С. Н. Михайличенко, А. А. Чеснюк, В. Е. Заводник a , С. И. Фирганг 6 , Л. Д. Конюшкин 6 , В. Н. Заплишный

ПРОИЗВОДНЫЕ сим-ТРИАЗИНА

2*. ПОЛУЧЕНИЕ, СВОЙСТВА И СТРОЕНИЕ 2-ОКСО-1,2-ДИГИДРО-сим-ТРИАЗИНОВ

Получены не описанные ранее 2-оксо-1,2-дигидро-сим-триазины и исследовано их алкилирование. Установлено, что, независимо от строения и природы заместителя в положениях 4 и 6 триазинового цикла, а также строения алкилгалогенида, реакция протекает региоселективно по атому кислорода. Методом РСА исследовано стереостроение 2-оксо-1,2-дигидро-сим-триазинов и показано, что в кристаллическом состоянии они существуют в форме димеров.

Ключевые слова: 2-оксо-1,2-дигидро-*сим*-триазины, алкилирование, РСА.

Ранее [1] нами описаны новые четвертичные триметиламмониевые соли на основе различных производных 2-хлор-4,6-R,R'-сим-триазинов и исследованы некоторые их превращения. Попытка получить меркаптотриазины из четвертичных солей обработкой их водным раствором Na₂S не увенчалась успехом; при этом неожиданно были получены 2-оксо-1,2-дигидро-сим-триазины. В настоящей работе показано, что последние гладко и с хорошими выходами (62–84%) образуются также при обработке четвертичных солей 1а-f водным раствором щелочи. Оксосоединения, возможно, получаются в результате изомеризации 2-гидрокси-сим-триазина, образующегося в результате замещения триметиламиногруппы гидроксил-анионом.

1, 2 a R = R' = N(CH₂CH₂)₂O; b R = R' = N(CH₂)₅; c R = OMe, R' = N(CH₂CH₂)₂O; d R = R' = OMe; e R = R' = SPh; f R = R' = NHCH₂Ph

^{*} Сообщение 1 см. [1].

Подобная изомеризация описана [2] для реакции толуола с 2,4-дихлор-6-замещенными-1,3,5-триазинами по Фриделю—Крафтсу, а также для взаимодействия 2-метокси-4,6-дихлортриазина с натриймалоновым эфиром [3]. Интересно, что, согласно работе [4], циануровая кислота в щелочной среде находится преимущественно в енольной форме, а кислый гидролиз 2-алкокси-4,6-диалкиламино-сим-триазинов приводит к соответствующим 2-окси-4,6-диалкиламино-сим-триазинам [5, 6].

Состав и строение полученных соединений подтверждаются данными элементного анализа, ИК и масс-спектроскопии, а также спектрами ЯМР 1 Н (табл. 1). В ИК спектрах имеются сильные и средней интенсивности уширенные полосы поглощения, характерные для валентных колебаний группы NH в области 3430-3440, группы C=O при 1670-1690, а также набор полос поглощения в области 1640-1510 см $^{-1}$, характерных для связи C=C и сопряженной связи C=N (табл. 1).

В спектрах ЯМР 1 Н синтезированных соединений присутствует уширенный синглет группы NH при 10.52–13.05 м. д., а также сигналы протонов заместителей в положениях 4 и 6 триазинового цикла (табл. 1).

Поскольку в литературе имеются только отрывочные данные о синтезе 2-оксо-1,2-дигидро-*сим*-триазинов [2, 3], а их свойства изучены мало, в настоящей работе рассмотрено алкилирование этих соединений.

Таблица 1 Характеристики синтезированных соединений

Соеди-	Брутто-	<u>Найлено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение	формула*	С	N	Н		
2a	$C_{11}H_{17}N_5O_3$	49.57 49.42	26.45 26.20	6.63 6.41	310–311	62
2b	$C_{13}H_{21}N_5O$	<u>59.52</u> 59.29	<u>26.85</u> 26.59	8.29 8.04	220	84
2c	$C_8H_{12}N_4O_3$	45.41 45.28	26.75 26.40	<u>5.89</u> 5.70	239–241	62
2d	C ₅ H ₇ N ₃ O ₃	38.37 38.22	26.99 26.74	<u>4.65</u> 4.49	202–203	70
2e	$C_{15}H_{11}N_3OS_2$	<u>57.72</u> 57.49	13.54 13.41	3.77 3.54	231–232	70
2f	C ₁₇ H ₁₇ N ₅ O	66.58 66.43	22.91 22.79	<u>5.82</u> 5.58	>400	80
3a	$C_{12}H_{19}N_5O_3$	<u>51.47</u> 51.23	<u>25.13</u> 24.90	7.02 6.81	154–155	65
3b	C ₁₄ H ₂₃ N ₅ O ₃	<u>54.52</u> 54.35	25.05 24.90	8.48 8.24	146147	50
3e	C ₁₅ H ₂₅ N ₅ O ₃	<u>55.87</u> 55.71	21.92 21.66	7.88 7.79	98–99	60
3d	C ₁₆ H ₁₃ N ₃ OS ₂	<u>58.78</u> 58.69	<u>12.99</u> 12.83	4.23 4.00	55–56	64

^{*} Соединение 2e — найдено: S 20.57%, вычислено: S 20.46%; соединение 3d — найдено: S 19.75%, вычислено: S 19.58%.

Взаимодействие 2-оксо-1,2-дигидро-*сим*-триазинов **2**а,е с алкилгалогенидами проводили в ацетонитриле или в ДМФА, в присутствии гидроксида калия при эквимолярном соотношении реагентов.

3a-c $R = R' = N(CH_2CH_2)_2O$, d R = R' = SPh; a, d R'' = Me; b $R'' = C_3H_7$, c $R'' = C_4H_9$

Установлено, что независимо от природы галогенпроизводного, растворителя и температуры реакция протекает высокорегиоселективно по атому кислорода и приводит к образованию 2-алкокси-4,6-дизамещенных сим-триазинов **3a—d** с выходами 60—70%. Определяющим фактором региоселективности, по-видимому, является локализация отрицательного заряда на атоме кислорода промежуточной калиевой соли. Строение 2-алкокси-4,6-дизамещенных сим-триазинов **3a—d** подтверждено данными ИК и масс-спектров, ЯМР ¹H (табл. 2).

В ИК спектрах соединений $3\mathbf{a}$ — \mathbf{d} отсутствуют полосы поглощения, характерные для связей С=О и N–H, но имеется ряд полос при 1015–1170 см⁻¹, характерных для валентных колебаний простой эфирной связи. В спектрах ЯМР 1 H нет уширеннного сигнала протона группы NH и присутствуют сигналы протонов алкоксигруппы (табл. 2).

С целью подтверждения строения и для детального изучения геометрии молекул проведено рентгеноструктурное исследование соединений **2a** и **2c**. Проекции пространственных моделей молекул представлены на рисунке, а координаты атомов, значения межатомных расстояний, валентных и торсионных углов сведены в табл. 3–5.

Установлено, что в кристаллическом состоянии соединения 2a, с находятся в виде димеров, соединенных между собой по оксо- и аминогруппе водородной связью, длина которой в соединении 2a составляет 1.77 Å, а в 2c-1.836 Å. Димеризация, вероятно, и является причиной высокоплавкости, плохой растворимости и малой реакционной способности соединений 2. При этом неполное сопряжение приводит к деформации триазинового цикла. Наиболее деформирован такой цикл с разными заместителями в положениях 4 и 6.

Самой длинной в триазиновом цикле обоих соединений является связь $N_{(3)}$ – $C_{(6)}$: 1.377 для соединения **2c** и 1.385 Å для **2a**. Длина остальных связей С–N и С=N соединения **2a** варьирует в пределах от 1.317 ($C_{(7)}$ – $N_{(4)}$) до 1.361 Å ($C_{(7)}$ – $N_{(3)}$), тогда как длина таких связей для незамещенного *сим*-триазина, по данным авторов [8], составляет 1.337 Å. Деформированы и валентные углы соединения **2a**. Наиболее искажены углы при атомах $N_{(4)}$ (116.0°), $N_{(2)}$ (115.9°) и $C_{(5)}$ (127.0°).

Спектральные характеристики синтезированных соединений*

Соеди-		ИК	спектр, γ, см ⁻¹			Спектр ЯМР ¹ Н,	δ, м. д. (КСС	В, <i>J</i> , Гц)**	
нение	N-H	C=O	C=N, C=C	COC	CH ₃	NCH ₂ , OCH ₂	OCH₃, c	NH, уш. с	Другие протоны
2a	3440		1590, 1560	1150, 1070	_	3.53–3.73 (16Н, м)		10.52	_
2b	3430	1670	1630, 1570, 1510	1100, 1140	****	3.55-3.70 (16Н, м)	3.9	11.45	
2 c	3440	1690	1630, 1570, 1500	1190, 1120	_		3.89	12.30	_
2d	3430	1670	1640, 1570, 1520	1230, 1140	in the same	_	-	13.05	7.29-7.50 (10H, м, H(Ar)
3a	_		1560, 1520	1130, 1090, 1050, 1030	_	3.56–3.78 (16Н, м)	3.81		_
3b	_		1570, 1530	1140, 1100, 1060	0.72 (3H, T, J = 9)	3.58-3.73 (16H, м); 4.16 (2H, т, <i>J</i> = 6, ОСН ₂)			1.64–1.78 (2Н, м, ОСН <u>2СН2</u> СН ₃)
3с	_	<u>-</u>	1570, 1520	1170, 1140, 1100, 1030	0.97 (3H, т, J=9)	3.58-3.73 (16H, M); 4.20 (2H, T, $J = 8$, OCH ₂)	-	_	1.37–1.50 (2Н; м, <u>СН₂</u> СН ₃) 1.61–1.71 (2Н, м, – <u>СН₂</u> СН ₂ СН ₃)
3d		_	1570, 1520	1160, 1140, 1055, 1015		_	3.72	_	7.24–7.43 (10H, м, H (Ar)

^{*} Данные масс-спектров можно получить у авторов. ** Спектр ЯМР ¹Н, м. д., J (Γ ц): **3b**: 0.72 (3H, τ , J = 9, CH₃); **3c**: 0.97 (3H, τ , J = 9, CH₃).

Таблица 3 Координаты атомов* (х 10^4) соединений 2а,с

Атом	x	y	Z	U (eq)
		Соединение 2с		
O(1)	6966(5)	1229(4)	5770(4)	67(1)
O(2)	-660(5)	8455(5)	1694(4)	71(1)
O(3)	5557(5)	8401(4)	-888(4)	60(1)
N(1)	5005(6)	3646(5)	3192(4)	57(1)
N(2)	2071(6)	5974(5)	2502(4)	54(1)
N(3)	2495(6)	8361(5)	406(4)	56(1)
N(4)	5441(5)	5966(5)	1131(4)	49(1)
C(1)	7221(8)	2698(8)	308(6)	63(2)
C(2)	8015(9)	2275(8)	4560(6)	62(2)
C(3)	4810(8)	2193(8)	5920(6)	59(2)
C(4)	3848(9)	2696(8)	4488(6)	59(2)
C(5)	4108(7)	5244(6)	2252(5)	46(1)
C(6)	1208(8)	7608(6)	1555(5)	53(1)
C(7)	4526(7)	7507(6)	254(5)	49(1)
C(8)	7777(9)	7595(8)	-1123(8)	62(2)
O(1)	102(5)	2524(5)	-156(2)	56(1)
0(1)	102(5)	Соединение 2а	15((2)	1 5000
O(2)	9574(5)	4800(4)	3572(2)	58(1)
O(3)	3993(5)	1042(4)	7759(3)	61(1)
N(1)	3199(5)	2475(5)	1775(3)	44(1)
N(2)	6443(5)	3637(5)	2606(3)	42(1)
N(3)	7321(5)	3702(5)	4640(3)	40(1)
N(4)	4034(5)	2488(4)	3751(3)	38(1)
N(5)	4945(5)	2552(5)	5737(3)	39(1)
C(1)	1137(7)	1635(7)	1782(4)	46(1)
C(2)	-335(8)	2477(9)	985(4)	54(1)
C(3)	2086(7)	3446(7)	-124(4)	51(1)
C(4)	3623(7)	2633(8)	607(4)	51(1)
C(5)	4616(6)	2882(5)	2742(3)	36(1)
C(6)	7815(6)	4058(6)	3574(3)	40(1)
C(7)	5421(6)	2917(5)	4698(3)	36(1)
C(8)	6507(8)	2401(9)	6743(4)	52(1)
C(9)	5718(8)	2346(8)	7838(4)	55(1)
C(10)	2439(8)	1401(9)	6884(4)	61(2)
C(11)	3006(8)	1397(8)	5716(4)	53(1)

^{*} Координаты атомов водорода могут быть получены у авторов.

Соединение **2c** содержит в положениях 4 и 6 триазинового цикла заместители различной природы и строения, что приводит к еще большей деформации валентных углов и изменению длин связей в триазиновом цикле. Длина сопряженных связей в этом соединении варьирует в пределах от 1.288 ($C_{(7)}$ – $N_{(4)}$) до 1.355 Å ($C_{(6)}$ – $N_{(2)}$), а значения валентных углов – от 113.6 ($C_{(7)}$ – $N_{(4)}$ – $C_{(5)}$) до 126.9° ($N_{(2)}$ – $C_{(5)}$ – $N_{(4)}$). Такое искажение длин связей и значений валентных углов в триазиновом цикле соединения **2c**,

Таблица 4 **Межатомные расстояния в молекулах 2a,c**

Атом	d, Å	Атом	d. Å	
Coe	цинение 2а	Соединение 2с		
O(1)-C(3)	1.424(5)	O(1)-C(3)	1.420(6)	
O(1)–C(2)	1.429(6)	O(1)-C(2)	1.425(6)	
O(2)-C(6)	1.250(5)	O(2)-C(6)	1.233(5)	
O(3)-C(9)	1.414(6)	O(3)–C(7)	1.320(5)	
O(3)-C(10)	1.414(6)	O(3)–C(8)	1.441(6)	
N(1)-C(5)	1.343(5)	N(1)-C(5)	1.339(5)	
N(1)C(1)	1.459(6)	N(1)-C(1)	1.451(6)	
N(1)-C(4)	1.462(6)	N(1)-C(4)	1.466(6)	
N(2)-C(6)	1.328(5)	N(2)-C(5)	1.323(5)	
N(2)-C(5)	1.335(5)	N(2)–C(6)	1.355(5)	
N(3)-C(7)	1.361(5)	N(3)-C(7)	1.329(6)	
N(3)-C(6)	1.385(5)	N(3)–C(6)	1.377(5)	
N(4)–C(7)	1.317(5)	N(4)C(7)	1.288(5)	
N(4)C(5)	1.350(5)	N(4)–C(5)	1.374(5)	
N(5)-C(7)	1.351(5)	C(1)–C(2)	1.496(8)	
N(5)-C(8)	1.467(6)	C(3)–C(4)	1.504(8)	
N(5)–C(11)	1.474(6)			
C(1)-C(2)	1.503(7)			
C(3)-C(4)	1.481(7)			
C(8)–C(9)	1.486(7)			
C(10)-C(11)	1.495(7)	J		

Таблица 5 Валентные углы в соединениях 2a,c

Угол	ф, град	Угол	ф, град
Соединен	ie 2a	Соединен	ие 2с
C(3)-O(1)-C(2)	110.5(3)	C(3)-O(1)-C(2)	109.7 (4)
C(9)-O(3)-C(10)	109.4(4)	C(7)-O(3)-C(8)	117.4 (4)
(5)-N(1)-C(1)	123.2(3)	C(5)-N(1)-C(1)	124.1 (4)
C(5)-N(1)-C(4)	123:3(3)	C(5)-N(1)-C(4)	123.2 (4)
C(1)-N(1)-C(4)	113.1(3)	C(1)-N(1)-C(4)	112.6 (4)
C(6)-N(2)-C(5)	115.9(3)	C(5)-N(2)-C(6)	116.6 (4)
C(7)-N(3)-C(6)	119.9(4)	C(7)-N(3)-C(6)	120.4 (4)
C(7)-N(4)-C(5)	116.0(3)	C(7)-N(4)-C(5)	113.6 (4)
C(7)-N(5)-C(8)	121.0(4)	N(1)-C(1)-C(2)	109.8 (4)
C(7)-N(5)-C(11)	116.6(3)	O(1)-C(2)-C(1)	110.0 (5)
C(8)-N(5)-C(11)	114.0(4)	O(1)-C(3)-C(4)	112.1 (5)
N(1)-C(1)-C(2)	110.6(4)	N(1)-C(4)-C(3)	109.4 (5)
O(1)-C(2)-C(1)	111.4(4)	N(2)-C(5)-N(1)	117.8 (4)
O(1)-C(3)-C(4)	111.9(4)	N(2)-C(5)-N(4)	126.9 (4)
N(1)-C(4)-C(3)	110.5(4)	N(1)-C(5)-N(4)	115.3(4)
N(2)-C(5)-N(1)	116.7(3)	O(2)-C(6)-N(2)	123.1(5)
N(2)-C(5)-N(4)	127.0(4)	O(2)-C(6)-N(3)	118.8(4)
N(1)-C(5)-N(4)	116.3(3)	N(2)-C(6)-N(3)	118.1(4)
O(2)C(6)-N(2)	122.5(4)	N(4)-C(7)-O(3)	122.2(4)
O(2)C(6)-N(3)	117.2(4)	N(4)-C(7)-N(3)	124.4(4)
N(2)-C(6)-N(3)	120.3(4)	O(3)C(7)-N(3)	113.4(4)
N(4)-C(7)-N(5)	119.2(3)		
N(4)-C(7)-N(3)	121.0(4)		
N(5)-C(7)-N(3)	119.9(4)		
N(5)-C(8)-C(9)	111.9(4)		
O(3)C(8)C(9)	111.9(4)		
O(3)-C(9)-C(8)	111.9(4)		
O(3)-C(10)-C(11)	112.0(5)		
(5)-C(11)-C(10)	111.5(4)		

Проекции молекул соединения 2а,с

Таблица 6 Торсионные углы в соединениях 2a,c

Угол	θ, град	Угол	θ, град	
Соединение 2	2a	Соединение 2с		
C(4)-N(1)-C(1)-C(2)	-50.7	C(4)-N(1)-C(1)-C(2)	-54.6	
C(5)-N(1)-C(1)-C(2)	136.2	C(5)-N(1)-C(1)-C(2)	123.0	
C(3)-O(1)-C(2)-C(1)	-58.5	C(3)O(1)C(2)C(1)	-61.7	
N(1)-C(1)-C(2)-O(1)	53.8	N(1)-C(1)-C(2)-O(1)	58.9	
C(2)–O(1)–C(3)–C(4)	59.7	C(2)-O(1)-C(3)-C(4)	60.0	
C(1)-N(1)-C(4)-C(3)	51.5	C(1)-N(1)-C(4)-C(3)	51.7	
C(5)-N(1)-C(4)-C(3)	-135.5	C(5)-N(1)-C(4)-C(3)	-125.9	
O(1)-C(3)-C(4)-N(1)	-55.6	O(1)-C(3)-C(4)-N(1)	-54.2	
C(7)-N(5)-C(8)-C(9)	168.6			
C(11)-N(5)-C(8)C(9)	-44.3			
C(10)-O(3)-C(9)-C(8)	-62.0			
N(5)-C(8)-C(9)-O(3)	53.3			
C(9)-O(3)-C(10)-C(11)	61.8			
C(7)-N(5)-C(11)-C(10)	-167.5			
C(8)-N(5)-C(11)-C(10)	44.0			
O(3)-C(10)-C(11)-N(5)	-52.7			

по-видимому, связано с частичным сопряжением неподеленной электронной пары атома кислорода метоксигруппы с кратной связью $C_{(7)}$ – $N_{(4)}$ и перераспределением электронной плотности в цикле. Этими же эффектами, по-видимому, можно объяснить и некоторое уменьшение длин связей N-H (0.936 Å) и C=O (1.233 Å) в соединении 2c по сравнению с длинами соответствующих связей в соединении 2a (1.004 и 1.25 Å).

Интересно, что морфолильный заместитель в положении 6 соединения 2а находится в конформации полукресло. При этом длины простых связей С—С в этом фрагменте несколько короче по сравнению со средней длиной связи С—С в алифатических циклических аминах, а валентные углы несколько искажены (табл. 3). Такой же заместитель в положении 4 триазинового цикла имеет конформацию кресло при меньшем искажении длин связей и валентных углов по сравнению со средними значениями для подобных соединений (табл. 4—6).

В соединении **2с** морфолильный заместитель в положении 6 триазинового цикла также находится в конформации полукресло, при этом его торсионные углы практически совпадают с таковыми у заместителя в положении 6 соединения **2a** (табл. 5, 6). Атом углерода метильной группы расположен в той же плоскости, что и триазиновый цикл.

Таким образом, синтезированы новые 2-оксо-1,2-дигидро-*сим*-триазины, изучены их реакционная способность в реакциях алкилирования и строение, что позволило установить их склонность к димеризации в кристаллическом состоянии за счет водородной связи N–H...O=C.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны для суспензий образцов в вазелиновом масле на спектрофотометре Specord IR-75. Спектры ЯМР 1 Н сняты для растворов образцов в ДМСО- d_6 на радиоспектрометре Bruker WM-250 (250 МГц). Масс-спектры записаны на приборе Finnigan MAT INCOS50 (70 эВ). Контроль за ходом реакции и чистотой получаемых продуктов проводили методом ТСХ на пластинках Silufol UV-254 в системе ацетон—гексан, 1:1.

Рентгеноструктурное исследование соединений 2а,с. Призматические кристаллы выращены из раствора в этиловом спирте.

Соединение 2а. $C_{11}H_{17}N_5O_3$. Параметры элементарной ячейки: a=6.877(1) Å; b=7.834(2) Å; c=11.762(2); $\alpha=92.08(3)^\circ$; $\beta=100.66(3)^\circ$; $\gamma=99.80(3)^\circ$; Z=2; d=1.450 Mg/m³; V=612.1(2) ų. Пространственная группа Triclinic, P-1.

Соединение 2с. $C_8H_{12}N_4O_3$. Параметры элементарной ячейки: a=7.023(1) Å; b=8.573(2) Å; c=9.439(2) Å, $\alpha=69.07(3)^\circ$; $\beta=76.33$ (3)°; $\gamma=67.38(3)^\circ$; Z=2; d=1.448 Mg/m³; V=486.7(1) ų. Пространственная группа Triclinic, P-1. Экспериментальные данные получены на автоматическом дифрактометре Enraf-Nonius CAD 4 на МоК α -излучении с β -фильтром методом $\theta/2\theta$ -сканирования. Всего получено 944 отражений с $I>2\delta$ (I). Структура расшифрована прямым методом по комплексу программ SHELXTL [8] и уточнена в анизотропном (изотропном для атомов H) приближении до факторов расходимости 2а R=0.0390, $R_w=0.0439$; 2с R=0.0469, $R_w=0.0470$.

2-Оксо-1,2-дигидро-4,6-R,R'-*сим***-триазины** (2a–f). Смесь 9 ммоль хлорида 2-триметиламмонио-4,6-R,R'-*сим*-триазина, полученного по методике [1], и 18 ммоль NaOH выдерживают при перемешивании и температуре 40 °C в течение 3–5 ч. Затем, реакционную смесь подкисляют CH₃COOH до рН 6.5–5.0, выпавший осадок продукта 2 отфильтровывают, промывают водой и очищают кристаллизацией из спирта.

2-Алкокси-4,6-R,R'-*сим***-триазины (3а-d)**. К раствору 1.9 ммоль соединения **2а-f** в 10–15 мл ДМФА быстро добавляют 1.5 мл (1.9 ммоль) 10% водного раствора КОН. К полученному раствору при перемешивании добавляют 1.9 ммоль алкилгалогенида и

выдерживают смесь от 3 ч до 2 сут при 25–60 °C. Затем содержимое разбавляют 2-кратным количеством воды, выпавший осадок продукта отфильтровывают, промывают водой и очищают перекристаллизацией из смеси гексан–бензол, 3:1.

При использовании в качестве растворителя ацетонитрила после завершения реакции ацетонитрил упаривают в вакууме, осадок отфильтровывают и обрабатывают согласно описанному выше.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. А.Чеснюк, С. Н. Михайличенко, В. С. Заводнов, В. Н. Заплишный, *XTC*, 197 (2002).
- 2. В. Н. Заплишный, Э. С. Аванесян, Г. М. Погосян, *XTC*, 558 (1979).
- 3. Г. М. Вахантова, Л. Н. Яхонтов, ХГС, 554 (1980).
- 4. Г. М. Погосян, В. А. Панкратов, В. Н. Заплишный, С. Г. Мацоян, *Политриазины*, Изд-во АН АрмССР, Ереван, 1987.
- 5. В. В. Довлатян, В. А. Пивазян, К. А. Элиазян, Арм. хим. журн., 33, № 3, 247 (1980).
- 6. В. В. Довлатян, ХГС, 17 (1998).
- 7. А. Гордон, Р. Форд, Спутник химика, Мир, Москва, 1974.
- 8. P. J. Wheatley, Acta Crysallogr., 8, 224 (1955).
- 9. G. M. Sheldrick, Computational Crystallography, Oxford Univ. Press, Oxford, 506 (1982).

Кубанский государственный аграрный университет, Краснодар 350044, Россия e-mail: vlad.zpl@mail.ru

Поступило в редакцию 18.07.2000 После доработки 11.02.2001

^аНаучно-исследовательский физикохимический институт им. Л. Я. Карпова, Москва 103064, Россия

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913, Россия