С. Г. Кривоколыско, В. Д. Дяченко, Э. Б. Русанов^а, В. П. Литвинов⁶

СИНТЕЗ И АЛКИЛИРОВАНИЕ 6-ГИДРОКСИ-5-(2-ТЕНОИЛ)-6-ТРИФТОРМЕТИЛ-4-(2-ХЛОРФЕНИЛ)-3-ЦИАНОПИПЕРИДИН-2-ТИОНА

Действием 2-теноилтрифторацетона на 2-хлорфенилметиленцианотиоацетамид или смесь 2-хлорбензальдегида и цианотиоацетамида в присутствии N-метилморфолина получен 6-гидрокси-5-(2-теноил)-6-трифторметил-4-(2-хлорфенил)-3-цианопиперидин-2-тион, использованный в синтезе 2-аллилтио-6-гидрокси-5-(2-теноил)-6-трифторметил-4-(2-хлорфенил)-3-циано-1,4,5,6-тетрагидропиридина. Молекулярная и кристаллическая структура пиперидинтиона установлена рентгеноструктурным исследованием.

Ключевые слова: пиперидинтион, тетрагидропиридин, 2-теноилтрифторацетон, 2-хлорбензальдегид, 2-хлорфенилметиленцианотиоацетамид, цианотиоацетамид, алкилирование, рентгеноструктурное исследование.

В продолжение поиска удобных методов получения малоизученных 3цианопиперидин-2-тионов [1] с учетом высокой физиологической активности фторсодержащих гетероциклических соединений [2] нами на основе 2-хлорфенилметиленцианотиоацетамида и 2-теноилтрифторацетона в присутствии N-метилморфолина осуществлен региоселективный синтез 6-гидрокси-5-(2-теноил)-6-трифторметил-4-(2-хлорфенил)-3-цианопиперидин-2-тиона (1) в виде устойчивого этанольного сольвата. Последний получен также независимым способом при каскадном взаимодействии 2-хлорбензальдегида, цианотиоацетамида и 2-теноилтрифторацетона.

1076

В спектре ЯМР ¹Н соединения **1** сигналы протонов 3-Н, 4-Н и 5-Н представлены мультиплетом в области 4.8 м. д., что затрудняет установление его строения. В связи с этим особенности молекулярной структуры тиона **1** изучены рентгеноструктурным методом.

Общий вид молекулы 1 показан на рис. 1, основные геометрические параметры приведены в табл. 1 (нумерация атомов не совпадает с использованной согласно номенклатуре ИЮПАК нумерацией в названии и приведенном спектре ЯМР ¹Н). Центральный пиперидиновый цикл заметно неплоский – отклонения атомов от среднеквадратичной плоскости достигают 0.33 Å. Рассчитанные для него модифицированные параметры

Рис. 1. Общий вид молекулы 1 с нумерацией атомов

Таблица 1

Основные длины связей (d) и валентные углы (ω) в молекуле соединения 1

Связь	<i>d</i> , Å	Угол	ω, град.
Cl ₍₁₎ –C ₍₈₎	1.748(7)	$C_{(1)} - N_{(1)} - C_{(5)}$	128.5(5)
$S_{(1)} - C_{(1)}$	1.632(6)	$N_{(1)}-C_{(1)}-C_{(2)}$	115.5(5)
O(1)-C(5)	1.381(6)	$N_{(1)}-C_{(1)}-S_{(1)}$	122.6(4)
$O_{(2)} - C_{(13)}$	1.213(6)	$C_{(2)}-C_{(1)}-S_{(1)}$	121.8(4)
$N_{(1)}-C_{(1)}$	1.334(6)	$C_{(6)}-C_{(2)}-C_{(1)}$	110.4(4)
N(1)-C(5)	1.459(6)	$C_{(6)}-C_{(2)}-C_{(3)}$	109.8(4)
$C_{(1)} - C_{(2)}$	1.511(7)	$C_{(1)}-C_{(2)}-C_{(3)}$	114.6(4)
$C_{(2)} - C_{(6)}$	1.469(8)	$C_{(7} - C_{(3)} - C_{(2)}$	110.9(4)
$C_{(2)} - C_{(3)}$	1.552(6)	$C_{(4)} - C_{(3)} - C_{(2)}$	106.5(4)
$C_{(3)} - C_{(7)}$	1.513(8)	$C_{(13)} - C_{(4)} - C_{(3)}$	108.0(4)
$C_{(3)} - C_{(4)}$	1.542(7)	$C_{(13)} - C_{(4)} - C_{(5)}$	112.5(4)
$C_{(4)}-C_{(13)}$	1.538(7)	$C_{(3)}-C_{(4)}-C_{(5)}$	109.0(4)
$C_{(4)} - C_{(5)}$	1.545(7)	$C_{(3)}-C_{(4)}-C_{(5)}$	109.0(4)
$C_{(5)} - C_{(18)}$	1.535(8)	$O_{(1)} - C_{(5} - N_{(1)}$	110.4(5)
$C_{(7)}-C_{(3)}-C_{(4)}$	111.9(4)	$O_{(1)} - C_{(5)} - C_{(18)}$	104.2(5)
		$N_{(1)} - C_{(5)} - C_{(18)}$	107.0(5)
		O(1)-C(5)-C(4)	116.1(5)
		N(1)-C(5)-C(4)	109.5(4)
		$C_{(18)} - C_{(5)} - C_{(4)}$	109.2(5)

Кремера–Попла [3] (S = 0.91, $\theta = 19.9$, $\psi = 29.7$) свидетельствуют о том, что этот гетероцикл имеет конформацию "кресла", несколько искаженного в сторону "полуванны". При этом атомы С(1)-С(2)-С(4)-С(5) копланарны в пределах 0.08 Å, а "уголки" N₍₁₎-C₍₁₎-C₍₅₎ и C₍₂₎-C₍₃₎-C₍₄₎ образуют с этой плоскостью двугранные углы 156.5 и 127.8°. Торсионные углы в пиперидиновом цикле: N₍₁₎-C₍₁₎-C₍₂₎-C₍₃₎ -29.7(7), $C_{(1)}-C_{(2)}-C_{(3)}-C_{(4)} \quad 52.5(6), \quad C_{(2)}-C_{(3)}-C_{(4)}-C_{(5)} \quad -63.5(5), \quad C_{(3)}-C_{(4)}-C_{(5)}-N_{(1)} \quad -63.5(5), \quad C_{(4)}-C_{(4)}-C_{(5)}-N_{(1)} \quad -63.5(5), \quad C_{(4)}-C_{(4)}-C_{(5)}-N_{(4)} \quad -63.5(5), \quad C_{(4)}-C_{$ 51.7(6), $C_{(4)}-C_{(5)}-N_{(1)}-C_{(1)}$ –30.8(8), $C_{(5)}-N_{(1)}-C_{(1)}-C_{(2)}$ 19.3(8)°. Торсионные углы H₍₂₎-C₍₂₎-C₍₃₎-H₍₃₎ 176.5, H₍₃₎-C₍₃₎-C₍₄₎-H₍₄₎ 173.3, H₍₄₎-C₍₄₎-C₍₅₎-O₍₁₎ 167.4, С₍₆₎-С₍₂₎-С₍₃₎-С₍₇₎ -60.7, С₍₇₎-С₍₃₎-С₍₄₎-С₍₁₃₎ 52.7° свидетельствуют о том, что протоны пиперидинового цикла и группа ОН занимают аксиальное положение, а группы CN, 2-хлорфенил, теноил и CF₃ – экваториальное. Сопряжение между неподеленной электронной парой атома N₍₁₎ и π -системой двойной связи $C_{(1)}=S_{(1)}$ приводит не только к значительному (до 1.334(6) Å) укорочению связи N₍₁₎-C₍₁₎ по сравнению с интервалом 1.43–1.45 Å, характерным для одинарных связей типа $N(sp^2)-C(sp^2)$ [4, 5], и уплощению пирамиды атома N₍₁₎ (сумма валентных углов при этом атоме составляет 359.8°), но также к увеличению валентного угла C₍₁₎-N₍₁₎-C₍₅₎ до 128.5° и уплощению самого гетероцикла (в незамещенном пиперидине валентный угол C-N-C и торсионные углы C-N-C-C составляют 109.8 и 63.6° соответственно [6]). Бензольное и тиофеновое кольца в силу стерических условий практически ортогональны среднеквадратичной плоскости пиперидинового цикла: соответствующие двугранные углы составляют 84.1 и 87.2°.

В кристалле молекулы соединения **1** посредством водородных связей с сольватными молекулами этанола $O_{(1)}-H_{(1)}\cdots O_{(3)}$ ($O_{(1)}\cdots O_{(3)}$ 2.954(7) Å) и $O_{(3)}-H_{(3)}\cdots O_{(1)}$ ($O_{(1)}\cdots O_{(3)}$ 2.679(7) Å) объединены в центросимметричные димеры (рис. 2).

Рис. 2. Кристаллическая упаковка соединения 1

Алкилирование тиона 1 аллилбромидом в этаноле в присутствии КОН протекает региоселективно с образованием сульфида 2. В его спектре ЯМР ¹Н сигналы протонов 4-Н и 5-Н проявляются в виде уширенных дублетов в областях 4.84 и 4.30 м. д. соответственно с КССВ ${}^{3}J$ = 12.1 Гц, что свидетельствует о их *транс*-диаксиальном положении. Сигналы указанных протонов представлены минорным уширенным пиком в области 4.42 м. д., который является результатом наложения соответствующих уширенных дублетов (соотношение основных и минорных сигналов 4:1) и принадлежит другому конформеру соединения 2. Для изоструктурных аналогов пиридинов 2 данное явление объяснено с помощью рентгеноструктурного исследования [7].

Таблица 2

Атом*	x	у	z	$U_{ m 3KB}$
Cl ₍₁₎	4353(1)	-865(2)	2141(2)	111(1)
S ₍₁₎	8748(1)	322(2)	4324(1)	76(1)
S ₍₂₎	3081(1)	3814(2)	2671(2)	100(1)
F ₍₁₎	5492(3)	3614(3)	5079(3)	89(1)
F ₍₂₎	6917(3)	3169(4)	5898(3)	95(1)
F ₍₃₎	6749(3)	4133(3)	4616(3)	83(1)
O ₍₁₎	5851(3)	1269(4)	5003(3)	66(1)
O ₍₂₎	4188(3)	1661(4)	3481(3)	74(1)
N ₍₁₎	7320(3)	1632(4)	4610(3)	57(1)
N ₍₂₎	7359(4)	-1069(5)	2188(4)	73(2)
C ₍₁₎	7677(4)	966(5)	4017(4)	50(2)
C ₍₂₎	7055(3)	922(5)	3018(4)	43(1)
C ₍₃₎	5942(3)	1053(5)	2918(4)	43(1)
C ₍₄₎	5807(3)	2211(5)	3460(4)	42(1)
C ₍₅₎	6317(4)	2031(5)	4511(4)	46(1)
C ₍₆₎	7248(4)	-198(6)	2554(4)	51(2)
C ₍₇₎	5389(4)	1123(5)	1895(4)	51(2)
C ₍₈₎	4643(4)	352(6)	1499(5)	71(2)
C ₍₉₎	4104(5)	489(8)	564(6)	94(3)
C ₍₁₀₎	4341(7)	1416(9)	42(6)	105(3)
C ₍₁₁₎	5094(5)	2177(7)	424(5)	82(2)
C ₍₁₂₎	5605(4)	2052(6)	1321(4)	63(2)
C ₍₁₃₎	4706(4)	2446(6)	3288(4)	52(2)
C ₍₁₄₎	4307(4)	3578(6)	2850(4)	57(2)
C ₍₁₅₎	4746(5)	4543(6)	2535(5)	73(2)
C ₍₁₆₎	4057(7)	5457(8)	2141(5)	103(3)
C ₍₁₇₎	3159(6)	5172(8)	2175(5)	102(3)
C ₍₁₈₎	6367(5)	3255(7)	5019(5)	65(2)
O ₍₃₎	3910(4)	1072(5)	5386(5)	122(2)
C ₍₁₉₎	3281(8)	1974(11)	5340(8)	167(5)
C ₍₂₀₎	3326(9)	2920(10)	5855(10)	226(8)

Koon huhati latomor ($\times 10^4$) il skrippa jentin je usotronih je
Координаты атомов (~ то) и эквивалентные изотронные
тепловые параметры $U_{ m _{3KB}}({ m \AA}^2 imes 10^3)$ в структуре 1

*Атомы $O_{(3)}, C_{(19)}$ и $C_{(20)}$ относятся к сольватной молекуле этанола.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры регистрировали на спектрофотометре ИКС-29 в вазелиновом масле. Спектры ЯМР ¹Н записывали на приборах Bruker WM-250 (рабочая частота 250 МГц) (для соединения **1**) и Bruker WP-100 SY (100 МГц) (для **2**) в ДМСО-d₆, внутренний стандарт ТМС. Контроль за ходом реакции и индивидуальностью веществ осуществляли с помощью TCX на пластинках Silufol UV-254, элюент ацетон–гексан, 3 : 5.

6-Гидрокси-5-(2-теноил)-6-трифторметил-4-(2-хлорфенил)-3-цианопиперидин-2-тион (1). А. К суспензии 2.23 г (10 ммоль) 2-хлорфенилметиленцианотиоацетамида в 25 мл этанола при 20 °С и перемешивании добавляют 2.22 г (10 ммоль) 2-теноилтрифторацетона и 1 мл (8 ммоль) N-метилморфолина. Через 20 мин в реакционную массу добавляют 10% HCl до pH 5 и выдерживают смесь при комнатной температуре 12 ч. Образовавшийся кристаллический осадок отфильтровывают, промывают этанолом и гексаном.

Б. К смеси 2.25 мл (20 ммоль) 2-хлорбензальдегида и 3 капель N-метилморфолина в 30 мл этанола при 20 °С и перемешивании добавляют 2 г (20 ммоль) цианотиоацетамида, через 5 мин – 4.44 г (20 ммоль) 2-теноилтрифторацетона и далее 2.52 мл (25 ммоль) N-метилморфолина. Через 30 мин реакционную смесь обрабатывают как описано в методике A, получают 3.49 г (71%) (A) и 6.38 г (65%) (Б) этанольного сольвата тиона **1**. Т. пл. 125–127 °С. ИК спектр, v, см⁻¹: 3330–3480 (NH, OH), 2250 (CN), 1680 (CO). Спектр ЯМР ¹H, δ , м. д.: 1.08 т и 3.45 к (5H, <u>Et</u>OH); 4.80 (3H, м, 3-, 4- и 5-H); 7.11 м, 7.34 д, 7.84 м (7H, Ar и Het); 8.15 (1H, уш. с, OH); 11.12 (1H, уш. с, NH). Найдено, %: С 48.71; H 3.84; N 5.53; S 13.19. С₁₈H₁₂ClF₃N₂O₂S₂.·C₂H₅OH. Вычислено, %: С 48.93; H 3.70; N 5.71; S 13.06.

2-Аллилтио-6-гидрокси-5-(2-теноил)-6-трифторметил-4-(2-хлорфенил)-3-циано-1,4,5,6-тетрагидропиридин (2). К суспензии 2.46 г (5 ммоль) сольвата тиона **1** в 30 мл 80% этанола при перемешивании добавляют 2.8 мл (5 ммоль) 10% водного раствора КОН и через 5 мин 0.42 мл (5 ммоль) аллилбромида. Через 1 ч образовавшийся осадок отфильтровывают, промывают этанолом и гексаном. Получают 1.87 г (77%) соединения **2**. Т. пл. 155–157 °C. ИК спектр, v, см⁻¹: 3210–3300 (NH, OH), 2195 (CN), 1620, 1650 (CO). Спектр ЯМР ¹H, δ , м. д., *J* (Гц): 3.72 (д. ³*J* = 7.5, SCH₂); 4.3 (д. ³*J* = 12.1, 5-H_A); 4.42 (уш. с, 4-H_B и 5-H_B); 4.84 (д. ³*J* = 12.1, 4-H_A); 5.22 (м, CH₂=); 5.92 (м, CH=); 7.15, 7.30, 7.70, 7.89 (четыре м, Ar и Het); 7.43 (уш. с, OH); 8.28 (уш. с, NH). Найдено, %: C 52.26; H 3.12; N 5.93; S 13.37. C₂₁H₁₆ClF₃N₂O₂S₂. Вычислено, %: C 52.01; H 3.33; N 5.78; S 13.22.

Рентгеноструктурное исследование монокристалла соединения 1 проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius САД-4 (λ Мо K_{a} -излучение, графитовый монохроматор, отношение скоростей сканирования $\omega/2\theta = 1.2, \theta_{\text{max}} = 24^{\circ}$, сегмент сферы $0 \le h \le 16.0 \le k \le 12, -16 \le l \le 16$). Для определения параметров элементарной ячейки и матрицы ориентации кристалла с линейными размерами $0.12 \times 0.24 \times 0.47$ мм использовано 22 рефлекса с $12 < \theta < 13^\circ$. Всего собрано 3754 отражения, из которых 3470 являются симметрически независимыми (*R*-фактор усреднения 0.11). Кристаллы моноклинные, *a* = 14.171(2), *b* = 11.004(3), *c* = 14.729(3) Å, $\beta = 104.76(2)^{\circ}, V = 2221.0(8) \text{ Å}^3, Z = 4, d_{\text{BHY}} = 1.468 \text{ G/cm}^3, \mu = 0.410 \text{ Mm}^{-1}, F(000) = 1008,$ пространственная группа Р21/л. Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием программ SHELXS и SHELXL-93 [8, 9]. В уточнении использовано 1639 отражений (280 угочняемых параметров), число отражений на параметр 5.85, использована весовая схема $\omega = 1/[\sigma^2(Fo^2) + (AP)^2]$, где $P = (Fo^2 + 2Fc^2)/3$, а коэффициент весовой схемы А = 0.0572; включена поправка на аномальное поглощение; поправки на поглощение не вносились. Большинство (75%) атомов водорода выявлены объективно, остальные – исходя из геометрических соображений, однако все они уточнены с фиксироваными температурными и позиционными параметрами. Окончательные значения факторов расходимости $R_1(F) = 0.0677$ и $R_W(F^2) = 0.1305$, GOF = 1.038. Остаточная электронная плотность из разностного ряда Фурье 0.23 и -0.32 е/Å³. Координаты атомов приведены в табл. 2.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 99-03-32965).

СПИСОК ЛИТЕРАТУРЫ

- 1. С. Г. Кривоколыско, В. Д. Дяченко, В. Н. Нестеров, В. П. Литвинов, ХГС, 929 (2001).
- 2. Л. М. Ягупольский, Ароматические и гетероциклические соединения с фторсодержащими заместителями, Наукова думка, Киев, 1988, 320.
- 3. Н. С. Зефиров, В. А. Палюлин, ДАН, **252**, 111 (1980).
- 4. R. W. Alder, N. C. Goode, T. J. King, J. M. Mellor, B. W. Miller, J. Chem. Soc. Chem. Commun., **32B**, 173 (1976).
- 5. M. Burke-Laing, M. Laing, Acta crystallogr. (B), 32, 3216 (1976).
- 6. G. Gundersen, D. W. H. Rankin, Acta Chem. Scand. (A), 37, 865 (1983).
- 7. С. Г. Кривоколыско, В. Д. Дяченко, А. Н. Чернега, В. П. Литвинов, ХГС, 790 (2001).
- 8. G. M. Sheldric, *SHELXS-86*, *Program for the Solution of Crystal Structures*, University of Göttingen, Göttingen, Germany, 1986.
- 9. G. M. Sheldric, *SHELXL-93*, *Program for the Refinement of Crystal Structures*, University of Göttingen, Göttingen, Germany, 1993.

Луганский государственный педагогический университет им. Тараса Шевченко, Луганск 348011, Украина e-mail: kgb@lgpi.lugans.ua Поступило в редакцию 18.05.99 После переработки 07.01.2000

^вИнститут органической химии НАН Украины, Киев 253660

⁶Институт органической химии им. Н. Д. Зелинского РАН, Москва 117913 e-mail: vpl@cacr.ioc.ac.ru