А. Е. Обухов, Л. И. Беленький

ЛОКАЛИЗАЦИЯ ЭЛЕКТРОННОГО ВОЗБУЖДЕНИЯ И ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЯ НАПРАВЛЕННОСТИ РЕАКЦИЙ ЭЛЕКТРОФИЛЬНОГО ЗАМЕЩЕНИЯ В НЕКОТОРЫХ ФЕНИЛ-, 2-ФУРИЛ- И 2-ТИЕНИЛАЗОЛАХ*

На основе экспериментальных спектроскопических данных (ЯМР, ИК, УФ, флуоресцентная спектроскопия) полуэмпирическими квантово-химическими методами PPP и INDO/S уточнено электронное строение молекул некоторых азолов и проанализированы закономерности изменения направленности реакций электрофильного ароматического замещения по схеме присоединения-отщепления при переходе от свободных оснований к их протонированным формам. Показано, что электронно-возбужденные синглетные и триплетные состояния протонированных форм изученных моно- и бициклических систем в отличие от аналогичных состояний свободных молекул имеют разный характер локализации возбуждения. Представлены результаты компьютерного квантово-химического моделирования изменений реакционной способности указанных систем.

введение

Исследование свойств возбужденных синглетных и триплетных состояний органических молекул имеет существенное значение для понимания как внутримолекулярных механизмов формирования их различных физических (фотофизических) характеристик, так и химической природы их превращения. Неконденсированные три- и пентациклические системы, включающие один или два фрагмента оксазола или 1,3,4-оксадиазола, используются в качестве люминофоров и активных сред оптических квантовых генераторов в парах или растворах [1-6]. Рассматриваемые в данной статье 2-фенилоксазол (PO), 2-(2-фурил)оксазол (FO) и 2-(2-тиенил) оксазол (ТО) включают те же структурные образования (атомы, группы атомов, циклы), которые входят в три- и пентациклические многоатомные системы с высокой люминесцентной способностью, и могут служить синтетическими предшественниками последних [7]. Поэтому в предыдущих работах были проанализированы причины низкой люминесцентной активности моно- и бициклических систем [8], изменения их фотофизических характеристик [5] и направленности реакций электрофильного замещения [7, 9], обусловленные протонированием или образованием пи-комплекса с кислотой Льюиса по «пиридиновому» атому азота гетероцикла.

Задачей данной работы является установление взаимосвязи между селективным изменением реакционной способности РО, FO, TO и их аналогов и электронным строением возбужденных электронных синглетных и триплетных состояний в зависимости от экспериментальных условий специфической сольватации, протонирования и комплексообразования. Влияние двух последних факторов для основного состояния изучено экспериментально [7, 10—12] и теоретически [9, 12]. Синтетические методы позволяют изменять направленность реакций и вводить электрофилы либо в арильный (гетарильный) фрагмент, если азольный цикл дезактивирован благодаря протонированию или комплексообразованию с кислотой Льюиса,

^{*} Посвящается профессору А. Катрицкому в связи с его 70-летием.

либо в азольный фрагмент, если молекула выступает в виде свободного основания [7]. Что касается реакций бициклических неконденсированных соединений рассматриваемого типа в возбужденных состояниях, то такие данные пока отсутствуют.

Из литературы известно, что фотохимические реакции электрофильного и нуклеофильного ароматического замещения протекают значительно быстрее, чем «темновые» процессы. Существенно изменяются и ориентирующие эффекты заместителей [13, 14]. При этом важно отметить, что в возбужденных состояниях ароматических молекул резко усиливаются и их кислотно-основные свойства [15]. Например, основность ароматических утлеводородов увеличивается в триплетном состоянии на 10...15 порядков [16, 17].

С учетом структуры объектов нашего изучения сначала будут рассмотрены некоторые свойства моноциклических соединений — бензола, фурана, тиофена и оксазола, а далее — бициклических систем, включающих те же циклические фрагменты. Для сопоставления с оксазолом будет рассмотрен также 1,3,4-оксадиазол.

1. МЕТОДЫ РАСЧЕТА И ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

1.1. Экспериментальные методы

Получение 2-фенилоксазола (PO) описано в статье [10], а остальных соединений — в работе [18]. Спектры ЯМР ¹Н измерены на радиоспектрометре Tesla BS-467 (60 МГц), спектры ЯМР ¹³С — на приборе Bruker WM-250 в CDCl₃ и приведены в работах [10—12, 18]. Спектры ИК поглощения зарегистрированы в таблетках КВг на спектрометре Specord 75-IR. Спектры УФ поглощения измерены на спектрометре Specord M-40. Точность вычисления максимумов колебательных полос в УФ спектрах определялась систематической опшбкой прибора и составила $\leq 10...100$ см⁻¹, а оптической плотности (D_{abs}^{ν}) — не более 3...5%. Концентрация растворов в пределах: $\sim 10^{-3}...10^{-7}$ М/л. Спектры представлены в виде зависимости молярного коэффициента поглощения ε_{abs}^{μ} от частоты ν , см⁻¹.

Спектры возбуждения и флуоресценции молекул измерены на спектрофлуориметре SLM-4800S и представлены в принятом в литературе [19] виде. Концентрация растворов ~10⁻⁵ М/л.

Квантовый выход флуоресценции (γ) для всего ряда молекул измеряли относительно γ этанольного раствора антрацена: $\gamma = 0,22$ [2—6]. 1182

1.2. Квантово-химические методы

Для расчетов возбужденных электронных синглетных и триплетных состояний и характеристик электронных переходов $S_0 \rightarrow S_n^*, S_1^* \rightarrow S_0^*, S_1^* \rightarrow S_n^*, T_1 \rightarrow T_n, T_1 \rightarrow S_0$ использовали полуэмпирические методы INDO/S (*sp*-базис) и PPP (Паризера—Парра—Попла) [20—22]. Двухэлектронные интегралы $\gamma \mu \nu$ оценивали по формуле Матага и Нишимото [23, 24]. В расчетах применяли атомные спектральные параметры (потенциалы ионизации $I\mu$ и сродство к электрону $A\mu$) свободных атомарных газов [24, 25]. Некоторые результаты расчетов представлены в табл. 1 и 2.

Таблица 1

Соеди- нение	Состо- яние	Индекс	0 ₍₁₎	C ₍₂₎	С(3) или N(3)	С ₍₄₎ или N ₍₄₎	C(5)
Оксазол 1,3,4-Окса- диазол	S ₀	qø	0,334	0,036	-0,269	-0,003	-0,097
	S1*	qi*	-0,254	0,223	-0,468	0,314	0,185
]	Li	34,8	8,2	12	16,7	27,3
	T_1	qi*	0,193	0,018	-0,231	0,081	-0,061
		Li	7,7	27,9	7,8	19,9	36,7
	S_0	qø	0,332	0,044	-0,210	-0,210	0,044
	S1*	qi*	0,179	0,020	-0,109	-0,109	0,020
	1	Li	8,7	33,4	12,2	12,2	33,4
	T_1	q_i^*	0,192	0,009	-0,105	-0,105	0,009
		Li	7,2	30,6	15,8	15,8	30,6
2-Метил- оксазол ^б	<i>S</i> 0	qø	0,287	0,131	-0,373	-0,001	-0,153

Заряды q_0 и q^* и числа локализации электронного возбуждения L_i^a на атомах циклов в основном S_0 и возбужденных синглетных и триплетном T_1 состояниях для некоторых моноциклических азолов, рассчитанные методами PPP/S (π -приближение) и INDO/S (*sp*-базис)

^а В молекуле бензола электронное возбуждение в синглетных $S_1^*, S_2^*, S_3^*, S_4^*$ и триплетном T_1 состояниях распределяется равномерно по атомам цикла ($L_i = 16, 7\%$).

⁶ На атоме С метильной группы q0 = 0,110.

2. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

2.1. Строение фенил-, 2-фурил-, 2-тиенилзамещенных оксазолов и 1,3,4-оксадиазолов

Рассматриваемые арил- и гетарилзамещенные оксазолы и 1,3,4-оксадиазолы обычно являются жидкостями, что ограничивает возможности определения их строения методом РСА. Имеются рентгеноструктурные, электронографические и квантово-химические данные для составляющих их

Соединение	Состояние	Индекс	O ₍₁₎	C ₍₂₎	С ₍₃₎ или N ₍₃₎	С(4) или N(4)	с ₍₅₎	О(1') или S(1')	C(1') (P O) C(2') (FO, TO)	С(2') С(6') или С(3')	С(3') С(5') или С(4')	C(4') (P O) C(5') (F O, TO)
2-Фенил- окçазол (РО)	<i>S</i> ₀	Δρ	-0,265	-0,268	-0,296	0,041	0,111		0,031	0,002 0,002	-0,014 -0,014	-0,023
		q_i^0	0,328	0,031	-0,270	0,002	-0,094	J	-0,012	0,017 -0,013	0,00 <i>5</i> 0,000	0,005
	S_1^*	q_{i}^{*}	0,317	0,033	-0,274	0,024	-0,054		-0,019	0,108 -0,123	-0,043 0,032	0,000
		L_i	1,1	2,5	3,3	1,2	4,0		12,7	16,0 16,7	14,6 14,0	13,8
	S2*	q_{i}^{*}	0,274	0,030	-0,325	0,126	0,099		-0,083	-0,114 0,052	0,032 -0,043	-0,048
		L_i	3,8	14,2	9,5	6,5	16,9		12,9	9,8 9,1	2,2 2,7	12,3
	T_1	q_{i}^{*}	0,287	0,017	-0,259	0,036	-0,062		-0,017	0,009 -0,015	0,003 0,001	0,000
		L_i	2,8	7,5	5,4	3,3	10,3		13,3	12,4 12,5	9,3 9,2	14,0

Заряды q₀ и q*, числа локализации электронного возбуждения L_i и изменения электронной плотности Δρ на атомах циклов в основном S₀ и возбужденных синглетных и триплетном T₁ состояниях для некоторых арил- и гетарилоксазолов, рассчитанные методами PPP/S (π-приближение) и INDO/S (sp-базис)

Қатион 3-Н-РО ⁺	S_0	q_{i}^{0}	0,360	0,302	-0,778	0,169	-0,125		-0,036	0,063 0,008	0,008 -0,001	0,029
	S_1^*	q_{i}^{*}	0,286	-0,015	-0,826	0,373	0,186		-0,005	0,057 -0,076	-0,004 0,020	0,004
		Li	7,0	22,7	4,2	15,5	18		7,4	7,6 7,4	0,8 1,2	8,3
	T_1	q_{i}^{*}	0,343	0,167	-0,799	0,252	-0,024		0,011	0,032 -0,011	0,009 0,006	0,013
		L_i	4,2	8,7	1,8	6,1	6,7		13,4	12,7 13,0	9,4 9,1	14,9
транс-2- (Фурил-2)- окçазол _(FO)	S_0	Δρ	-0,191	0,240	-0,300	0,097	0,058	-0,203	-0,028	-0,041	0,106	0,142
		q_i^0	0,332	0,030	-0,286	-0,001	0,097	0,327	-0,084	-0,082	-0,073	-0,068
	S_1^*	q_{i}	0,261	-0,072	-0,361	0,105	0,034	0,254	-0,059	-0,124	-0,033	-0,006
		L_t	4,9	15,5	11,0	4,6	15,5	3,6	14,2	13,6	1,9	15,1
	T_1	q_i^*	0,272	-0,010	-0,270	0,044	-0,063	0,241	-0,056	~0,064	-0,048	-0,049
		L_i	4,0	10,2	7,4	4,6	13,9	4,8	17,4	13,9	5,5	18,3
транс-2- (Тиенил-2)- оксазол (TO)	S_0	Δρ	-0,208	0,278	-0,322	0,062	0,074	-0,049	-0,002	-0,027	0,035	-0,051
		q_i^0	0,328	0,029	-0,308	0,004	-0,092	0,061	-0,009	-0,027	-0,021	0,000
	S_1^*	q_{i}^{*}	0,286	0,028	-0,308	0,088	0,046	-0,048	-0,008	-0,090	0,001	-0,019
		L_l	3,1	9,1	9,0	4,1	13	1,2	18,0	17,6	5,2	19,6
	T_1	q_i^*	0,313	0,022	-0,268	0,016	-0,076	0,036	-0,014	-0,026	-0,004	0,001
		L_i	1,7	2,3	4,6	1,0	4,8	1,3	25,7	18,8	12,2	27,5

.....

* $\Delta \rho$ — изменение электронной плотности на атомах С и Н вдоль оси Z, перпендикулярной плоскости бициклической системы (метод INDO/S),

 q_t^0 и q_t^* — заряды на атомах С (метод РРР/S), L_i — числа локализации электронного возбуждения (метод РРР/S).

циклов (бензола, фурана, тиофена, оксазола, тиазола, 1,3,4-оксадиазола [26—28]), а также для 2,2'-битиофена и 2,5-дифенил-1,3,4-оксадиазола [29]. Поэтому актуальна оценка физико-химических характеристик молекул арил- и гетарилоксазолов для оптимизированной методом ССП МО ЛКАО с учетом КВ пространственной геометрии (при использовании стандартной спектроскопической параметризации) и их сопоставление с экспериментальными данными для потенциалов ионизации, сродства к электрону, а также длин связей различного типа и соответствующих им валентных углов [30, 31].

Данные о структуре некоторых трициклических неконденсированных азолов, полученные как экспериментально, так и методами квантовой химии (для оптимизированной геометрии основного состояния), показывают, что в этих гетероциклах наблюдается последовательное чередование (альтернирование) одинарных и двойных связей, причем межциклическая углерод-углеродная связь всегда одинарная, т. е. ее порядок $p_{\mu\nu} < 0,3$ [3—6, 8, 32]. Поэтому независимо от полуэмпирического метода, использованного для получения геометрии молекулы, структурные особенности воспроизводятся с достаточной достоверностью. Наблюдающиеся различия в длинах связей, вычисленных методами PPP, INDO/S, MNDO, AM1 и т. п., невелики [31].

2.2. Спектры инфракрасного поглощения

Для многоатомных гетероциклических молекул спектры ИК поглощения в области частот 1700...400 см⁻¹ имеют сложную структуру перекрывающихся полос разной интенсивности. Все полосы в ИК спектрах отвечают как фундаментальным, так и составным колебаниям связей [32]. Полоса поглощения при $\nu = 1592 \text{ см}^{-1}$ приписывается составному колебанию (992 + 606), см⁻¹, активному в спектрах КР и ИК [33, 34]. Линия при $\nu = 992 \text{ см}^{-1}$ соответствует полносимметричному колебанию валентных углеродных связей бензольного цикла A_{1g} , а при $\nu = 606$ см⁻¹ неполносимметричному B_{2u} . Интенсивные полосы в областях частот 1600...1630 и 1540...1534 см⁻¹ следует отнести к симметричным и асимметричным колебаниям валентных связей оксазольного цикла (двойных и одинарных: C=N, C-N, C=C). Валентным деформационным колебаниям связей азоциклов приписаны полосы в области 988...1008 см⁻¹. Низкочастотные интенсивные полосы ИК поглощения при 625, 680, 750, 852 см⁻¹ свидетельствуют о высокой активности внеплоскостных и плоскостных деформационных колебаний связей в циклах рассматриваемых молекул 1331.

2.3. Спектры ЯМР и электронное строение молекул в основном состоянии

Резонансные сигналы ядер ¹Н в положениях 4 и 5 оксазольных либо оксадиазольных циклов расположены в области слабого поля по отношению к сигналам протонов бензольного, фуранового либо тиофенового циклов (при $\delta = 7, 4...8, 4$ м. д. для трициклических систем, включающих оксазольное кольцо [7], и до 9,3 м. д. в случае 1,4-фениленбис-1,3,4-оксадиазола [35]). Об этом свидетельствуют химические сдвиги ядер атомов С (например, для С(4) $\delta = 128, 5...144, 1$ м. д. [12]) что говорит о высокой ароматичности (ол-связанности атомов).

Структурные подсистемы изученных молекул в основном состоянии проявляют свойство электронно-колебательной квазиавтономности [2]. 1186

Установить, какие из конформеров полициклических молекул наиболее предпочтительны при комнатной температуре, не удается, так как в соответствии с оценками [36—38] энергетические барьеры изомеризации не превышают 2,0...2,5 ккал/моль.

По данным ЯМР, для 2-метилоксазола и 2-метилтиазола химические сдвиги ядер 13 С для положения 2 отличаются от химических сдвигов ядер 13 С бензола на 33...36 м. д., а для положений 4 и 5 — лишь на 1,55 и 13,95 и 9,95 и 10,15 м. д. соответственно [11, 12]. Для бициклических молекул 2-фенилоксазола и 2-тиенилоксазола слабопольный сдвиг ядер 13 С для тех же свободных положений в азоциклах на 1,25 м. д. больше, чем для ядер 13 С бензола. Отметим, что для бензольного остатка молекул РО и ТО разница в химических сдвигах их ядер 13 С и бензола составляет не более 2...6 м. д. Таким образом, для азоциклов слабопольный химический сдвиг отражает сильное снижение электронной плотности на ядрах; для бензольного фрагмента оно значительно меньше.

Анализ электронных заселенностей $\rho_{\pi z}^{0i}$ (метод INDO/S) атомов в основном состоянии молекул показывает, что замена бензольного цикла на фурановый или тиофеновый (переход от РО к FO или ТО) приводит к увеличению электронной плотности на атоме N, ее снижению на атоме O(2) и некоторому изменению на атомах С(4) и С(5) (табл. 2). Соответственно возрастает или снижается плотность $\rho_{\pi z}^{0i}$ на атомах 4-Н и 5-Н. Во всех случаях на атомах С(4) и С(5) избыточная плотность положительна, а на атомах С(3') и С(4') (в свободных положениях химически связанного фуранового или тиофенового цикла) она отрицательна и положительна соответственно. Это четко проявляется в значениях химических сдвигов протонов 4-Н и 5-Н, а также в том, что их сигналы находятся в более слабом поле, чем сигналы протонов 4'-Н и 5'-Н. Качественное совпадение химических сдвигов ядер ¹³С при соответствующих перестановках циклов одной природы в разных объектах либо при комплексообразовании и протонировании по неподеленной паре атома N одного и того же соединения позволяет предположить, что в каждом из них доминирует индукционный эффект (внутримолекулярный механизм), передающийся по onln-электронной системе молекулы и отражающий некоторое варьирование параметров ее атомов и связей.

2.4. Спектры ультрафиолетового поглощения

В ряду арил- и гетарилоксазолов отмечена сильная зависимость частоты и формы четко выраженной длинноволновой полосы поглощения (ДПП) от структурных факторов молекул. При переходе от арил- и гетарилоксазолинов — соединений с насыщенными связями — к соответствующим оксазолам с сопряженными связями наблюдается батохромный сдвиг ДПП $\Delta \lambda_{abs}^{max}$ 10...30 нм, а при замене бензольного цикла на фурановый или тиофеновый отмечается батохромный сдвиг $\Delta \lambda_{abs}^{max} \sim 6...12$ нм. Для тиофенсодержащих молекул $\Delta \lambda_{abs}^{max}$ в три раза больше. Для бициклических структур PO, TO, FO, PP (бифенил) величина экстинкции ε_{abs}^{ν} в максимуме ДПП составляет (35...40) $\cdot 10^3$ М⁻¹ · см⁻¹. Для бициклических молекул с насыщенными связями $\varepsilon_{abs}^{\nu} \sim (2...7) \cdot 10^3$ М⁻¹ · см⁻¹ [2, 32, 37] (рис. 1). Полосы *пл*-типа в УФ спектрах соединений в растворах не обнаружены, что подтверждается литературными данными [19, 38].

2.5. Флуоресцентные характеристики азолов

Исследованные моно- и бициклические молекулы флуоресцируют в области длин волн $\lambda_{OSC}^{max} \sim 260...310$ нм с квантовыми выходами $\gamma \sim 0,0001...0,1$ в химически инертных (циклогексан, метилциклогексан, хлороформ, *н*-пентан, *н*-гексан и т. п.), а также гидроксилсодержащих и вязких растворителях (этанол, диметилформамид, диметилсульфоксид, диэтиленгликоль и т. п.). Наименьшим значением γ обладает бензол ($\gamma = 0,0001$), а наибольшим ($\gamma = 0,1$) — 2-(фурил-2)-оксазол в растворе диэтиленгликоля.

В качестве примера на рис. 2 представлены спектры УФ поглощения и флуоресценции раствора РО в этаноле и эквимолярной смеси этанол + H₂SO₄, а также рассчитанные методами INDO/S и PPP для свободной молекулы РО. Видно, что при изменении pH раствора происходит батохромное смещение ДПП и пика флуоресценции ($\Delta \lambda_{abs}^{max} = 8$ и $\Delta \lambda_{fl}^{max} = 16$ нм), а также увеличение длины волны 0—0 перехода ($\Delta \lambda_{00} = 16$ нм) [37]. Форма широких полос в оптических спектрах молекул сохраняется. Изменение спектральнофлуоресцентных характеристик молекулы обусловлено сменой характера внутримолекулярных (электронно-колебательного и спин-орбитального) взаимодействий структурных подсистем, что отражается в энергии квантовой системы [20, 21].

На рис. З приведены схемы синглетных и триплетных переходов в молекулах PO, FO и TO. В связи с тем, что для данных молекул возбужденные синглетные или триплетные состояния $n\pi^*$ -типов низко расположены (как и для большинства бициклических систем [8]), в основном энергия электронного возбуждения эффективно расходуется на переходы в триплетные состояния с константой скорости интерконверсии $k_{ST} \ge 10^8 \dots 10^{10} \text{ c}^{-1}$. Оптические переходы $T_1 \rightarrow S_0$ для большиства азолов запрещены в приближении Франка—Кондона [2—6, 39], поэтому часть запасенной в молекуле энергии эффективно превращается в тепло. Отсюда

Вертикальными сплошными линиями обозначены величины сил осцилляторов f_e , электронных переходов $S_0 \rightarrow S_n^*, S_1^* \rightarrow S_0, S_1^* \rightarrow S_n^*, T_1 \rightarrow T_n \, \text{и} \, T_1 \rightarrow S_0$

очевидна важность рассмотрения соотношения характеристик локализации возбуждения и реакционной способности именно в долгоживущем триплетном состоянии. Методика индексов локализации разработана пока только в рамках приближения PPP/S, однако, поскольку в методах PPP/S и INDO/S используется одинаковая параметризация [20, 23], такие оценки вполне оправданы, а полученные двумя методами данные дополняют друг друга.

Для всех исследованных азолов характерно общее свойство: скорость интерконверсии всегда превышает скорость излучательного распада флуоресцентного S_1^* -состояния ($n\pi^*$ - и $\pi\pi^*$ -типов) — $k_{ST} \sim 10^8 \dots 10^9 \text{ c}^{-1} \ge k_{fl} \sim 10^6 \dots 10^8 \text{ c}^{-1}$. Расчеты методом INDO/S показали, что для молекул оксазола, 1,3,4-оксадиазола, PO, FO и TO нижним триплетным (T_1) всегда является состояние $\sigma\pi^*$ - или $\pi\pi^*$ -типа (в общем случае $\pi l\pi^*$ -типа). Конверсия (внутренняя и интеркомбинационная) представляет собой частный случай безызлучательных процессов, к которым следует отнести и фотоионизацию, преионизацию, а также фотохимические превращения молекул [39]. Поэтому необходимо рассмотреть характер локализации электронного возбуждения в молекулах именно в фосфоресцентном состоянии.

Рис. 3. Энергетические уровни возбужденных синглетных S_1^* и триплетных T_j состояний $\pi\pi^*$ и $n\pi^*$ -типа, рассчитанные методом INDO/S для свободных молекул: a - 2-фенилоксазол (PO); b - 2-(фурил-2)оксазол (FO); b - 2-(тиенил-2)оксазол (TO). Сплошными вертикальными стрелками обозначены излучательные переходы f_e с константами скорости k_{fl} и k_{ph} , прерывистыми — безызлучательные переходы между состояниями разной орбитальной природы и мультиплетности с константами скорости k_{fl} (интеркомбинационной конверсии) и k_{intr} (внутренней конверсии)

3. ОЦЕНКА РЕАКЦИОННОЙ СПОСОБНОСТИ АЗОЦИКЛИЧЕСКИХ МОЛЕКУЛ МЕТОДОМ ЧИСЕЛ ЛОКАЛИЗАЦИИ ЭЛЕКТРОННОГО ВОЗБУЖДЕНИЯ

В строгой матричной механике Гейзенберга нет понятия разделения энергии на локальные вклады атомов либо подсистем молекулы. Однако приближенно вопрос о характере локализации электронного возбуждения на атомах и фрагментах может быть рассмотрен на основании результатов анализа чисел локализации L_i [40].

Числа локализации возбуждения на атомах ($0 \le L_{\mu} \le 1$) и фрагментах ($\sum \mu L_{\mu}$, %) молекулы оцениваются по формуле [40]:

$$L_{\mu} = \sum_{\nu=1}^{m} \left[D_{\mu i}^{0i} \right]^2.$$
 (1)

При этом элементы бесспиновой переходной матрицы плотности $[D^0_{\mu\nu}]$ формируются в атомном (AO) базисе молекулярной системы (n — количество занятых MO, m — число базисных AO):

$$D_{\mu\nu}^{0i} = 1/\sqrt{2} \sum_{i=1}^{n} \sum_{p=n+1}^{m} d_{pi} \left(C_{\mu p} \cdot C_{\nu i} + C_{i\mu} \cdot C_{\nu p} \right),$$

где d_{pi} — конфигурационные коэффициенты матрицы конфигурационного взаимодействия *KB*; $C_{i\mu}$ — коэффициенты при АО в МО (получены нами методами PPP, INDO/S либо CNDO/S).

Рассмотрение матриц КВ, рассчитанных методом РРР или INDO/S, показывает, что для бициклических молекул РО, FO, TO и соответствующих протонированных по атому N(3) форм 3-H-PO⁺, 3-H-FO⁺, 3-H-TO⁺ переход $S_1^* - S_0$ (как и $T_1^* - S_0$, является практически одноконфигурационным и преимущественно осуществляется с высшей занятой на низшую свободную МО с коэффициентом $|\psi|^2 = 0.8...0.9$. Поэтому важно определить электронные характеристики молекул в их взаимодействующих состояниях, отвечающие наименышей энергии квантовой системы [20].

В предположении полной локализации *n*-орбитали на гетероатоме (либо в представлении ее в виде линейной комбинации n_{j} -орбиталей отдельных атомов) ее энергия ε_n определяется диагональным матричным элементом $\langle n | F | n \rangle$. Под $| n \rangle$ понимают *n*-орбиталь, на которой находятся *n*-электроны. Если для гетероциклических соединений число *л*-электронов гетероатома, имеющего *n*-электроны, равно единице (в нашем случае это соответствует *sp*²-гибридизованному «пиридиновому» атому N), то значение ε_n может быть найдено из уравнения [39]:

$$\varepsilon_n = -I_n - \sum_{\nu} \left(P_{\nu\nu} - N_{\nu} \right) \cdot \gamma_{\nu n} - \frac{1}{2} \cdot p_n^{\pi} \cdot \chi, \qquad (2)$$

где I_n — потенциал ионизации *n*-орбитали неподеленной пары электронов гетероатома в валентном состоянии; $\gamma_{\nu n}$ — интегралы кулоновского взаимодействия *n*- и *p* π -электронов *v*-атома; p_n^{π} — плотность π -электронов на гетероатоме, обладающем *n*-электронами; χ — одноцентровый интеграл обменного взаимодействия *n*- и *p* π -электронов. По порядку величины допустимо принять: $\gamma_{\nu\nu} \sim 10$ эВ, $\gamma_{\nu a} \leq 5...7$ эВ, $\beta_{\nu\nu} \leq 2$ эВ, $\chi \sim 1$ эВ. Параметры, входящие в формулу (2), могут быть определены полуэмпирически.

В качестве примера рассмотрим данные табл. 1. Видно, что низшие возбужденные состояния $\pi\pi^*$ -типа отличаются распределениями зарядов

 $q_i^*, \quad \sum_i q_i^*$ и числами L_i (либо $\sum_i L_i$) от основного состояния. Для

бициклических молекул в нижних возбужденных синглетных и триплетных состояниях наблюдается усиление электронно-колебательных взаимодействий структурных подсистем и обобществление квазиавтономных в основном состоянии электронно-колебательных группировок. Электронную структуру изучаемых бициклических молекул характеризуют два основных свойства — локализация и делокализация, что находит отражение в величинах L_i [3—6, 20, 37].

В моноциклических соединениях возбуждение локализовано на отдельных связях и атомах, причем с увеличением числа подсистем в структуре заряды q_i и индексы L_i (либо ($\sum L_i$) зависят от числа и

последовательности химических связей между ними. Например, в свободных молекулах РО, FO, TO, PT, PP в состояниях S_1^* и T_1 возбуждение локализовано равномерно ($\sum_{i} L_i \sim 50\%$) на циклах независимо от их

электронной природы, а в монозамещенных их производных на хромофорных группах локализовано 12...16, 53% и 35, 60 и 23% возбуждения соответственно [20].

В основном состоянии молекул наибольший отрицательный заряд сосредоточен на атоме N гетероцикла (оксазольного, оксадиазольного и т. п.): $q_i = -(0,269...0,300)$. В оксазоле положения 4 и 5 имеют заряды q = -0,003 и -0,097 и, следовательно, положение 5 должно быть наиболее активно, что согласуется с данными для электрофильного замещения по механизму присоединения—отщепления (см. [9]). Однако числа локализации свидетельствуют о том, что в возбужденном состоянии наиболее реакционноспособно положение 2, так как для него $L_i = 35\%$, а для положений 4 и 5 $L_i = 18$ и 27% соответственно (см. табл. 1). С этим согласуются и данные для 1,3,4-оксадизола: $L_i = 34\%$, q = 0,044. Наименьшее участие в электронном возбуждении упомянутых азоциклов принимают гетероатомы: для N и O $L_i ~ 12$ и 8% соответственно. Введение гетероатома в цикл не только создает в нем различные атомные реакционные центры, но и может привести к большей реакционной способности, чем в случае бензола [4].

В бициклических системах PO, FO и TO в состоянии S₀ на атоме N также локализована наибольшая электронная плотность: q = -0,270; -0,286 и -0,308 соответственно. В азольном фрагменте q увеличивается при замене бензольного цикла на фурановый и тиофеновый (растет основность). В возбужденном триплетном T_1 состоянии в свободных молекулах PO, FO и TO наиболее активными в реакциях должны быть положения 2 и 5 оксазольного цикла ($L_i = 14,2;$ 8,7 и 10,2% и $L_i = 16,9;$ 6,7 и 13,9% соответственно), в бензольном — *пара*-положения ($L_i = 12,9$ и 12,3%), в фурановом — положения 2' и 5' ($L_i = 17,4$ и 18,3%), в тиофеновом — положения 2', 3' и 5' ($L_i = 25,7;$ 18,8 и 27,5% соответственно).

ţ

Таким образом, можно ожидать, что тиофеновый цикл в бициклической системе приобретает, по сравнению с бензольным и фурановым, наибольшую реакционную способность, которая существенно превышает реакционную способность атомов азоцикла. В синглетном состоянии S_1^* молекулы FO значения L_i в положениях 2 и 5 сравниваются в фурановом и азоцикле; в молекуле TO в азоцикле они заметно выше, чем в состоянии T_1 .

Данные расчета по методу PPP, свидетельствующие о снижении вклада групп связей азоциклов в формирование колебательных прогрессий полос УФ поглощения и флуоресценции при введении фуранового или тиофенового кольца вместо бензольного, подтверждаются экспериментально. Показано [2, 37], что при протонировании батохромное смещение полос λ_{abs}^{max} , λ_{asc}^{max} , λ_{00} для молекул PO, FO и TO закономерно уменьшается.

Результаты расчетов свободной молекулы РО и ее протонированной формы 3-H-PO⁺ показывают, что изменение электронного состояния атома N оксазольного цикла (т. е. только одной из подсистем) приводит к изменению распределения зарядов q, чисел локализации L_i и порядков связей $p_{\mu\nu}$ как в азоцикле, так и в молекуле в целом [37]. На атоме N молекулы РО локализована наибольшая электронная плотность и поэтому наблюдается легкое по нему протонирование (характерно для всех азолов). В основном состоянии РО и 3-H-PO⁺ ол-заряд на атоме N составляет соответственно -0,270 и -0,778. Кроме того, при протонировании суммарный заряд на азоцикле увеличивается от $\sum_i q_i^0 = -0,003$ до

 $\sum_{i} q_i^0 = -0,072$ (табл. 2).

Изменение свойств молекулы РО при протонировании связано с селективным изменением строения одной из ее подсистем (аналогичное доказано для 1,4-фенилен-2,2-бисоксазола [3]). При этом наблюдается уменьшение длины $l_{\mu\nu}$ межциклической связи С—С от 1,464 до 1,454 Å и соответственно увеличение порядка $p_{\mu\nu}$ от 0,295 до 0,336, а также укорочение связей С=С в оксазольном цикле от 1,377 до 1,365 Å (возрастание порядка $p_{\mu\nu}$ от 0,777 до 0,844) и удлинение двух связей С—N от 1,346 и

1,323 Å до 1,382 и 1,368 Å (изменение порядка $p_{\mu\nu}$ соответственно от 0,570 и 0,705 до 0,369 и 0,452). Таким образом, если в азоцикле молекулы РО связи С—N имели двойной и одинарный порядок, то в протонированной форме 3-H-PO⁺ им отвечает преимущественно одинарный и частично одинарный порядок. В катионе 3-H-PO⁺ бензольный и протонированный азоциклы сильнее взаимосвязаны, чем в молекуле PO.

Характер локализации зарядов на атомах и фрагментах в РО и 3-H-PO⁺ различен как в основном, так и в возбужденных состояниях. Увеличение основности азоциклических систем в электронно-возбужденном состоянии (наблюдаемое в [16]) обусловлено закономерным сильным возрастанием электронной плотности на атоме N при протонировании: $q^{S} = -0,799$ и $q^{T} = -0,826$ в катионе 3-H-PO⁺ и $q^{S} = -0,325$ и $q^{T} = -0,259$ в молекуле PO (в синглетном S_1^* и триплетном T_1 состояниях соответственно).

В молекуле РО в флуоресцентном состоянии S_2^* (как и в триплетном T_1) электронное возбуждение поровну локализовано на циклах ($\sum L_i = 50\%$), а

в катионе 3-H-PO⁺ в флуоресцентном S_1^* состоянии — по 32 и 68% на бензольном и азоциклах.

В молекуле РО оксазольное кольцо — донор электронов, а бензольное — акцептор (избыточный отрицательный заряд $q^* = -0,203$), а в катионе 3-H-PO⁺ оксазольный и бензольный циклы практически электронейтральны ($\sum_i q_i^* = -0,004$). В T_1 -состоянии возбуждение локализовано на бензольном кольце: $\sum_i L_i = 70\%$, для РО и $\sum_i L_i = 60\%$ для 3-H-PO⁺. При этом на

бензольном цикле локализован отрицательный заряд: $\sum_{i} q_{i}^{*} = -0,018$ для РО и $\sum_{i} q_{i}^{*} = -0,061$ для 3-H-PO⁺. Следовательно, величины $\sum_{i} L_{i}$ для триплетного T_{1} -состояния отражают природу электронно-колебательной дезактивации атомов в азоцикле при протонировании молекулы РО.

Числа L_i для молекулы РО в состоянии S_2^* указывают на наибольшую активность атомов С: для С(2), С(5), С(1'), С(4')

$$\sum_{i} L_i = 14,2 + 16,9 + 12,9 + 12,3 = 56,3\%;$$

аналогично для катиона 3-H-PO⁺

$$\sum_{i} L_{i} = 22,7 + 18 + 7,4 + 8,8 = 56,9\%,$$

т. е. примерно равные значения. В триплетном T_1 -состоянии молекулы PO распределение электронного возбуждения по атомам примерно соответствует флуоресцентному состоянию S_2^* . В *пара*-положении бензольного цикла катиона 3-H-PO⁺ (атом C(4')) локализовано 14,9% возбуждения, а в случае молекулы PO 13,8% (табл. 2).

Таким образом, в условиях комплексообразования и селективного протонирования азоцикла гетероароматических молекул в результате возникновения эффективной межмолекулярной водородной связи в растворах в сочетании с изменением геометрии основного состояния наблюдается варьирование характеристик электронно-колебательного возбужденния $\pi\pi^*$ -типа для групп связей в бензольном (фурановом, тиофеновом) и азольном фрагментах и, следовательно, можно ожидать закономерного изменения химической активности атомов (реакционных центров), в частности в реакциях электрофильного замещения по механизму присоединения-отщепления.

СПИСОК ЛИТЕРАТУРЫ

- 1. Красовицкий Б. М., Болотин Б. М. Органические люминофоры. М.: Химия, 1984. · 344 c.
- 2. Обухов А. Е. // Изв. РАН. Сер. физ. 1992. Т. 56. С. 210.
- Обухов А. Е. // Квантовая электроника. 1993. Т. 19. С. 1164.
- 4. Обухов А. Е. // Оптика и спектроск. 1993. Т. 74. С. 257.
- 5. Обухов А. Е. // Квантовая электроника. 1993. Т. 20. С. 257.
- 6. Obukhov A. E. // Laser Phys. 1996. Vol. 6. P. 896.
- 7. Беленький Л. И., Ческис М. А., Зволинский В. П., Обухов А. Е. // ХГС. 1986. № 6. C. 826.
- 8. Обухов А. Е. // Ж. физ. химии. 1995. Т. 69. С. 1015.
- 9. Беленький Л. И., Чувылкин Н. Д. // ХГС. 1996. № 11/12. С. 1535.
- 10. Беленький Л. И., Ческис М. А. // ХГС. 1984. № 7. С. 881.
- 11. Belen'kii L. I., Gromova G. P., Cheskis M. A., Gol'dfarb Ya. L. // Chem. Scripta. 1985. Vol. 25. - P. 295.
- 12. Belen'kii L. I., Bogdanov V. S., Abronin I. A., Gromova G. P., Cheskis M. A., Zakharyan R. Z. // Chem. Scripta. - 1985. - Vol. 25. - P. 266.
- 13. Cornelisse J., Havinga E. // Chem. Rev. 1975. Vol. 75. P. 353.
- 14. Абронин И. А., Беленький Л. И., Жидомиров Г. М. // Изв. АН СССР. Сер. хим. 1977. № 3. — C. 588.
- 15. Мартынов И. Ю., Деяшкевич А. Б., Ужинов Б. М., Кузьмин М. Г. // Усп. химин. 1977. – T. 46. – C. 3.
- 16. Кузьмин М. Г., Ужинов Б. М., Березин И. В. // Ж. физ. химии. 1967. Т. 41. С. 446.
- 17. Ужинов Б. М., Дружинин С. И. // Усп. химии. 1998. Т. 67. С. 140.
- 18. Беленький Л. И., Ческис М. А., Ряшенцева М. А. // ХГС. 1986. № 6. С. 822.
- 19. Berlman Y. J. D. The Fluorescence Spectra of Aromatic Molecules. N. Y.: Acad. Press, 1971. -693 p.
- 20. Obukhov A. E. // Laser Physics. 1997. Vol. 7. P. 1102.
- 21. Электронно-возбужденные состояния многоатомных молекул и процессы их дезактивации / Шигорин Д. Н., Валькова Г. А., Гастилович Г. А., Годик В. А., Коноплев Г. Г., Пак М. А., Родионов А. Н., Строкач Н. С. — М.: Наука, 1993. — 496 с.
- 22. Pople J. A., Beveridge D. L. Approximate Molecular Orbital Theory. N. Y.: McGraw-Hill, 1974.
- 23. Nishimoto K., Mataga N. // Z. phys. Chem. 1955. Bd 12. S. 335.
- 24. Смирнов А. М. Физика атомов и ионов. М.: Атомиздат, 1986. 252 с.
- 25. Dewar M. J. S. The Molecular Theory of Organic Chemistry. N. Y.: McGraw-Hill, 1970. -205 p.
- 26. Китайгородский А. И., Зоркий П. М., Бельский В. К. Строение органических и элементоорганических молекул. Библиограф. указатель. 1929—1970. — М.: Наука, 1984. — 284 с.
- 27. Свердлов А. М. Колебательные спектры многоатомных молекул. М.: Наука, 1970. 284 c.
- 28. Streurman R. A. // J. Chem. Phys. 1963. Vol. 45. P. 1007.
- 29. Попик Н. И., Шаблыгин М. В., Вилков Л. В., Семенова А. С., Кравченко Т. В. // Высокомол. соед. — 1983. — Т. 25Б. — С. 38.
- 30. Allen F. H., Kennard O., Watson D. G., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Регкіп Trans. II. — 1987. — N 12. — S. 1. 31. *Кларк Т.* Компьютерная химия. — М.: Мир, 1980. — 383 с.
- 32. Christensen D. H., Nielsen J. T., Nielsen O. F. // J. Mol. Spectrosc. 1967. Vol. 24. -P. 225.
- 33. Грузинский В. В., Палтарак Н. М. // ЖПС. 1976. Т. 24. С. 829.
- 34. Kessler H. // Angew. Chem. Intern. Ed. 1970. Vol. 9. P. 219.
- 35. Беленький Л. И., Луйксаар С. И., Поддубный И. С., Краюшкин М. М. // Изв. АН. Сер. хим. — 1998. — (в печати).
- 36. Almenningen A., Bastiansen O, Svedsas P. // Acta Chem. Scand. 1958. Vol. 12. -P 1671
- 37. Обухов А. Е. // Физическая мысль России. 1996. Т. 1. С. 6.
- 38. Abu-Eitah R., Hilar R. // Bull. Chem. Soc. Jap. 1978. Vol. 51. P. 2718.
- 39. Плотников В. Г. // Усп. химии. 1980. Т. 49. С. 328.
- 40. Лузанов А. В. // Усп. химии. 1980. Т. 49. С. 2086.

Российский университет дружбы народов, Москва 117302 e-mail: aobukhov@mx.pfu.edu.ru

Поступило в редакцию 02.07.98

Институт органической химии им. Н.Д.Зелинского РАН, Москва 117913