Р. Р. Гатауллин, И. С. Афонькин, А. А. Фатыхов, И. Б. Абдрахманов

СИНТЕЗ 3,1-БЕНЗОКСАЗИНОВ ИЗ N-ЗАМЕЩЕННЫХ орто-(ЦИКЛОАЛКЕН-1-ИЛ ИЛИ АЛКЕН-2-ИЛ-2)АНИЛИНОВ*

Циклизацией в мягких условиях *орто*-(циклоалкенил-1 или алкенил-1)-анилинов, RCO-замещенных по атому азота ($R = OEt, Me, NH_2$), синтезированы новые производные 3,1-бензоксазина.

Ключевые слова: *орто*-алкениланилины, арилмочевины, арилуретаны, 3,1-бензоксазины, циклизация.

Высокая биологическая активность некоторых соединений бензоксазинового ряда стимулирует исследования в этой области. Описан синтез на основе антраниловой кислоты высокоэффективных кардиостимуляторов [1] или антагонистов окситоцина [2]. Исходя из фталимида получены потенциально активные ингибиторы химазы — 2-аминоалкил-3,1-бензоксазины [3]. Синтезирован относящийся к указанному ряду ингибитор обратной транскриптазы ВИЧ-1 [4].

В продолжение наших исследований по гетероциклизации в мягких условиях 2-(алкенил)-N-ациланилинов [5–7] в настоящей работе приведены новые примеры этой реакции, осуществленной с такими субстратами, как N-этоксикарбониланилины 1 и 2a, b, ацетанилид 3 и N-карбамоиланилин 4.

Этоксикарбонилированием (Z)- и (E)-изомеров 4-метил-2-(пентен-2-ил-2)анилина ($\mathbf{5}$), а также 2-R-6-(циклоалкенил-1)анилинов ($\mathbf{6a}$ [$\mathbf{5}$] и ($\mathbf{6b}$, полученных из их (циклоалкенил-2)замещенных изомеров $\mathbf{7a}$ и $\mathbf{7b}$, синтезированы уретаны (Z)-1, (E)-1 и $\mathbf{2a}$, соответственно. Ацетилированием анилина ($\mathbf{6b}$ получен анилид $\mathbf{3}$, а аммонолизом уретана $\mathbf{2a}$ — арилмочевина $\mathbf{4}$ [$\mathbf{8}$].

Соединения **1–4** были подвергнуты гетероциклизации в разных условиях. Так, действием Br_2 в CCl_4 на (Z)- и (E)-изомеры 4-метил-2-(пентен-2-ил-2)уретана (**1**) были получены диастереомеры (**A** и **B**) 4,6-диметил-4-(1-бромпропил)-(4H)-3,1-бензоксазин-2-она (**8**): **A** – (4R,1'R+4S,1'S), **B** – (4R,1'S+4S,1'R). Образование энантиомера **A** из изомера (Z)-**1** более вероятно, так как при циклизации подобных олефинов под действием галогенов общепринятым является протекание реакции через стадию ониевого комплекса [9]. В указанных условиях анилид **3** был превращен в гидробромид 2'-бром-2-метил-8-метоксиспиро[циклогексан-1',4(4H)-3,1-бензоксазина] (**9**). Обработка HCl в EtOH или $C_2H_4Cl_2$ уретанов **2а,b** и мочевины **4** привела к гидрохлоридам **10а,b** и **11** соответственно. Из гидрогалогенидов **9**, **11** действием водного раствора Na_2CO_3 или K_2CO_3 были получены целевые производные 2-замещенного 3,1-бензоксазина **12** и **13** соответственно, а из гидрохлорида **10а,b** — производное 3,1-бензоксазина **14**.

^{*} Посвящается академику РАН М. Г. Воронкову в связи с его 80-летием.

2, 6, 7, 10a n = 1, R = Me; **b** n = 2, R = OMe; **3, 9** R = OMe; **4, 11** R = Me

Состав и строение синтезированных соединений подтверждены результатами элементного анализа, данными ЯМР 1 H, 13 C и ИК спектров (см. экспериментальную часть).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н и 13 С сняты на приборе Bruker AM 300 с рабочей частотой 300.13 и 75.47 МГц для растворов в CDCl $_{3}$, внутренний стандарт Me $_{4}$ Si. ИК спектры получены на приборе UR-20. Контроль за чистотой продуктов осуществляли на хроматографе Chrom 5 и на пластинках Silufol UV-254.

2-Метокси-6-(циклогекс-1-енил)анилин (6b). Смесь 10 г амина **7b** и 10 г КОН выдерживают 1 ч при 300 °С. К реакционной смеси после охлаждения добавляют 50 мл бензола, перемешивают и декантируют. Остаток после упаривания бензола перегоняют в вакууме. Получают 8.7 г продукта **6b**. Т. кип. 125–128 °С (3 мм рт. ст.). Т. пл. 41–43 °С (пентан). ИК спектр, v, см⁻¹: 3260, 3320 (NH₂). Спектр ЯМР 1 Н, δ , м. д.: 1.52–1.63 (4H, м, 2CH₂); 2.18 (2H, м, CH₂); 2.21 (2H, м, CH₂); 3.64 (3H, с, OCH₃); 4.58 (2H, уш. с, NH₂); 5.77 (1H, м, =CH); 6.50–6.67 (3H, м, H(Ar)). Спектр ЯМР 13 С, δ , м. д.: 20.1 (C(4')); 24.4 (C(5')); 25.1 (C(3')); 28.2 (C(6')); 55.0 (CH₃O); 108.3 (C(4)); 110.4 (C(3)); 120.5 (C(5)); 126.3 (C(2')0; 126.4 (C(6)); 133.5 (C(1)); 136.5 (C(1')); 145.7 (C(2)). Найдено, %: С 76.18; H 8.03; N 6.55. С₁₃H₁₇NO. Вычислено, %: С 76.81; H 8.43; N 6.89.

Этоксикарбонилирование соединений (Z)-5, (E)-5, 6a,b (общая методика). В раствор 10 ммоль соединения (Z)-5, (E)-5 или 6a,b в 20 мл CH_2CI_2 вносят 10 г K_2CO_3 и при перемешивании и 20 °C добавляют по каплям раствор 15 ммоль этилхлорформиата в 15 мл CH_2CI_2 . Реакционную смесь перемешивают 2 ч и выдерживают 16 ч при той же температуре. Неорганический осадок отфильтровывают, промывают CH_2CI_2 ($Z \times 10$ мл), фильтрат последовательно промывают $Z \times 10^{10}$ водным раствором $Z \times 10^{10}$ прекращения выделения $Z \times 10^{10}$ водой и высушивают над $Z \times 10^{10}$ мд $Z \times 10^{10}$ продукты реакции очищают перегонкой в вакууме.

2-Метокси-6-(пиклогекс-1'-енил)-N-(этоксикарбонил)анилин (2b). Выход 83%. Т. кип. 180–183 °C (3 мм рт. ст.). Т. пл. 58–61 °C (CCl_4). ИК спектр, v, см $^{-1}$: 3270 (NH). Спектр ЯМР 1 H, δ , м. д., J (Γ п): 1.07 (3H, τ , J = 7.0, $\underline{CH_3}CH_2$); 1.47–1.61 (4H, м, 2 CH_2); 2.04 (2H, м, CH_2); 2.19 (2H, м, CH_2); 3.60 (3H, с, OCH_3); 4.04 (2H, к, J = 7.0, $\underline{CH_2}CH_3$); 6.53 (1H, уш. с, NH); 5.82 (1H, м, =CH); 6.60–6.72 (3H, м, CH_2). Спектр ЯМР ^{13}C , δ , м. д.: 14.4 (CH_3); 20.2 (C(4')); 24.9 (C(5')); 25.2 (C(3')); 28.3 (C(6')); 55.0 (CH_3O); 60.3 (CH_2O); 108.8 (C(4)); 114.4 (C(3)); 120.3 (C(5)); 122.3 (C(1)); 126.3 (C(2')); 126.4 (C(6)); 136.1 (C(1')); 142.5 (C(2)); 154.1 (C(1)). Найдено, %: C(4): C(4):

4-Метил-2-[(Z**)-пент-2'-ен-1'-ил]-N-(этоксикарбонил)анилин** ((Z)-1). Выход 95%. Масло. Т. кип. 146–148 °C (3 мм рт. ст.). ИК спектр, v, см $^{-1}$: 3270 (NH). Спектр ЯМР 1 H, δ , м. д., J (Гц): 0.92 (3H, т, J = 7.5, CH₃), 1.34 (3H, т, J = 7.0, CH₃); 1.78 (2H, к, J = 7.0, CH₂); 2.05 (3H, c, CH₃), 2.30 (3H, c, CH₃), 4.16 (2H, к, J = 7.5, CH₂), 5.71 (1H, д. т, J = 1.0, J = 7.0, =CH); 6.65 (1H, д. J = 8.4, H-6); 6.79 (1H, c, H-3); 7.14 (1H, д. J = 8.4, H-5); 8.02 (1H, c, NH). Спектр ЯМР 13 С, δ , м. д.: 13.8, 14.4, 20.6, 22.4 (4CH₃); 24.9 (C(3')); 60.9 (CH₂O); 118.4 (C(6)); 128.1 (C(2')); 128.5 (C(5)), 130.7 (C(1)); 131.7 (C(2)); 131.8 (C(4)); 132.1 (C(1'); 132.4 (C(3)), 153.6 (O—C=O). Найдено, %: С 72.42; H 8.29; N 5.21. C_{15} H₂₁NO₂. Вычислено, %: С 72.83; H 8.57; N 5.66.

4-Метил-2-[(*Е*)**-1'-метилбут-1'-енил**]**-N-(этоксикарбонил)анилин** ((*Е*)**-1**). Выход 95%. Масло. Т. кип. 140–142 °C (3 мм рт. ст.). ИК спектр, v, см⁻¹: 3290 (NH). Спектр ЯМР ¹H, δ , м. д., J (Ги): 1.04 (3H, т, J = 7.3, CH₃); 1.31 (3H, т, J = 7.1, CH₃); 1.94 (3H, c, CH₃); 2.22 (2H, м, CH₂); 2.33 (3H, c, CH₃); 4.18 (2H, м, CH₂); 5.43 (1H, т, J = 6.9, =CH); 6.74 (1H, д, J = 8.4, H-6); 6.82 (1H, c, H-3); 6.95 (1H, д, J = 8.4, H-5); 7.76 (1H, c, NH). Спектр ЯМР ¹³С , δ , м. д.: 13.8, 14.4, 17.5, 20.5 (4CH₃), 21.5 (C(3')), 60.8 (CH₂O), 119.3 (C(6)), 127.5 (C(2')), 128.6 (C(5)), 131.6 (C(1)), 132.0 (C(2)), 132.1 (C(4)), 133.4 (C(3)), 140.1 (C(1')), 153.5 (O—C=O). Найдено, %: C 72.42; H 8.29; N 5.21. C₁₅H₂₁NO₂. Вычислено, %: C 72.83; H 8.57; N 5.66.

N-Ацетил-2-метокси-6-(циклогекс-1-енил)анилин (3). К раствору 2.3 г (10 ммоль) анилина **6b** в 20 мл CH₂Cl₂ добавляют 1.5 мл (15 ммоль) Ac₂O и смесь выдерживают 2 ч при комнатной температуре. Реакционную массу обрабатывают 10% Na₂CO₃, органическую часть отделяют, сушат MgSO₄, растворитель упаривают. Получают 2.25 г (91%) анилида **3**. Т. пл. 99–101 °C (CCl₄). Спектр ЯМР 1 H, δ , м. д.: 1.51–1.68 (4H, м, 2CH₂); 2.14 (2H, м, CH₂); 2.23 (3H, c, CH₃–CO); 2.24 (2H, м, CH₂); 3.72 (3H, c, CH₃–O); 6.77 (1H, м, =CH); 6.88–7.47 (3H, м, H(Ar)); 8.25 (1H, c, NH). Спектр ЯМР 13 C, δ , м. д.: 20.3 (C(4')); 23.5 (CH₃); 24.8 (C(5')); 25.5 (C(3')); 28.4 (C(6')); 55.1 (C–O); 109.0 (C(3)); 114.7 (C(4)); 122.0 (C(5)); 124.3 (C(1)); 126.4 (C(2')); 127.5 (C(6)); 136.0 (C(1')); 148.3 (C(2)); 168.3 (C=O). Найдено, %: C 72.70; H 7.30; N 5.04. C₁₅H₁₉NO₂. Вычислено, %: C 73.44; H 7.81; N 5.71.

Циклизация соединений 3, (*Z*)-1 и (*E*)-1 под действием $\mathbf{Br_2}$. К раствору 1.86 ммоль соединения **3,** (*Z*)-1 или (*E*)-1 в 20 мл сухого $\mathbf{CCl_4}$ прибавляют по каплям раствор 0.1 мл (1.9 ммоль) $\mathbf{Br_2}$ в 5 мл $\mathbf{CCl_4}$. Осадок гидробромида **9** отфильтровывают и промывают 10 мл $\mathbf{CCl_4}$. (*R*,*S*)- и (*R*,*R*)-Бензоксазиноны **8** выделяют, упаривая растворитель.

Гидробромид 2'-бром-2-метил-8-метоксиспиро[4H-3,1-бензоксазин-4,1'-циклогексана] (9). Выход 86%. Т. пл. 132–134 °C (CHCl₃). Спектр ЯМР ¹H, δ , м. д., J (Гц): 1.61–2.82 (8H, м, 4CH₂); 3.11 (3H, с, CH₃); 4.05 (3H, с, OCH₃); 4.51 (1H, м, CHBr); 6.92 (1H, д, J = 7.9, H-5); 7.02 (1H, д, J = 8.4, H-7); 7.41 (1H, д. д, J = 7.9, J = 8.4, H-6); 14.90 (1H, уш. с, HBr). Спектр ЯМР ¹³С, δ , м. д.: 19.6 (CH₃), 20.0 (C(5')); 20.3 (C(4')); 30.5 (C(6')); 31.4 (C(3')); 52.5 (C((2')); 56.3 (OCH₃); 88.6 (C(4)); 112.9 (C(7)); 116.9 (C(4a)); 118.2 (C(5)); 124.3 (C(8a)); 130.1 (C(6)); 149.3 (C(8)); 171.5 (C(2)). Найдено, %: С 44.03; H 4.03; Br 39.17; N 3.01. $C_{15}H_{18}$ BrNO₂•HBr. Вычислено, %: С 44.47; H 4.73; Br 39.45; N 3.46.

(4R*),(1'R*)-4,6-Диметил-4-(1-бромпропил)-4H-3,1-бензоксазин-2-он (8A). Выход 88%. Т. пл. 149–151 °C (ССІ₄). Спектр ЯМР ¹H, δ , м. д., J (Гц): 1.14 (3H, τ , J = 7.2, CH₃); 1.83 (3H, c, CH₃), 2.14 (2H, м, CH₂); 2.26 (3H, c, CH₃); 4.11 (1H, д. д, J = 2,0 J = 11.4, CHBr); 6.78 (1H, д, J = 8.0, H-8); 6.91 (1H, c, H-5), 7.13 (1H, д, J = 8.0, H-7); 9.85 (1H, c, NH). Спектр ЯМР ¹³С, δ , м. д.: 13.1, 20.9, 25.0 (3CH₃); 26.0 (C(3')); 64.0 (C(2')); 86.3 (C(4)); 114.7 (C(5)); 122.0 (C(6)); 126.0 (C(7)); 130.1 (C(8)), 131.7 (C(4a)); 132.7 (C(8a)); 152.3 (C(2)). Найдено, %: C 51.83; H 5.22; Br 26.06; N 4.14. $C_{13}H_{16}BrNO_2$. Вычислено, %: C 52.37; H 5.41; Br 26.80; N 4.70.

 $(4R^*)$, $(1'S^*)$ -4,6-Диметил-4-(1-бромпропил)-4H-3,1-бензоксазин-2-он (8В). Выход 85%. Т. пл. 134–136 °C (ССІ₄). Спектр ЯМР ¹Н, δ , м. д., J (Гц): 1.12 (3H, т, J = 7.0, СН₃); 1.74 (2H, м, СН₂); 1.85 (3H, с, СН₃), 2.32 (3H, с, СН₃); 4.28 (1H, д. д, J = 2.4, J = 11.2, CHBr,); 6.81 (1H, д. J = 8.0, H-8); 6.98 (1H, с, H-5), 7.08 (1H, д. д. J = 1.1, J = 8.0, H-7); 9.55 (1H, с, NH). Спектр ЯМР ¹³С, δ , м. д.: 13.5, 20.3, 24.8 (3СН₃); 22.0 (С(3')); 64.3 (С(2')); 85.4 (С(4)); 117.4 (С(5)); 121.4 (С(6)); 125.0 (С(7)); 128.9 (С(8)), 131.3 (С(4а)); 131.9 (С(8а)); 151.8 (С(2)). Найдено, %: С 51.94; H 5.17; Br 26.30; N 4.45. С₁₃Н₁₆BrNO₂. Вычислено, %: С 52.37; H 5.41; Br 26.80; N 4.70.

Циклизация уретанов 2a, b и мочевины 4 под действием HCl. В раствор 1 ммоль уретана **2a, b** или мочевины **4** в 20 мл этилового спирта или дихлорэтана пропускают HCl в течение 5 мин. Затем реакционную смесь выдерживают 1 ч при комнатной температуре. Растворитель упаривают в вакууме. Получают гидрохлориды **10a, b** и **11**. Гидрохлорид бензоксазина **10b** без выделения обрабатывают раствором Na₂CO₃.

Гидрохлорид 2-гидрокси-8-метилспиро[4H-3,1-бензоксазин-4,1'-циклопентан]-2-она (10a). Выход 98%. Т. пл. 128–131°С. R_f 0.37 (CH₂Cl₂—MeOH, 9:1). Спектр ЯМР 1 H, δ , м. д.: 1.11–2.58 (8H, м, 4CH₂); 2.40 (3H, с, CH₃); 6.78–7.23 (3H, м, H(Ar)); 9.36 (1H, с, NH); 10.22 (1H, с, HCl). Спектр ЯМР 13 С , δ , м. д.: 16.7 (CH₃); 23.2 (C(3'), C(4')); 38.8 (C(2'), C(5')); 92.0 (C(4)); 120.0 (C(7)); 122.4 (C(8)); 122.8 (C(5)); 124.2 (C(6)); 129.8 (C(8a)); 132.7 (C(4a)); 152.8 (C(2)). Найдено, %: С 61.12; H 6.37; Cl 14.03; N 5.07. C₁₃H₁₅ClNO₂•HCl. Вычислено, %: С 61.54; H 6.31; Cl 14.00; N 5.52.

Гидрохлорид **2-амино-8-метилспиро[4H-3,1-бензоксазин-4,1'-циклопентана] (11)**. Выход 95%. Т. пл. 122–124 °C. Спектр ЯМР ¹H, δ , м. д.: 1.67–2.58 (8H, м, 4CH₂); 2.44 (3H, c, CH₃); 6.89 (1H, м, H-6); 7.05 (2H, м, H-7, H-5); 8.77 (1H, c, =NH); 9.21 (1H, c, NH); 11.45 (1H, c, HCl). Спектр ЯМР ¹³С, δ , м. д.: 18.6 (CH₃), 23.5 (C(3'),C(4')); 39.2 (C(2'), C(5')); 96.5 (C(4)); 120.2 (C(4a)); 124.0 (C(5)); 125.3 (C(6)); 126.5 (C(8)); 128.8 (C(7)); 131.2 (C(8a)); 157.7 (C(2)). Найдено, %: C 61.47; H 6.72; Cl 14.15; N 10.77. $C_{13}H_{16}N_2O$ •HCl. Вычислено, %: C 61.78; H 6.73; Cl 14.06; N 11.09.

Получение 3,1-бензоксазинов 12, 14 в виде оснований. Растворяют 5 ммоль гидрогалогенида **9** или **10b** в 50 мл CH_2Cl_2 и обрабатывают 10 мл 10% раствора Na_2CO_3 . Органическую фазу промывают 10 мл воды, высушивают над $MgSO_4$, упаривают при пониженном давлении, получают основание **12** или **14** соответственно.

8-Метоксиспиро[3,1-бензоксазин-4,1'-циклогексан]-он-2 (14). Выход 87%. Т. пл. 158–160 °C (CCl₄). R_f 0.47 (бензол–АсОЕt, 6:1). Спектр ЯМР ¹H, δ , м. д., J (Гц): 1.46–1.75 (10H, м, 5CH₂); 3.74 (3H, с, OCH₃); 6.45 (1H, д, J = 7.0, H-7); 7.02 (1H, д, J = 7.0, H-5); 7.63 (1H, т, J = 7.0, H-6). Спектр ЯМР ¹³С, δ , м. д.: 22.6 (C(3'), C(5')); 24.4 (C(4')); 34.9 (C(2'), C(6')); 55.1 (OCH₃); 82.6 (C(4)); 109.4 (C(7)); 122.5 (C(5)); 122.8 (C(8a)); 125.4 (C(6)); 128.3 (C(4a)); 144.7 (C(8)); 154.5 (C(2)). Найдено, %: С 67.33; H 6.09; N 5.07. $C_{15}H_{17}Br_2NO_2$. Вычислено, %: С 68.00; H 6.93; N 5.66.

2'-Бром-2-метил-8-метоксиспиро[3,1-бензоксазин-4,1'-циклогексан] (**12**). Выход 90 %. R_f 0.75 (бензол—AcOEt, 9:1). Т. пл. 82–85 °C (CCl₄). Спектр ЯМР ¹H, δ , м. д., J (Ги): 1.47–2.68 (8H, м, 4CH₂); 2.22 (3H, c, CH₃); 3.87 (3H, c, OCH₃); 4.40 (1H, м, CHBr); 6.77 (1H, д, J = 9.0, H-7); 6.85 (1H, д, J = 9.0, H-5); 7.06 (1H, т, J = 9.0, H-6). Спектр ЯМР ¹³С, δ , м. д.: 19.1 (CH₃); 19.5 (C(5')); 20.2 (C(4')); 29.4 (C(6')); 29.9 (C(3')); 53.5 (C(2')); 55.8 (OCH₃); 78.6 (C(4)); 110.9 (C(7)); 118.3 (C(5)); 125.8 (C(6)); 127.0 (C(8a)); 127.9 (C(4a));151.8 (C(8)); 158.8 (C(2)). Найдено, %: C 55.33; H 5.43; Br 24.07; N 4.07. $C_{15}H_{18}BrNO_2$. Вычислено, %: C 55.57; H 5.60; Br 24.65; N 4.32.

2-Амино-8-метилспиро[**3,1-бензоксазин-4,1'-циклопентан**] **(13)**. Раствор 50 мг (0.2 ммоль) гидрохлорида **11** в 20 мл CHCl₃ перемешивают с 0.5 г K_2CO_3 при 20 °C в течение 2 ч. Осадок отфильтровывают, фильтрат упаривают в вакууме, получают 42 мг (97.6%) основания **13** в виде аморфного порошка. Спектр ЯМР 1 Н, δ , м. д., J (Гц): 1.57–2.31 (8H, м, 4CH₂); 2.32 (3H, с, CH₃); 5.30 (2H, уш. с, NH₂); 6.67 (1H, т, J = 7.4, H-6); 6.44 (1H, д, J = 7.4, H-7); 7.08 (1H, д, J = 7.4, H-5). Спектр ЯМР 13 С, δ , м. д.: 17.4 (CH₃), 23.3 (C(2'), C(5')); 38.8 (C(3'), C(4')); 89.8 (C(4)); 119.1 (C(5)); 121.5 (C(6)); 129.3 (C(7)); 126.8 (C(4a)); 130.0 (C(8)); 140.0 (C(8a)); 154.1 (C(2)). Найдено, %: C 71.85; H 7.07; N 12.52. $C_{13}H_{16}N_2O$. Вычислено, %: C 72.19; H 7.46; N 12.95.

СПИСОК ЛИТЕРАТУРЫ

- M. Y. Kim, H. T. Shin, C. W. Lee, J. W. Kim, S. H. Kim, Y. Choi, M. H. Son, Заявка № 0510235 ЕПВ; РЖХим., 18О67П (1993).
- P. D. Williams, B. V. Clineschmidt, J. M. Erb, R. M. Freidinger, M. T. Guidotti, E. V. Lis, J. M. Pawluczyk, D. I. Pettibone, D. R. Ress, D. F. Veber, C. J. Woyden, *J. Med. Chem.*, 38, 4634 (1995).
- 3. M. Gütschow, Sci. Pharm., 67, 524 (1999).
- 4. M. E. Pierce, R. L. Parsons, L. A. Radesca, Y. S. Lo, St. Silverman, J. R. Moore, Q. Islam, A. Choudhury, J. M. D. Fortunak, D. Nguyen, C. Luo, S. G. Morgan, W. P. Davis, P. N. Confalone, C. Chen, R. D. Tillyer, L. Frey, L. Tan, F. Xu, D. Zhao, A. S. Thomson, E. G. Corley, E. G. G. Grabowski, R. Robert, P. P. Reider, *J. Org. Chem.*, **63**, 8536 (1998).
- 5. Р. Р. Гатауллин, И. С. Афонькин, И. В. Павлова, А. А. Фатыхов, И. Б. Абдрахманов, Г. А. Толстиков, *Изв. АН, Сер. хим.*, 398 (1999).
- 6. Р. Р. Гатауллин, И. С. Афонькин, А. А. Фатыхов, Л. В. Спирихин, И. Б. Абдрахманов, *Изв. АН, Сер. хим.*, 118 (2000).
- 7. Р. Р. Гатауллин, И. С. Афонькин, Е. В. Тальвинский, А. А. Фатыхов, Л. В. Спирихин, И. Б. Абдрахманов, *Изв. АН, Сер. хим.*, 633 (2001).
- 8. Р. Р. Гатауллин, И. С. Афонькин, А. А. Фатыхов, Л. В. Спирихин, И. Б. Абдрахманов, *Изв. АН, Сер. хим.*, в печати.
- 9. C. Cardillo, M. Orena, *Tetrahedron*, **46**, 3321 (1990).

Институт органической химии Уфимского научного центра РАН, Уфа 450054, Россия e-mail: chemorg @ anrb.ru Поступило в редакцию 27.06.2001