</sub>, 1.42 г (10 ммоль) АДКЭ и 2 мл 20% водного раствора NaOH перемешивают в течение 20 ч при 20 °C. Затем добавляют 30 мл H<sub>2</sub>O и экстрагируют CH<sub>2</sub>Cl<sub>2</sub> (3 × 20 мл). Экстракт сушат, растворитель отгоняют, а из остатка хроматографически выделяют соединение **6** (колонка с силикагелем, элюэнт гексан–EtOAc, 2:1). Выход 0.8 г (27%), бесцветные кристаллы, т. пл. 116–117 °C (Et<sub>2</sub>O) (т. пл. 116–117°C (Et<sub>2</sub>O) [17]). ИК спектр, v, см<sup>-1</sup>: 2360 и 2341 пл. (CN), 1741 (C=O). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д. (*J*, Гц): 2.50 (3H, с, NCH<sub>3</sub>); 2.65–2.67 (2H, м, 1-CH<sub>2</sub>); 3.03–3.07 (3H, м, 2-CH<sub>2</sub>, 7-CH<sub>A</sub>), 3.58 (1H, д. д, <sup>2</sup>*J* = 11.7, <sup>3</sup>*J* = 4.8, 7-CH<sub>B</sub>); 3.71 (3H, с, СООСН<sub>3</sub>); 3.83 (3H, с, СООСН<sub>3</sub>); 4.39 (1H, т, <sup>3</sup>*J* = 4.8, 6-CH); 7.14–7.48 (4H, м, H Ar). Масс-спектр, *m/z*: 329 [M+H]<sup>+</sup>. Найдено, %: C 65.90; H 6.21; N 8.24. C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>O<sub>4</sub>. Вычислено, %: C 65.84; H 6.14; N 8.53.

Рентгеноструктурное исследование соединения 2а·HCl. Кристаллы соли 2а·HCl ( $C_{12}H_{15}N_2Cl, M$  222.71) моноклинные, пространственная группа  $P2_1/n$ . При 100 К: *а* 7.1934(8), *b* 7.3625(8), *c* 22.433(3) Å;  $\beta$  96.527(2)°; *V* 1180.4(2) Å<sup>3</sup>; *Z* 4;  $d_{выч}$  1.253 г/см<sup>-3</sup>; *F*(000) 472;  $\mu$  0.293 мм<sup>-1</sup>;  $R_1$  0.053 для 2523 независимых отражений с  $I > 2\sigma(I)$ ; *w* $R_2$  0.135 для всех данных; *GOOF* 0.985. Собранные 10374 отражения (2820 независимых,  $R_{int}$  0.032) были измерены на дифрактометре Bruker APEX II CCD (МоКаизлучение, графитовый монохроматор,  $\varphi$ - и  $\omega$ -сканирование, 2 $\theta_{мин}$  56°).

Рентгеноструктурное исследование соединения 6. Кристаллы соединения 6 ( $C_{18}H_{20}N_2O_4$ , *M* 328.36) орторомбические, пространственная группа *Fdd2*. При 100 К: *a* 17.5783(12), *b* 43.776(3), *c* 8.5960(6) Å; *V* 6614.7(8) Å<sup>3</sup>; *Z* 16;  $d_{выч}$  1.319 г/см<sup>-3</sup>; *F*(000) 2784,  $\mu$  0.094 мм<sup>-1</sup>;  $R_1$  0.038 для 2184 независимых отражений с  $I > 2\sigma(I)$ ; *w* $R_2$  0.093 для всех данных; *GOOF* 1.000. Собранные отражения (всего 17991, из них 2336 независимых,  $R_{int}$  0.029) были измерены на дифрактометре Bruker APEX II ССD (МоКа-излучение, графитовый монохроматор,  $\varphi$ - и  $\omega$ -сканирование, 2 $\theta_{макc}$  58°).

Структуры обоих соединений определены прямыми методами и уточнены полноматричным МНК на  $F^2$  в анизотропном приближении для неводородных атомов. Атом водорода NH-группы в соединении **2a** HCl локализован объективно из разностных Фурье-синтезов и уточнён изотропно. Положения остальных атомов водорода в обоих соединениях рассчитаны геометрически и уточнены в анизотропном приближении с фиксированными позиционными (модель "наездник") параметрами. Все расчёты проведены с использованием комплекса программ SHELXTL [20].

Полная кристаллографическая информация по соединениям **2a** HCl и **6** депонирована в Кембриджском банке структурных данных (депоненты CCDC 759264 и CCDC 759263 соответственно).

## СПИСОК ЛИТЕРАТУРЫ

- 1. T. Ye, A. M. McKervey, Chem. Rev., 94, 1901 (1994).
- 2. N. Isono, M. Mori, J. Org. Chem., 60, 1480 (1995).
- 3. J. A. Vanecko, H. Wan, F. G. West, Tetrahedron, 62, 1043 (2006).
- S. Chumpradit, H. F. Kung, J. Billings, M. P. Kung, S. Pan, J. Med. Chem., 32, 1431 (1989).
- J. L. Neumeyr, N. S. Kula, R. J. Baldessarini, N. Baindur, J. Med. Chem., 35, 1466 (1992).
- 6. T. Kametani, K. Fukumoto, *Heterocycles*, **3**, 931 (1975).
- 7. B. Renfroe, C. Harrington, G. R. Proctor, in *Heterocyclic Compounds. Azepines*, Part 1, A. Rosowsky (Ed.), Wiley, New York, 1984.
- 8. T. Hudlicky, L. D. Kwart, J. W. Reed, *Alkaloids: Chemical and Biological Perspectives*, S. W. Pelleter (Ed.), Springer Verlag, New York, 1987, vol. 5.

- 9. D. C. Znou, R. Zittoun, J. P. Marie, Bull. Cancer, 82, 987 (1995).
- 10. А. Т. Солдатенков, С. В. Волков, С. А. Солдатова, XГС, 613 (2007). [Chem. Heterocycl. Compd., 43, 508 (2007).]
- 11. Г. С. Гимранова, С. А. Солдатова, Е. Г. Прокудина, А. Т. Солдатенков, К. Б. Полянский, *Журн. орган. химии*, **44**, 1416 (2008). [*Russ. J. Org. Chem.*, **44**, 1399 (2008).]
- 12. Н. С. Простаков, А. Т. Солдатенков, П. К. Раджан, М. В. Багдади, *XГС*, 706 (1982). [*Chem. Heterocycl. Compd.*, **18**, 542 (1982).]
- Н. С. Простаков, А. Т. Солдатенков, П. К. Раджан, А. Самальоа, В. Ф. Захаров, В. П. Зволинский, XIC, 252 (1983). [Chem. Heterocycl. Compd., 19, 206 (1983).]
- С. А. Солдатова, С. В. Акбулатов, Г. С. Гимранова, Ю. О. Рудаков, К. Б. Полянский, А. Т. Солдатенков, *XГС*, 789 (2005). [*Chem. Heterocycl. Compd.*, 41, 681 (2005).]
- С. А. Солдатова, Г. С. Гимранова, Ж. А. Мамырбекова, К. Б. Полянский, С. В. Акбулатов, А. Т. Солдатенков, *XTC*, 1670 (2007). [*Chem. Heterocycl. Compd.*, 43, 1420 (2007).]
- 16. Г. С. Гимранова, С. А. Солдатова, А. Т. Солдатенков, К. Б. Полянский, *Журн. орган. химии*, **44**, 758 (2008). [*Russ. J. Org. Chem.*, **44**, 750 (2008).]
- 17. А. Т. Солдатенков, С. А. Солдатова, Р. Р. Сулейманов, Н. М. Колядина, В. Н. Хрусталёв, *XTC*, 306 (2010). [*Chem. Heterocycl. Compd.*, **46**, 245 (2010).]
- 18. А. Т. Солдатенков, С. А. Солдатова, А. В. Малкова, Н. М. Колядина, В. Н. Хрусталёв, *XГС*, 1751 (2009). [*Chem. Heterocycl. Compd.*, **45**, 1410 (2009).]
- 19. Л. Титце, Т. Айхер, Препаративная органическая химия, Мир, Москва, 1999, с. 549.
- 20. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., A64, 112 (2008).

Российский университет дружбы народов, ул. Миклухо-Маклая, 6, Москва 117198, Россия e-mail: sa.soldatova@gmail.com Поступило 23.02.2012

<sup>а</sup> Университет Авово-Аджаме, 02 BP801, Абиджан, Республика Кот-д'Ивуар e-mail: bekro2001@yahoo.fr

<sup>6</sup> Институт элементоорганических соединений им. А. Н. Несмеянова РАН, ул. Вавилова, 28, Москва 117813, Россия e-mail: vkh@xrlab.ineos.ac.ru