С. В. Чапышев, К. Вентруп^а

СВОЙСТВА ИЗОЛИРОВАННОГО В ИНЕРТНЫХ МАТРИЦАХ ТРИПЛЕТНОГО ТЕТРАХЛОРПИРИДИЛ-4-НИТРЕНА

Фотолиз изолированного в инертных матрицах при низких температурах 4-азидотетрахлорпиридина приводит к образованию триплетного тетрахлорпиридил-4-нитрена в качестве единственного продукта фотохимической реакции. В спектре ЭПР данный нитрен дает интенсивный сигнал и характеризуется параметрами расщепления в нулевом поле. УФ спектр нитрена в твердом аргоне содержит серию полос поглощения высокой и средней интенсивности, ИК спектр в твердом аргоне хорошо согласуется с данными неэмпирических и полуэмпирических методов расчета. Под действием света нитрен легко взаимодействует с молекулярным оксидом углерода (II), образуя соответствующий изоцианат. Облучение светом не вызывает образования бициклического азирина, однако инициирует протекание обратной реакции фиксации нитреном содержащегося в твердом аргоне молекулярного азота, приводящей к исходному азиду.

Ключевые слова: азиды, нитрены, пиридины, ИК спектроскопия, матричная изоляция, фотолиз, ЭПР.

Фотохимия ароматических азидов привлекает внимание в связи с широким их использованием в качестве фоторезистов в микроэлектронике и фотоаффинных меток в молекулярной биологии и биохимии [1–3]. С помощью спектроскопии ЭПР было доказано, что механизм фотолитического разложения арилазидов 1 включает промежуточное образование нитренов 2, имеющих, как правило, триплетное основное спиновое состояние [4, 5]. Дальнейшая судьба арилнитренов во многом определяется строением их ароматического кольца, условиями фотолиза и природой окружающей среды. Так, в отсутствие орто-заместителей при нитреновом центре арилнитрены уже при 8 К претерпевают быструю реакцию расширения цикла с образованием азагептатетраенов 3 [6-9]. Последние находятся в равновесии как с исходными нитренами 2. так и изомерными им по строению пиридилкарбенами 4. Оба равновесия настолько сильно смещены в сторону образования азагептатетраенов 3, что зафиксировать наличие соединений 2 и 4 в равновесной смеси долгое время удавалось только с помощью спектроскопии ЭПР [10-12], взаимное же превращение 2 в 3 методом ИК спектроскопии было изучено лишь нелавно [8].

Одним из наиболее спорных вопросов при обсуждении механизма взаимных превращений нитренов 2 в азагептатетраены 3 и азагептатетраенов в пиридилкарбены 4 остается гипотеза об участии бициклических азиринов 5 в качестве интермедиатов данных реакций. Хотя в литературе и появились сообщения о регистрации ИК спектров азиринов **6–9**, образующихся при фотолизе соответствующих азидов [13, 14], приведенное в работах доказательство строения таких соединений, на наш взгляд, выглядит не вполне убедительным.

С практической точки зрения наибольший интерес вызывают исследования арилнитренов, имеющих в ароматическом кольце *орто*заместители при нитреновом центре. Такие нитрены не претерпевают нежелательных внутримолекулярных перегруппировок и взаимодействуют с органическими соединениями исключительно по нитреновому центру [15, 16]. Благодаря высокой стабильности *орто*-дизамещенных арилнитренов в инертных матрицах при низких температурах были изучены УФ [14, 17], ИК [8, 14–16] и ЭПР [4, 5] характеристики ряда представителей соединений этого класса. Однако до настоящего времени никому не удалось получить и исследовать свойства стабилизированных в инертных матрицах гетероциклических аналогов фенилнитрена.

В настоящей работе впервые изучены УФ, ИК и ЭПР характеристики изолированного в инертных матрицах триплетного тетрахлорпиридил-4нитрена, а также исследованы его фотохимические превращения при разных условиях фотолиза и в присутствии СО.

Облучение 4-азидотетрахлорпиридина (10) в 2-метилтетрагидрофуране при 77 К возбуждающим светом с длиной волны $\lambda > 300$ нм в течение 5 мин вызывало окрашивание образца в синий цвет и появление в спектре ЭПР интенсивного сигнала триплетного нитрена 11 с центром при 7045 Гс. Параметры расщепления в нулевом поле нитрена 11 (S = 1, g = 2.003) составили: |D/hc| = 1.040, |E/hc| = 0.000 см⁻¹. Сравнивая величины параметров |D/hc| для соединения 11 и исследованных ранее пиридил-2- (1.108–1.051 см⁻¹ [5, 9]) и пиридил-3-нитренов (1.005 см⁻¹ [4, 5]), можно прийти к заключению, что по степени делокализации π -неспаренного электрона в ароматической системе нитрен 11 занимает промежуточное положение между пиридил-2- и пиридил-3-нитренами. Отсутствие в спектре ЭПР продуктов фотолиза азида 10 каких-либо сигналов в области 4500–6000 Гс свидетельствовало о том, что образующийся нитрен 11 не подвержен внутримолекулярной перегруппировке с образованием гетарилкарбенов типа 4 [9].

В отличие от спектроскопии ЭПР метод ИК спектроскопии дает возможность следить за фотохимическими превращениями соединений, не обладающих парамагнитными свойствами. ИК спектр изолированного в твердом аргоне азида **10** приведен на рис. 1, *a*, частоты полос поглощения – в табл. 1.

Рис. 1. ИК спектры в твердом аргоне при 7 К азида **10** (*a*), нитрена **11** (*b*); разностный ИК спектр, полученный путем вычитания спектра азида **10** из спектра нитрена **11** (*c*)

ИК спектр азида 10

Таблица 1

Частота, v (см ⁻¹)	Интен- сивность, <i>I</i> (%)	Частота, v (см ⁻¹)	Интен- сивность, <i>I</i> (%)	Частота, v (см ⁻¹)	Интен- сивность, <i>I</i> (%)
2139	0.26	1351	0.06	1084	0.02
2130	0.31	1332	1.00	905	0.08
2082	0.03	1233	0.03	888	0.09
1528	0.41	1216	0.03	750	0.11
1513	0.16	1190	0.05	732	0.07
1412	0.50	1183	0.13	727	0.04
1356	0.06	1100	0.17	648	0.01

Наряду с характеристическими сигналами азидной группы в области 2143–2082 и при 1332 см⁻¹ спектр азида содержит интенсивные полосы поглощения пиридинового кольца при 1528, 1513 и 1412 см⁻¹, а также

слабые полосы при 750, 732 и 727 см⁻¹, относящиеся к валентным колебаниям связей С–СІ. Облучение матрицы возбуждающим светом ($\lambda > 290$ нм) вызывало ее быстрое окрашивание в интенсивно синий цвет. При этом в ИК спектре наблюдалось постепенное понижение интенсивности полос поглощения исходного азида и появление группы новых полос. Полное разложение азида достигалось через 2 ч непрерывного облучения. На протяжении всего этого времени в спектре не наблюдалось появление каких-либо новых полос в области 2000–1600 см⁻¹, которые можно было бы отнести к промежуточно образующимся соединениям 12 и 14. ИК спектр конечных продуктов фотолиза азида 10 приведен на рис. 1, *b* и в виде разностного спектра на рис. 1, *c*. Сравнивая эти спектры, нетрудно заметить, что каждый из них содержит одни и те же новые полосы поглощения при 1433, 1421, 1285, 1246, 1240, 1162, 1158, 974, 721 и 691 см⁻¹.

Авторы [18] единственной работы по симуляции ИК спектров триплетного и синглетного фенилнитрена с помощью неэмпирических методов отмечали, что расчеты дают примерно на 10% завышенные значения частот поглощения триплетного нитрена по сравнению с экспериментом. Расчеты с использованием более высоких базисов позволяли достигать лучшего соответствия теоретически рассчитанной и экспериментально измеренной разницы в энергиях триплетного и синглетного фенилнитренов, которая и служила критерием точности расчетов [18–20]. С повышением базиса расчетов все более уточнялась и геометрия молекулы триплетного фенилнитрена, прежде всего длина связи С–N (табл. 2).

Таблица 2

Геометрические параметры триплетного фенилнитрена по данным расчетов методами *ab initio* в базисах DZ SCF, MCSCF(8,8)/3-21G*, DZ+d CISD, CASSCF(8,8)/6-31G* и полуэмпирического метода UHF/PM3-SCF

Параметр	DZ SCF [18]	3-21G* [19]	DZ+d CISD [18]	6-31G* [20]	PM3 SCF
C ₍₁₎ –N	1.431	1.402	1.388	1.338	1.326
$C_{(1)} - C_{(2)}$	1.398	1.404	1.403	1.425	1.434
$C_{(2)} - C_{(3)}$	1.393	1.391	1.390	1.386	1.387
$C_{(3)} - C_{(4)}$	1.396	1.396	1.396	1.404	1.402
1222	ļ.	ļ	1	1	ļ.

С целью разработки более простого метода идентификации триплетных арилнитренов на основе квантово-химических методов нами была рассчитана геометрия этой же молекулы с помощью полуэмпирического метода UHF/PM3-SCF. Из данных табл. 2 видно, что рассчитанные этим методом геометрические параметры для молекулы триплетного фенилнитрена практически совпадают с результатами расчетов *ab initio* в базисе CASSCF(8,8)/6-31G*. Исходя из этого можно заключить, что метод UHF/PM3-SCF вполне адекватно описывает свойства арилнитренов и при необходимости может с успехом заменять более трудоемкие неэмпирические расчеты больших органических молекул.

В табл. 3 приведены частоты полос поглощения продукта фотолиза азида **10** и теоретически рассчитанный методами UHF/PM3-SCF и *ab initio* в базисе UB3LYP/6-31G* ИК спектр триплетного нитрена **11**. Близость всех трех спектров дает основание утверждать, что полученное при фотолизе азида **10** новое соединение является триплетным пиридилнитреном **11**.

a	б	Л	И	ц	а	3
---	---	---	---	---	---	---

Эксперимент		UB3LYP/6-31G*		UHF/PM3-SCF	
частота, v (см ⁻¹)	интенсивность, I (%)	частота, $\nu (cm^{-1})^*$	интенсивность, I (%)	частота, $\nu (cm^{-1})^{*2}$	интенсивность, I (%)
1433	0.09	1464	0.03	1468	0.03
1421	0.32	1435	0.32	1442	0.16
1361	0.09	_	_	1377	0.01
1285	1.00	1278	1.00	1281	1.00
1247	0.58	1238	0.42	1260	0.22
1240	0.33	_	_	_	_
1162	0.76	1206	0.42	1198	0.43
1158	0.36	_	-	_	_
_	_	1082	0.04	1080	0.08
974	0.29	949	0.28	929	0.53
892	0.01	870	0.01	886	0.00
721	0.05	708	0.01	694	0.03
691	0.39	670	0.31	610	0.51

Экспериментальный и рассчитанный методами UB3LYP/6-31G* и UHF/PM3-SCF ИК спектр нитрена 11

* Поправочный коэффициент 0.977

*² Поправочный коэффициент 0.94.

Поскольку расчеты давали завышенные значения частот поглощения нитрена, нами вводились поправочные коэффициенты – 0.977 для метода UB3LYP/6-31G* и 0.94 для метода UHF/PM3-SCF. Значения поправочных коэффициентов находили путем деления частоты наиболее интенсивной полосы поглощения в экспериментально полученном спектре при 1285 см⁻¹ частоту наиболее интенсивного поглощения в теоретически на рассчитанном спектре. Наличие в экспериментальном спектре двух пар интенсивных полос при 1247, 1240 и 1162, 1158 см⁻¹ и только по одной полосе при этих же частотах в спектрах симуляции позволяет предположить, что раздвоение полос при 1240 и 1162 CM^{-1} в экспериментальном спектре, по-видимому, обусловлено эффектами упаковки молекул нитрена в твердом аргоне, а не особенностями строения самого нитрена. Нагревание матрицы до 35 К не приводило к каким-либо заметным изменениям в ИК спектре нитрена 11, за исключением некоторого изменения соотношения интенсивности полос при 1247, 1240 и 1162, 1158 см⁻¹. Важно отметить, что при последующем понижении температуры матрицы до 7 К прежнее соотношение интенсивностей названных полос уже не восстанавливалось, подтверждая тем самым вывод о том, что их раздвоение в ИК спектре связано с эффектами матрицы. Облучение нитрена **11** возбуждающим светом ($\lambda > 290$ нм. 10 ч) не вызывало каких-либо изменений в ИК спектре, что свидетельствовало о довольно высокой фотостабильности данного нитрена к действию такого света. В ИК спектрах азида 10 и нитрена 11 обращает на себя внимание значительный сдвиг в область низких частот полос поглощения пиридинового кольца, вызванный заменой азидной группы на нитреновый центр (с 1528 и 1513 см⁻¹ для азида **10** до 1433 и 1421 см⁻¹ для нитрена **11**). Этот эффект указывает на то, что с появлением нитренового заместителя пиридиновое кольцо становится менее ароматическим вследствие его сильного сопряжения с нитреновым центром. К такому же выводу можно прийти в результате анализа других полос поглощения в ИК спектрах пиридинов 10 и 11. Так, ранее было показано, что частоты колебаний связи С-N в ИК спектрах анилинов и замещенных фенилазидов лежат в области 1100-1200 см⁻¹, тогда как триплетного фенилнитрена – при 1287 см⁻¹[18]. По аналогии с этими данными полосы при 1183 и 1285 см⁻¹ в ИК спектре соответственно азида 10 и нитрена 11 можно отнести к колебаниям связи С-N. Сдвиг на 102 см⁻¹ в область высоких частот колебаний связи С-N нитрена подтверждает преимущественно двойной характер данной связи. Расчеты методом РМЗ показывают, что длина связи С–N в молекулах **10** и **11** соответственно 1.420 и 1.322 Å.

На рис. 2 проведен У Φ спектр изолированного в твердом аргоне исходного азида **10** и образующегося при его фотолизе триплетного нитрена **11**.

Рис. 2. УФ спектры в твердом аргоне при 12 К азида 10 (a) и нитрена 11 (b)

Помимо хорошо различимых полос поглощения с максимумами при 223, 278, 287, 298, 320 и 322 нм УФ спектр нитрена содержит две полосы очень низкой интенсивности с максимумами при 383 и 400 нм. Наиболее 1224

интенсивная полоса при 223 нм имеет плечо в области 240–250 нм. Сравнивая УФ спектры исходного азида и нитрена **11**, нетрудно заметить, что основное различие в спектральных характеристиках этих соединений связано с отсутствием в спектре нитрена полосы поглощения с максимумом при 261 нм, характерной для арилазидов [2], и появлением новой полосы средней интенсивности с максимумом при 320 нм, типичной для большинства арилнитренов [17]. В целом УФ спектр нитрена **11** очень близок спектру 2,6-дифторфенилнитрена, который также имеет три области поглощения с максимумами при 236, 284 и 312 нм [14].

С целью изучения химических свойств нитрена **11** нами была исследована реакция этого соединения с оксидом углерода (II). Облучение пентафторфенилазида в аргоновой матрице, содержащей 12% СО, возбуждающим светом с длиной волны >300 нм приводит к образованию пентафторфенилнитрена, который под действием света с длиной волны >330 нм взаимодействует с СО, образуя соответствующий изоцианат [15]. При этом вследствие обратимости фотохимической реакции конечный ИК спектр продуктов фотолиза одновременно содержал характеристические сигналы как получаемого изоцианата, так и исходного нитрена.

ИК спектры азида **10** в твердом аргоне, содержащем 13% CO, а также продуктов его фотохимического разложения через 1.5 и 3 ч непрерывного облучения возбуждающим светом с длиной волны >290 нм приведены на рис. 3, a-c.

Рис. 3. ИК спектры в твердом аргоне, содержащем 13% CO, азида 10 (а), продуктов фотолиза азида 10 в твердом аргоне, содержащем 13% CO, через 1.5 ч непрерывного облучения возбуждающим светом с λ >290 нм (b) и ИК спектр продуктов фотолиза азида 10 в твердом аргоне, содержащем 13% CO, через 3 ч непрерывного облучения возбуждающим светом с λ >290 нм (c)

Интенсивное поглощение при 2196, 2143, 2140, 2092 и 2050 см⁻¹ во всех трех спектрах относится к колебаниям тройной связи СО [21], которое накладывается на поглощение азидной группы пиридина **10** в области 2143–2130 см⁻¹. Полученный через 1.5 ч непрерывного облучения ИК

1225

спектр (рис. 3, b) содержит хорошо различимые сигналы исходного азида 10 и образующегося при его фотолизе нитрена 11. Вместе с тем в спектре наблюдается новая и довольно интенсивная полоса при 2263 см⁻¹, которая указывает на присутствие изоцианата 13 среди продуктов фотолиза. Так, группа N=C=O ближайшего аналога 13, тетрахлорпиридил-2-изоцианата, дает поглощение при 2250 см⁻¹ [22], а производных бифенила в твердом аргоне – при 2264 см⁻¹ [21]. Вычитание из спектра характеристических сигналов пиридинов 10 и 11 позволило выявить ряд других частот поглощения изоцианата 13, а именно – при 1558, 1523, 1420, 1371, 1364, 1334, 1321, 1235, 1167, 1113, 1097, 921, 890, 739 и 718 см⁻¹, которые оказались довольно близки к частотам колебаний азида 10 (табл. 1). Учитывая наличие в УФ спектре нитрена 11 целой серии полос поглощения в области свыше 290 нм (см. рис. 2), взаимодействие данного нитрена с СО под действием света с длиной волны >290 нм представляется вполне закономерным процессом. Новым по сравнению с результатом изученной ранее фотохимической реакции СО с пентафторфенилнитреном можно считать довольно высокую фотостабильность изоцианата 13 к сравнительно жесткому излучению и, как следствие, образование данного соединения уже на ранней стадии фотолиза азида 10. Более длительное облучение азида 10 (3 ч, рис. 3, с) приводило к его полному разложению и образованию пиридинов 13 и 11 в качестве главного и минорного продуктов соответственно. При этом одновременное присутствие среди продуктов фотолиза изоцианата 13 и нитрена 11 свидетельствовало о равновесном характере данной реакции.

Одним из наиболее спорных вопросов при обсуждении механизма фотолитического разложения арилазидов остается гипотеза об участии бициклических азиринов типа 5 в качестве интермедиатов данных Показано, что длительное облучение 2.6-дифторреакций. И пентафторфенилнитрена в твердом аргоне возбуждающим светом с длиной волны 444 нм приводит к образованию новых соединений, являющихся, по мнению авторов, азиринами 8 и 9 [14]. Под действием коротковолнового света (λ = 336 нм) эти соединения претерпевают обратную реакцию, образуя исходные нитрены. Авторы высказали предположение, что все предпринятые до них попытки зарегистрировать ИК спектры бициклических азиринов были безуспешны вследствие облучения нитренов светом с $\lambda \square < \square 444$ нм.

С целью выяснения возможности образования азирина 14 нами было изучено действие света с $\lambda = 444$ нм на нитрен 11. Близкое соответствие УФ спектров данного нитрена и изученного ранее 2,6-дифторфенилнитрена [14] давало основание полагать, что фотохимические превращения этих соединений должны быть сходны. На рис. 4 приведен ИК спектр продуктов фотолиза нитрена 11, полученный через 12 ч непрерывного облучения.

Внимательное изучение этого спектра, а также разностного спектра, полученного из спектров нитрена до и после фотолиза, не обнаружило присутствия полос поглощения какого-либо нового соединения. Однако после облучения интенсивность характеристических сигналов нитрена несколько понизилась (отрицательное поглощение в разностном спектре

Рис. 4. ИК спектр продуктов фотолиза нитрена **11** в твердом аргоне при 7 К через 12 ч непрерывного облучения светом с $\lambda = 444$ нм

при 1285, 1246, 1241, 1165 и 1153 см⁻¹) и в спектре появились очень слабые полосы поглощения азида **10** при 2143, 1412, 1332 и 1100 см⁻¹. Такие же превращения ранее наблюдались при действии света с λ>450 нм на фенилнитрен, которым авторы не придали особого значения [8]. Между тем, учитывая известную способность метилкарбена фотохимически взаимодействовать с молекулярным азотом с образованием диазометана [23], резонно предположить, что регенерация азида 10 при облучении нитрена 11 светом с λ = 444 нм вызвана обратной фотохимической реакцией нитрена с молекулярным азотом, присутствующим в аргоновой матрице после разложения азида светом с $\lambda > 290$ нм. В целом фотохимическую реакцию нитрена 11 с молекулярным азотом можно рассматривать как близкую аналогию реакции этого же нитрена с СО. Регистрация УФ спектров арилнитренов в твердом аргоне на поверхности ВаF₂ или сапфира [14] не позволяет наблюдать наиболее длинноволновую полосу поглощения таких соединений, отвечающую за их фиолетовый цвет и находящуюся в области 500-550 нм [17, 18]. Однако именно эта полоса поглощения соответствует энергии возбуждения триплетного синглетный нитрен [18] и, очевидно, отвечает нитрена в 32 фотохимическую фиксацию нитренами молекулярного азота и СО.

Отсутствие каких-либо новых продуктов при действии на нитрен 11 света с $\lambda = 444$ нм побудило нас повторно исследовать фотохимическое превращение 2,6-дифторфенилнитрена в азирин 9. На рис. 5 показан разностный спектр, нижняя часть которого соответствует ИК спектру исходного азида 15, а верхняя – ИК спектру нитрена 16, полученного при облучении азида 15 светом с $\lambda > 290$ нм в течение 3 ч.

Зарегистрированный нами ИК спектр нитрена 16 полностью соответствует литературным данным [14].

Рис. 5. Разностный ИК спектр, полученный путем вычитания спектра азида **15** из спектра нитрена **16** (Ar, 7 K)

На рис. 6, *с* представлен ИК спектр того же нитрена, записанный после 54 ч его непрерывного облучения светом с $\lambda = 444$ нм. Изучение этого спектра, а также разностного ИК спектра, полученного из спектров нитрена 16 до и после фотолиза, не выявило каких-либо изменений, указывающих на образование азирина 9 при фотолизе данного нитрена.

Рис. 6. ИК спектры в твердом аргоне при 7 К азида 15 (*a*), нитрена 16 (*b*) и продуктов фотолиза нитрена 16 в твердом аргоне при 7 К через 54 ч непрерывного облучения светом с λ = 444 нм (*c*)

Главной особенностью ИК спектра продуктов фотолиза нитрена **16** (рис. 6, *c*) по сравнению со спектрами исходных азида **15** (рис. 6, *a*) и нитрена **16** (рис. 6, *b*) является высокая интенсивность сигналов 1228

молекулярной воды в области 3800-3000 и 1700-1600 см⁻¹, вызванная повышением содержания воды в матрице в результате длительного проведения эксперимента. Аналогичное повышение интенсивности сигналов молекулярной воды наблюдалось и в ИК спектре продуктов фотолиза нитрена 11 (рис. 4). При анализе спектра продуктов фотолиза нитрена 16 (рис. 6, с) обращает на себя особое внимание очень интенсивная полоса поглощения воды при 1608 см⁻¹. Именно полоса при 1609.8 см⁻¹ ранее указывалась как самая интенсивная в ИК спектре азирина 9 [14]. На наш взгляд, отнесение данной полосы к сигналу какоголибо нового соединения, образующегося при фотолизе нитрена 16, представляется довольно спорным. Отметим, что целый ряд других сигналов, а именно при 1412, 1318, 1259 и 1180 см⁻¹, ранее приписанных азирину 9, присутствовал уже в виде очень слабых полос поглощения в ИК спектре исходного нитрена 16 (рис. 5) и последующий фотолиз данного нитрена светом с λ = 444 нм практически не изменял их интенсивность. Очевидно, что эти сигналы также не могут относиться к какому-либо продукту фотохимического превращения данного нитрена. Опираясь на все эти данные, мы полагаем, что нитрен 16, как и его гетероциклический аналог 11, не склонен под действием света с λ = 444 нм претерпевать внутримолекулярную циклизацию с образованием бициклических азиринов, однако как и в случае фотолиза нитрена 11. длительное облучение нитрена 16 светом с $\lambda = 444$ нм вызывало некоторое понижение интенсивности характеристических сигналов нитрена и появление очень слабых полос поглощения исходного азида 15 при 2123, 1503, 1483, 1331, 1023 и 775 см⁻¹.

Проведенное исследование показало, что единственным направлением фотохимического разложения 4-азидотетрахлорпиридина в инертных матрицах при низких температурах является образование триплетного тетрахлорпиридил-4-нитрена, УФ, ИК и ЭПР характеристики которого близки аналогичным характеристикам различных производных триплетного фенилнитрена. Под действием света с $\lambda > 290$ нм данный нитрен легко взаимодействует с СО, образуя соответствующий изоцианат. Хотя полученный нитрен устойчив к воздействию коротковолнового облучения, свет с $\lambda = 444$ нм инициирует его фотохимическую реакцию с молекулярным азотом, приводящую к регенерации исходного азида.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

4-Азидотетрахлорпиридин и 2,6-дифторфенилазид синтезировали известными методом [24, 25].

Спектр ЭПР регистрировали на приборе Bruker ESP-300 с рабочей областью от 100 до 9900 Гс. Частоту микроволнового излучения определяли с помощью счетчика Hewlett-Packard 5350B. Параметры расщепления в нулевом поле рассчитывали известным методом [26].

Навеску, содержащую 2 мг азида, растворяли в 0.5 мл свежеперегнанного над LiAlH₄ 2-метилтетрагидрофурана и помещали в стандартную кварцевую ампулу, предназначенную для съемки спектров ЭПР. Раствор дегазировали, трижды проводя цикл замораживания при 77 К, откачивания воздуха в высоком вакууме (5 × 10⁻⁶ атм) и оттаивания. Ампулу с дегазированным раствором замораживали при 77 К, запаивали и помещали в наполненный жидким азотом дюар Suprasil II, входящий в состав спектроскопической ячейки. Источником света служила ксеноновая лампа высокого давления мощностью 1000 Вт, снабженная 150 мм водным фильтром. Образец размещали на расстоянии 30 см от источника излучения и облучали в течение 5 мин светом с $\lambda > 300$ нм, используя пирексфильтр.

ИК спектры регистрировали на приборе Perkin-Elmer FTIR 2000 с разрешением 1 см⁻¹. Для приготовления матриц применялся аргон, чистотой 99.999%, оксид углерода (II), чистотой 99.999%, и криостат Leybold-Heraus ROK 10-300 с циркулирующим жидким Не. Матрицы готовили путем нанесения аргона (или смеси Ar/CO, 87:13, %) и паров азида (мольное соотношение азид/Ar, 1:1000, скорость нанесения 0.1 ммоль/мин) на поверхность охлажденного до 25 К и помещенного в вакуумную камеру (5×10^{-6} атм) спектроскопического окна, изготовленного из CsI. Регистрацию ИК спектров проводили при температуре матрицы 7 К. При облучении матриц использовались ртутно-ксеноновая лампа высокого давления Напоvia 1000 W, снабженная 150 мм водным фильтром, а также монохроматор или набор фильтров. Обработку спектров проводили с помощью программы Spectrum for Windows, Version 1.30, 1996, The Perkin-Elmer Corporation.

УФ спектры регистрировали на приборе Varian Cary 1. Матрицы готовились аналогично описанной выше методике, с той лишь разницей, что содержание в них исходного азида было примерно в 10 раз меньше. В качестве спектроскопического окна использовался диск, изготовленный из BaF₂, что позволяло записывать УФ спектры в области от 200 до 450 нм. При регистрации спектров температуру матриц понижали до 12 К.

Частоты колебаний в ИК спектре нитрена рассчитывали с помощью полуэмпирического метода UHF/PM3-SCF, входящего в пакет программ MOPAC 7.0 [27], и неэмпирического метода UB3LYP/6-31G*, входящего в пакет программ GAUSSIAN 94 [28]. Расчет частот колебаний проводили после полной оптимизации геометрии молекулы триплетного (S = 1) нитрена.

Авторы выражают признательность профессору П. М. Лати (Prof. P. M. Lahti) и доктору Р. Волтону (Dr. R. Walton) за оказанную помощь при регистрации спектра ЭПР нитрена **11**.

СПИСОК ЛИТЕРАТУРЫ

- 1. Azides and Nitrenes (Reactivity and Utility), Ed. E. F. V. Scriven, Acad. Press, N. Y., 1984, Ch. 9, 10.
- 2. Н. П. Грицан, Е. А. Притчина, *Успехи химии*, **61**, 910 (1992).
- 3. G. B. Schuster, M. S. Platz, Adv. Photochem., 17, 69 (1992).
- 4. E. Wasserman, Prog. Phys. Org. Chem., 8, 319 (1971).
- 5. J. Beckes, in Houben-Weyl *Metoden der Organischen Chemie*, Georg Thieme Verlag, Stuttgart, 1992, **E16C**, 67.
- 6. O. L. Chapman, J. P. LeRoux, J. Am. Chem. Soc., 100, 282 (1978).

- 7. T. Donnelly, I. R. Dunkin, D. S. D. Norwood, A. Prentice, C. J. Shields, P. C. P. Thomson, *J. Chem. Soc. Perkin Trans.* 2, 307 (1985).
- 8. J. C. Hayes, R. S. Sheridan, J. Am. Chem. Soc., 112, 5879 (1990).
- 9. R. A. Evans, Ming Wah Wong, C. Wentrup, J. Am. Chem. Soc., 118, 4009 (1996).
- 10. C. Wentrup, Top. Curr. Chem., 62, 175 (1976).
- 11. C. Wentrup, Adv. Heterocycl. Chem., 28, 233 (1981).
- 12. C. Wentrup, A. Reisenger, G. G. Qiao, P. Visser, Pure Appl. Chem., 69, 847 (1997).
- 13. I. R. Dunkin, P. C. P. Thomson, J. Chem. Soc. Chem. Commun., 499 (1980).
- 14. J. Morawietz, W. Sander, J. Org. Chem., 61, 4351 (1996).
- 15. I. R. Dunkin, P. C. P. Thomson, J. Chem. Soc. Chem. Commun., 1192 (1982).
- 16. I. R. Dunkin, T. Donnelly, T. S. Lockhart, *Tetrah. Lett.*, **26**, 359 (1985).
- 17. E. Leyva, M. S. Platz, G. Persy, J. Wirz, J. Am. Chem. Soc., 108, 3783 (1986).
- 18. S.-J. Kim, T. P. Hamilton, H. F. Schaefer III, J. Am. Chem. Soc., 114, 5349 (1992).
- 19. D. A. Hrovat, E. E. Waali, W. T. Borden, J. Am. Chem. Soc., 114, 8698 (1992).
- 20. W. L. Karney, W. T. Borden, J. Am. Chem. Soc., 119, 1378 (1997).
- 21. T. Ohana, M. Kaise, A. Yabe, Chem. Lett., 1397 (1992).
- 22. U. von Gizycki, Angew. Chem., 83, 406 (1971).
- 23. C. B. Moore, G. C. Pimentel, J. Chem. Phys., 41, 3504 (1964).
- 24. I. R. Bernard, G. E. Chivers, R. J. W. Cremlyn, K. G. Mootoosamy, *Austral. J. Chem.*, 27, 171 (1974).
- 25. K. Kanakarajan, K. Haider, A. W. Czarnik, Synthesis, 566 (1988).
- 26. J. H. Hall, J. M. Farger, M. R. Gisler, J. Am. Chem. Soc., 100, 2029 (1978).
- 27. J. J. P. Stewart, J. Comput. Chem., 10, 221 (1989).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, *Gaussian 94*, Revision D. 1, Gaussian, Inc., Pittsburgh PA, USA, 1995.

Институт проблем химической физики РАН, Черноголовка 142432, Московской обл. e-mail: chap@icp.ac.ru Поступило в редакцию 15.11.99

^aDepartment of Chemistry, The University of Queensland, Brisbane, Queensland 4072, Australia