В. В. Ищенко, Т. С. Шуляк, В. П. Хиля

АМИНОКИСЛОТНЫЕ ПРОИЗВОДНЫЕ И ОКСИМЫ ФЛАВОНОВ

Синтезированы тетрафторбораты 4-этоксифлавилия с заместителями в кольцах А и В. Исследовано их взаимодействие с азотсодержащими нуклеофилами. Доказано, что в результате этих реакций образуются производные флавонов по карбонильной группе. Определены основные отличительные физико-химические характеристики оксимов флавонов и изоксазолов.

Ключевые слова: аминокислотные производные флавонов, оксимы флавонов, тетрафторбораты 4-этоксифлавилия.

Синтетические возможности и биологические свойства хромоновой системы исследованы достаточно подробно. Однако в литературе очень мало достоверных данных о свойствах производных хромонов по карбонильной группе, хотя эти соединения могут быть использованы как для синтеза новых гетероциклических систем, так и сами по себе как биологически активные вещества. Образование фрагмента С=N по положению 4 хромонового кольца благоприятствует удлинению главной цепи сопряжения и усилению полярности молекулы в целом, тем самым обеспечивая растворимость этих соединений в полярной среде и улучшая их усвояемость организмом в качестве лекарственных средств [1].

Малая изученность этих соединений объясняется неоднозначностью протекания реакций хромонов с нуклеофильными реагентами, в результате чего может происходить раскрытие пиронового цикла с последующей рециклизацией интермедиата с образованием соответствующих пятичленных гетероциклов. Например, при взаимодействии флавонов с гидроксиламином могут образовываться изоксазолы строения А и В.

По данным [2], более надежным способом получения 4-замещенных флавонов может быть путь через тиоксохромоны. Но и в этом случае образование целевых соединений сопровождается расщеплением пиронового цикла [3].

Еще один метод синтеза 4-производных флавонов — взаимодействие солей 4-этоксифлавилия с нуклеофильными реагентами [4], но в зависимости от среды, аниона и заместителей могут образовываться либо только производные по положению 4, либо смесь их с продуктами рециклизации, либо только последние. Структура продуктов этой реакции зависит от нуклеофильного реагента [5]. Например, при действии гидразина образуются пиразолы, в то время как реакция с фенилгидразином приводит к фенилгидразонам флавонов. Независимо от строения солей флавилия при их взаимодействии с анилином в уксусной кислоте происходит замена 4-этоксигруппы на аминогруппу. В реакции с гидроксиламином образуется оксим флавона, структура которого подтверждена только т. пл. (без спектральных данных), которая хотя и согласуется с т. пл. оксима, полученного Бейкером [2], но достоверного доказательства строения полученных продуктов все-таки не дает.

Основываясь на данных [4] о получении производных флавонов по карбонильной группе, вначале мы использовали соли 4-этоксифлавилия, содержащие в качестве противоиона перхлорат-анион. Но тетрафторбораты, благодаря их термостабильности, взрывобезопасности, лучшей растворимости и несколько большей активности, более предпочтительны для практического применения. Однако к началу нашей работы синтез тетрафторборатов 4-этоксифлавилия практически не был описан. Мы получили тетрафторбораты 4-этоксифлавилия с разными заместителями как в кольце A, так и в кольце B.

$$R^{2}$$

$$R^{1}$$

$$R^{1}$$

$$R^{2}$$

1 a
$$R^1 = OMe$$
, $R^2 = H$; b $R^1 = Me$, $R^2 = H$; c $R^1 = OH$, $R^2 = F$; d $R^1 = H$, $R^2 = F$; e $R^1 = OMe$, $R^2 = F$; f $R^1 = Me$, $R^2 = F$; g $R^1 = H$, $R^2 = Br$; h $R^1 = OH$, $R^2 = Br$; i $R^1 = OMe$, $R^2 = Br$

В спектрах ЯМР ¹Н солей **1а-і** (табл. 1) наблюдается триплет в области 1.05—1.07 м. д. и квартет в области 3.43—3.46 м. д., что соответствует этоксигруппе в положении 4 хромонового кольца. Наличие сигнала в диапазоне 6.96—7.04 м. д. (3-Н) подтверждает сохранение хромоновой структуры.

Синтезированные тетрафторбораты вводили в реакцию с гидроксиламином, анилином и фенилгидразином. В результате этих взаимодействий были получены производные по положению 4 флавонов с разными заместителями в кольцах A и B, характеристики которых полностью совпали с характеристиками аналогичных соединений, полученных из перхлоратов.

Физико-химические характеристики соединений 1а-і*

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Характерные сигналы в спектре ЯМР 1 Н (ДМСО), δ , м. д. (J , Γ ц)	
	формула	С	Н	Br			%
1a	C ₁₈ H ₁₇ BF ₄ O ₃	<u>59.1</u> 58.73	4.31 4.62		184	1.05 (3H, т, 4-OCH ₂ CH ₃); 3.43 (2H, кв, 4-OCH ₂ CH ₃); 3.83 (3H, с, 4'-OCH ₃); 6.93 (1H, с, 3-H); 7.12 (2H, д, <i>J</i> = 9, 3'-,5'-H); 8.07 (2H, д, <i>J</i> = 9, 2'-,6'-H); 7.2–8.2 (4H, м, H _{apoxl})	75.7
1b	C ₁₈ H ₁₇ BF ₄ O ₂	61.55 61.36	5.05 4.83		176	1.06 (3H, т, 4-OCH ₂ <u>CH₃</u>); 3.46 (2H, кв, 4-OCH ₂ CH ₃); 2.39 (3H, с, 4'-CH ₃); 6.98 (1H, с, 3-H); 7.4 (2H, д, <i>J</i> = 9, 3'-,5'-H); 8.0 (2H, д, <i>J</i> = 9, 2'-,6'-H); 7.45–8.1 (4H, м, H _{аром})	65.1
1c	C ₁₇ H ₁₄ BF ₅ O ₃	<u>54.5</u> 54.84	4.15 3.76		267	1.05 (3H, т, 4-OCH ₂ CH ₃); 3.46 (2H, кв, 4- <u>OCH₂</u> CH ₃); 6.89 (1H, с, 3-H); 6.95 (2H, д, $J = 8.5, 3^{\circ}, 5^{\circ}$ -H); 7.97 (2H, д, $J = 8.5, 2^{\circ}, 6^{\circ}$ -H); 7.36—7.9 (4H, м, Н _{аром})	72.3
1d	C ₁₇ H ₁₄ BF ₅ O ₂	<u>56.71</u> 56.98	4.35 3.91		224	1.05 (3H, т, 4-OCH ₂ CH ₃); 3.46 (2H, кв, 4-O <u>CH₂</u> CH ₃); 7.0 (1H, с, 3-H); 6.55–8.3 (8H, м, Н _{аром})	67.1
1e	C ₁₈ H ₁₆ BF ₅ O ₃	<u>55.61</u> 55.96	4.25 4.14	1	212	1.06 (3H, т, 4-OCH ₂ CH ₃); 3.45 (2H, кв, 4-O <u>CH</u> ₂ CH ₃); 3.87 (3H, с, 4'-OCH ₃); 6.93 (1H, с, 3-H); 7.12 (2H, д, <i>J</i> = 9, 3'-,5'-H); 8.01 (2H, д, <i>J</i> = 9, 2'-,6-H); 7.6–8.0 (4H, м, Н _{аром})	82.3
1f	C ₁₈ H ₁₆ BF ₅ O ₂	<u>59.15</u> 58.98	4.41 4.32		222	1.05 (3H, т, 4-OCH ₂ CH ₃); 3.43 (2H, кв, 4-O <u>CH</u> 2CH ₃); 2.39 (3H, с, 4'-CH ₃); 7.0 (1H, с, 3-H); 7.4 (2H, д, <i>J</i> = 8.5, 3'-,5'-H); 8.0 (2H, д, <i>J</i> = 8.5, 2'-,6'-H); 7.65-7.92 (4H, м, H _{аром})	72.1
1g	C ₁₇ H ₁₄ BBrF ₄ O ₂			18.95 19.18	196	1.07 (3H, т, 4-OCH ₂ CH ₃); 3.43 (2H, кв, 4-O <u>CH₂</u> CH ₃); 7.04 (1H, е, 3-H); 8.12 (1H, д, <i>J</i> = 2.8, 5-H); 7.76 (1H, д, <i>J</i> = 8.8, 8-H);	65.4
1h	C ₁₇ H ₁₄ BBrF ₄ O ₃			18.35 18.48	261	1.06 (3H, т, 4-OCH ₂ CH ₃); 3.46 (2H, кв, 4-O <u>CH₂</u> CH ₃); 6.85 (1H, с, 3-H); 6.93 (2H, д, $J = 9, 3'$ -, 5'-H); 7.95 (2H, д, $J = 9, 2'$ -,6'-H); 7.7 (1H, д, $J = 9, 8$ -H)	78.2
1i	C ₁₈ H ₁₆ BBrF ₄ O ₃			18.05 17.8	231	1.07 (3H, т, 4-OCH ₂ CH ₃); 3.43 (2H, кв, 4-O <u>CH₂</u> CH ₃); 3.87 (3H, с, 4'-OCH ₃); 6.95 (1H, с, 3-H); 7.11 (2H, д, <i>J</i> = 8, 3'-,5'-H); 8.05 (2H, д, <i>J</i> = 8, 2'-,6'-H); 7.92 (1H, д, <i>J</i> = 2.9, 5-H);	83.1
						7.75 (1H, μ , $J = 8.9$, 8-H)	

^{*} В ИК спектрах солей 1а-і наблюдались полосы поглощения симметричных и асимметричных колебаний пирилиевого цикла в области 1550–1510 см⁻¹.

$$R^{1}$$
 R^{2}
 R^{2

2 a
$$R^1 = H$$
, $R^2 = H$; b $R^1 = OH$, $R^2 = H$; c $R^1 = OMe$, $R^2 = H$; d $R^1 = Me$, $R^2 = H$; e $R^1 = H$, $R^2 = F$; f $R^1 = OH$, $R^2 = F$; g $R^1 = OMe$, $R^2 = F$; h $R^1 = OMe$, $R^2 = CI$; i $R^1 = OMe$, $R^2 = Br$; j $R^1 = Me$, $R^2 = Br$; k $R^1 = OH$, $R^2 = NO_2$; I $R^1 = OMe$, $R^2 = NO_2$; 3 a $R = H$, $R^1 = OMe$, $R^2 = Br$; c $R = i - C_3 H_7$, $R^1 = OH$, $R^2 = H$; d $R = i - C_3 H_7$, $R^1 = OH$, $R^2 = Br$; e $R = i - C_3 H_7$, $R^1 = OMe$, $R^2 = Br$

Более подробно мы рассмотрели взаимодействие тетрафторборатов 4-этоксифлавилия с аминокислотами в уксусной кислоте и с гидроксиламином в пиридине и в уксусной кислоте в присутствии ацетата натрия. Независимо от природы заместителей в молекулах солей флавилия в уксусной кислоте образовывались производные флавонов по карбонильной группе 2 и 3. В пиридине же в аналогичных условиях кроме оксима флавона получалось около 30% 3-фенил-5-(о-оксифенил)изоксазола, константы которого полностью совпали с литературными [3].

Все синтезированные оксимы 2 давали отрицательную реакцию со спиртовым раствором хлорного железа, не растворялись в 2 н. растворе щелочи и соды ни на холоду, ни при нагревании, что свидетельствует о сохранении пиронового цикла и об отсутствии продуктов рециклизации, имеющих фенольную гидроксильную группу и поэтому растворяющихся в щелочи и соде. Кроме того, при кипячении полученных нами оксимов 2 и аминокислотных производных 3 в подкисленном метаноле они переходили в соответствующие флавоны. Это является еще одним аргументом в пользу сохранения у них флавоновой структуры.

Наличие в спектрах ЯМР ¹Н соединений **2** и **3** (табл. 2) сигнала протона 3-Н хромонового кольца в области 6.96–7.65 м. д., свидетельствует о сохранении флавонового цикла. В области 11 м. д. наблюдается сигнал протона группы NOH оксимов, а в области 10.9–11.8 сигнал протона группы СООН аминокислот. Под влиянием неподеленной электронной пары атома азота сигнал протона 5-Н (табл. 2) смещается в слабое, по сравнению со спектром флавона, поле. В ИК спектрах этих производных наблюдается полоса валентных колебаний связи C=N в области 1600–1625 см⁻¹. В спектрах ЯМР ¹³С для глицинпроизводных **3а,b** наблюдается сигнал атома углерода группы СООН в области 169 м. д.

Для более строгого подтверждения образования именно 4-аминокислотных производных 3 при взаимодействии солей 4-этоксифлавилия с аминокислотами мы ввели в эту реакцию диэтиловый эфир глицина.

Характеристики соединений 2а-l, 3а-е

Соеди-	Брутто-	<u>Найдено, %</u> Вычислено, %		Т. пл., °С	ИК спектр (КВг), v, см ⁻¹			Характерные сигналы в спектрах ЯМР 1 Н (ДМСО), δ , м. д. (J , Γ ц)	Вы- ход,
нение	формула	N	Hal		CN	ОН	NO		%
2a	C ₁₅ H ₁₁ NO ₂	<u>5.83</u> 5.90		184	1610	3200	1010	7.14 (1H, c, 3-H); 11.01 (1H, c, NOH); 7.15–7.8 (9H, м, Н _{аром})	81.0
2b	C ₁₅ H ₁₀ NO ₃	<u>5.66</u> 5.55		236	1604	3100	1020	10.95 (1H, c, NOH); 10.0 (1H, c, 4'-OH); 6.94 (1H, c, 3-H); 6.9 (2H, д, <i>J</i> = 8.6, 3'-,5'-H); 7.78 (2H, д, <i>J</i> = 8.6, 3'-,6'-H); 7.88 (1H, д. д, <i>J</i> = 2.1, 5-H)	97.4
2c	C ₁₆ H ₁₃ NO ₃	<u>5.18</u> 5.24		207	1602	3100	1020	11.04 (1H, c, NOH); 3.8 (3H, c, 4'-OCH ₃); 6.97 (1H, c, 3-H); 7.1 (2H, д, <i>J</i> = 8.5, 3'-,5'-H); 7.92 (2H, д, <i>J</i> = 8.5, 2'-,6'-H)	72.8
2d	C ₁₆ H ₁₃ NO ₂	<u>5.61</u> 5.57	-	213	1605	3150	1010	10.94 (1H, c, NOH); 2.37 (3H, c, 4'-CH ₃); 7.07 (1H, c, 3-H); 7.3 (2H, д, <i>J</i> = 8.0, 3'-,5'-H); 7.82 (2H, д, <i>J</i> = 8.0, 2'-,6'-H)	65.3
2e	C ₁₅ H ₁₀ FNO ₂	<u>5.38</u> 5.49		145	1610	2980	1019	11.14 (1H, c, NOH); 7.08 (1H, c, 3-H)	75.0
2f	C ₁₅ H ₁₀ FNO ₃	<u>5.31</u> 5.16	}	263	1600	3100	1040	11.0 (1H, c, NOH); 10.02 (1H, c, 4'-OH); 6.93 (1H, c, 3-H); 6.88 (2H, д, <i>J</i> = 8.5, 3'-,5'-H); 7.75 (2H, д, <i>J</i> = 8.5, 2'-,6'-H)	62.5
2g	C ₁₆ H ₁₂ FNO ₃	4.88 4.91		209	1604	3100	1020	11.05 (1H, c, NOH); 3.83 (3H, c, 4'-OCH ₃); 6.98 (1H, c, 3-H); 7.05 (2H, д, <i>J</i> = 8.5, 3'-,5'-H); 7.86 (2H, д, <i>J</i> = 8,5, 2',6'-H);	93.3
2h	C ₁₆ H ₁₂ CINO ₃	4.88 4.64	11.67 11.75	210 разл.	1600	3100	1020	11.0 (1H, c, NOH); 3.82 (3H, c, 4'-OCH ₃); 7.31 (1H, c, 3-H); 7.1 (2H, α , β = 9.0, 3'-,5'-H); 7.89 (2H, α , β = 9.0, 2'-,6'-H); 7.77 (1H, α , β = 3.0, 5-H); 7.45 (1H, α , β = 9.0; 3,0, 7-H); 7.08 (1H, α , β = 9.0, 8-H)	89.5
2 i	C ₁₆ H ₁₂ BrNO ₃	3.91 4.05	23.22 23.08	216	1605	2980	1020	11.1 (1H, c, NOH); 3.87 (3H, c, 4'-OCH ₃); 6.95 (1H, c, 3-H); 7.07 (2H, д, <i>J</i> = 9.0, 3'-,5'-H); 8.12 (2H, д, <i>J</i> = 9.0, 2'-,6'-H); 7.92 (1H, д, <i>J</i> = 3.0, 5-H); 7.12 (1H, д, <i>J</i> = 9.0, 8-H)	87.7

	1					-	1		
2j	C ₁₆ H ₁₂ BrNO ₂	3.81 4.24	24.25 24.20	193	1610	3080	1028	11.05 (1H, c, NOH); 2.37 (3H, c, 4'-CH ₃); 7.6 (1H, c, 3-H); 7.35 (2H, д, <i>J</i> = 9.0, 3'-,5'-H); 7.8 (2H, д, <i>J</i> = 9.0, 2'-,6'-H)	78.0
2k	C ₁₅ H ₁₀ N ₂ O ₅	9.28 9.39		253	1600	3100	1040	12.32 (1H, c, NOH); 9.91 (1H, c, 4'-OH); 7.32 (1H, c, 3-H); 7.78 (2H, д, <i>J</i> = 9.0, 3'-,5'-H); 8.22 (2H, д, <i>J</i> = 9.0, 2'-,6'-H); 8.6 (1H, д, <i>J</i> = 3.0, 5-H); 7.12 (1H, д, <i>J</i> = 9.5, 8-H)	93.3
21	C ₁₆ H ₁₂ N ₂ O ₅	9.01 8.96		268	1604	3000	1020	12.32 (1H, c, NOH); 3.84 (3H, c, 4'-OCH ₃); 7.4 (1H, c, 3-H); 7.08 (2H, π , J = 9.0, 3'-,5'-H); 7.87 (2H, π , J = 9.0, 2'-,6'-H); 8.6 (1H, π , J = 3.0, 5-H); 8.23 (1H, π , π , J = 9.0; 3.0, 7-H); 7.23 (1H, π , J = 9.0, 8-H)	73.8
3a	C ₁₈ H ₁₅ NO ₄	4.21 4.54		290	1620			3.92 (3H, c, 4'-OCH ₃); 4.79 (2H, c, CH ₂); 7.20 (2H, д, <i>J</i> = 8.5, 3'-,5'-H); 8.36 (2H, д, <i>J</i> = 8.5, 2'-,6'-H)	85.2
3b	C ₁₈ H ₁₄ BrNO ₄	3.31 3.61	20.65 20.59	285	1625			3.93 (3H, c, 4'-OCH ₃); 4.78 (2H, c, CH ₂); 7.0 (2H, д, <i>J</i> = 8.5, 3'-,5'-H); 8.37 (2H, д, <i>J</i> = 8.5, 2'-,6'-H); 7.73 (1H, c, 3-H)	89.1
3c	C ₂₀ H ₁₉ NO ₄	4.01 4.15		274	1615			5.13 (1H, д, <i>J</i> = 6.5, NCH); 7.05 (2H, д, <i>J</i> = 8.5, 3'-,5'-H); 8.3 (2H, д, <i>J</i> = 8.5, 2'-,6'-H); 7.68 (1H, с, 3-H)	83.2
3d	C ₂₀ H ₁₈ BrNO ₄	3.25 3.36	<u>19.01</u> 19.20	268	1620			5.1 (1H, д, <i>J</i> = 6.5, NCH); 7.05 (2H, д, <i>J</i> = 8.5, 3'-,5'-H); 8.1 (2H, д, <i>J</i> = 8.5, 2'-,6'-H); 7.3 (1H, с, 3-H)	84.5
3e	C ₂₁ H ₂₀ BrNO ₄	3.61 3.26	18.42 18.57	272	1625			3.93 (3H, c, 4'-OCH ₃); 5.22 (1H, д, <i>J</i> = 6.5, NCH); 7.3 (2H, д, <i>J</i> = 8.5, 3'-,5'-II); 8.4 (2H, д, <i>J</i> = 8.5, 2'-,6'-H); 7.8 (1H, c, 3-H)	88.4
4a	C ₁₈ H ₁₄ BrNO ₄	3.88 3.61	20.35 20.58	145.5	1600		1020	3.95 (3H, c, 4'-OCH ₃); 7.15 (1H, c, 3-H); 2.28 (3H, c, 4-CNOCOCH ₃)	72.5
4b	C ₁₈ H ₁₅ NO ₄	4.48 4.53		150	1610		1025	3.92 (3H, c, 4'-OCH ₃); 7.10 (1H, c, 3-H); 2.25 (3H, c, 4-CNOCOCH ₃)	69.2

Наличие в спектре ЯМР 1 Н полученного продукта сигналов протонов этоксильной группы (4.25, кв, CH_2 ; 1.28, т, CH_3) и группы N– CH_2 (4.87, с) четко свидетельствует в пользу предложенной структуры.

Структура оксима 4'-метилфлавона была однозначно доказана ранее [5] на основании масс-спектров. Мы получили его как из перхлората, так и из тетрафторбората 4-этокси-4'-метилфлавилия (1b) и встречным синтезом из тиоксохромона. Физико-химические характеристики оксима 4d, синтезированного нами разными методами, полностью совпали с литературными данными. Депрессии температуры плавления смешанной пробы не наблюлалось.

С целью изучения химических свойств производных флавонов по карбонильной группе нами были получены ацетильные производные оксимов **2i и 2l**, строение которых доказано данными элементного анализа и спектроскопии. В спектрах ЯМР 1 Н ацетатов оксимов **4a**, **b** присутствует сигнал трех протонов ацетильной группы при 2.28 м. д. Сигнал протона 3-Н (\approx 7 м. д.) подтверждает сохранение хромоновой системы. В ИК спектрах ацетатов **4a**, **b** наблюдаются полосы валентных колебаний карбонильной связи ацетильной группы в области 1750 см $^{-1}$ и полоса связи С=N при 1620 см^{-1} .

Возможность образования в результате реакций оксимов и изоксазолов создала проблему отнесения получающихся соединений. Проанализировав и обобщив данные [3, 6, 7] по взаимодействию хромонов, тиоксохромонов, солей 4-этоксихромилия с гидроксиламином, мы определили критерии, по которым можно сразу же отнести полученные продукты к одному из этих классов соединений (табл. 3).

Таблица 3 Основные отличительные характеристики оксимов флавонов и изоксазолов

Характеристики	Оксимы	Изоксазолы			
Реакция с FeCl₃	Не образуют окрашенный комплекс	А. Не образуют окрашенный комплекс В. Образуют окрашенный комплекс			
Растворимость в щелочах	Не растворяются	Растворяются			
Растворимость в кислотах	Растворяются	Не растворяются			
Превращение во флавон	Превращаются	Не превращаются			
Спектр ЯМР ¹ Н (ДМСО), м. д.	11.0–11.3 (N–OH); 6.8–7.2 (3-H); 7.8–8.2 (5-H); 7.3–7.6 (8-H)	10.2–10.8 (OH), A. 7.3–7.5 (4-H); B. 7.4–7.8 (4-H), 7.1–7.8 (6-H)			
ИК спектр, см $^{-1}$	1630–1650 (C=N); 1615–1645 (C=C); 1120–1125 (C–O–C); 3000–3300 (OH)	1610–1615 (C=N, C=C); 1270–1275 (C–O–N); 3100–3170 (OH)			

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры записаны на приборе Руе Unicam SP-300 в таблетках КВг. Спектры ЯМР 1 Н регистрировались на Фурье-спектрометре Bruker WP-100 (100 МГи), внутренний стандарт ТМС. Контроль за ходом реакции и чистотой синтезированных соединений осуществляли методом ТСХ (Silufol UV-254, бензол—этанол, 9:1, и хлороформ—метанол, 85:15).

Тетрафторбораты 4-этоксифлавилия (1a-i). Раствор 2 ммоль соответствующего ацетофенона и 6 ммоль замещенного бензальдегида в 8.3 мл (40 ммоль) *о*-муравьиного эфира доводят до кипения, после этого приливают по каплям 2.8 ммоль эфирата трехфтористого бора. Реакционную смесь оставляют при комнатной температуре в течение 12—24 ч. Выпавший осадок отфильтровывают, промывают изопропанолом и перекристаллизовывают из CH₃COOH.

Оксимы флавонов (2a-l). Смесь тетрафторбората 4-этоксифлавилия 1, солянокислого гидроксиламина и ацетата натрия в мольном соотношении 1:2:1 кипятят в лед. СН₃СООН в течение 1 ч. По окончании реакции (контроль ТСХ) реакционную смесь выливают на лед. Выпавший осадок отфильтровывают, многократно промывают водой и перекристаллизовывают из изопропанола.

3-Фенил-5-(о-оксифенил)изоксазол. Смесь перхлората флавилия и солянокислого гидроксиламина в молярном соотношении 1:2 кипятят в пиридине 1 ч. После прохождения реакции (хроматографический контроль) реакционную смесь выливают на лед. Выпавший осадок смеси продуктов (оксима и изоксазола) отфильтровывают, промывают многоразово водой и разделяют многократной перекристаллизацией и *i*-PrOH. Выход 3-фенил-5-(*о*-оксифенил)изоксазола 30%. Т. пл. 234—235 °C.

Аминокислотные производные флавонов (3а–е). Смесь 2.6 ммоль тетрафторбората 4-этоксифлавилия 1 и 5 ммоль соответствующей аминокислоты кипятят в лед. С H_3 СООН (контроль ТСХ). Реакционную смесь охлаждают, выпавший осадок отфильтровывают и перекристаллизовывают из С H_3 СООН.

Ацетаты оксимов флавонов (4а,b). Раствор 0.1 ммоль оксима **2i,e** в 6 мл уксусного ангидрида и 1 мл пиридина нагревают в течение $0.5{\text -}1$ ч. Реакционную смесь выливают на лед, выпавший осадок отфильтровывают, тщательно промывают водой и перекристаллизовывают из CH_3COOH .

СПИСОК ЛИТЕРАТУРЫ

- 1. M. Ю. Оганесян, В. В. Гушин, *Хим.-фарм. журн.*, **23**, 1238 (1989).
- 2. W. Baker, J. B. Harborne, W. D. Ollis, J. Chem. Soc., 4, 1303 (1952).
- 3. V. Basinski, S. Jerzmanovska, Rocz. Chim., 48, 989 (1984).
- 4. Г. Н. Дорофеенко, В. В. Межерицкий, Н. А. Лопатина, XTC, 1163 (1972).
- 5. Г. Н. Дорофеенко, В. В. Ткаченко, В. В. Межерицкий, *ХГС*, 465 (1975).
- 6. А. Л. Казаков, В. П. Хиля, В. В. Межерицкий, Ю. Литкеи, *Природные и модифици- рованные изофлавоноиды*, Изд-во Рост. ун-та, Ростов-на-Дону, 1985.
- 7. V. Szabo, J. Borda, L. Losonczi, Acta Chim. Acad. Sci. Hung., 97, 69 (1978).

Киевский национальный университет им. Тараса Шевченко, Киев 01033, Украина

e-mail: ishchenko@mail.univ.kiev.ua e-mail: ishchenko@yahoo-com Поступило в редакцию 01.12.99