С. В. Чапышев

СИНТЕЗ, ТЕРМОЛИЗ И МАСС-СПЕКТРОМЕТРИЯ ПЕРФТОРИРОВАННЫХ ДИ- И ТРИАЗИДОПИРИДИНОВ

2,4-Диазидо-3,5,6-трифторпиридин и 2,4,6-триазидо-3,5-дифторпиридин получены реакцией пентафторпиридина с азидом натрия в водном ацетоне. Под действием электронного удара 2,4-диазидопиридин претерпевает последовательное разложение азидных групп в положениях 2 и 4 пиридинового кольца и реакцию сужения цикла с образованием характеристического иона $[M-2N_2-F]^+$. Напротив, термолиз данного диазида сопровождается селективным разложением его ү-азидной группы и образованием 2-азидо-4-амино-3,5,6-трифторпиридина. Эффект селективного разложения зидных групп 2,4-диазидопиридинов при термолизе и под действием электронного удара обусловлен разным распределением связывающей орбитальной плотности на α - и ү-азидных группах соответственно исходного диазида и его катион-радикала. Один из путей распада триазида под действием электронного удара включает образование иона $[M-N_2]^+$ за счет разложения α -азидной группы данного соединения.

Ключевые слова: полиазиды, фторпиридины, масс-спектральный распад, термолиз.

Ранее мы показали, что азидные группы в положениях 2 и 4 пиридинового кольца существенно различаются распределением связывающей орбитальной плотности на атомах азота и, как следствие, селективно претерпевают различные типы химических превращений (циклоприсоединение богатых [1–4] и бедных [4, 5] электронами диполярофилов, присоединение нуклеофилов к концевому атому азота [6], фотолиз [7, 8]). Селективность разложения азидных групп 2,4-диазидопиридинов при термолизе и под действием электронного удара изучена не была. Для проведения такого исследования желательно было иметь перфторированные модельные азиды, которые в процессе разложения образовывали бы относительно стабильные промежуточные продукты. В настоящей работе описан синтез 2,4-диазидо-3,5,6-трифторпиридина и 2,4,6-триазидо-3,5дифторпиридина и их превращения при термолизе и под действием электронного удара.

Реакцию пентафторпиридина с азидом натрия проводили в водном ацетоне. Установлено, что взаимодействие данных реагентов в апротонных полярных растворителях останавливается на стадии образования моноазида 1 [9]. Повторное изучение этой реакции показало, что через 3 дня кипячения пентафторпиридина с азидом натрия в 10% водном ацетоне (70 °C) главным продуктом реакции становится диазидопиридин 3, выход которого после очистки составил 82%. Реакция последнего с избытком азида натрия при 70 °C в течение двух недель позволила получить триазидопиридин 4 с выходом 62%.

Состав и строение соединений **3** и **4** полностью согласуется с данными элементного анализа, ИК, ЯМР ¹³С и ¹⁹F спектроскопии и масс-спектрометрии. Так, наличие в спектре ЯМР ¹³С диазида **3** пяти сигналов для атомов углерода пиридинового кольца при 130.5 (м, C₍₄₎), 134.7 (д. д, C₍₅₎, $J_{C-F} = 260$ и 32), 138.7 (д. д, C₍₆₎, $J_{C-F} = 262$ и 32), 139.1 (д, C₍₃₎, $J_{C-F} = 264$) и 144.1 м. д. (д. д, C₍₂₎, $J_{C-F} = 13.8$ и 2.9 Гц) свидетельствует, что две азидные группы в молекуле данного соединения расположены в положениях 2 и 4 пиридинового кольца. Это подтверждает и спектр ЯМР ¹⁹F диазида **3**, в котором присутствуют сигналы трех атомов фтора при –25.87 (F₍₆₎, $J_{65} = 23.7$), –82.11 (F₍₃₎) и –92.20 м. д. (F₍₅₎, $J_{56} = 23.7$ Гц) и который хорошо согласуется со спектрами известных 2,4-дизамещенных производных 3,5,6-трифторпиридинов [10]. В спектре ЯМР ¹⁹F триазида **4** присутствует только один сигнал атомов фтора при –84.00 м. д. (F₍₃₎, F₍₅₎).

С целью изучения селективности разложения азидных групп в 2,4-ди- и 2,4,6-триазидопиридинах под действием электронного удара мы проанализировали масс-спектры соединений **2**, **3** и **4**. На примере многочисленных реакций термолиза и фотолиза 2- и 4-азидопиридинов показано, что механизм разложения этих изомеров существенно различен. Первая стадия разложения 4-азидопиридинов включает генерирование пиридил-4-нитрена, который в условиях реакции претерпевает быстрое расширение цикла с образованием 1,4-диазациклогептатетраенового интермедиата. Реакции последнего с нуклеофилами (вода, спирты, амины) дают различные производные 1,4-диазациклогептатетраенов [11]. Аналогичные превращения претерпевают и производные фенилазидов [11–13]. Важно отметить, что схема распада фенилазидов под действием электронного удара практически идентична схеме их термолиза и включает образование довольно интенсивных ионов М⁺⁺, [M–N₂]⁺⁺⁻ и [M–N₂–CN]⁺⁻ [14].

На схеме 1 показан наблюдаемый путь распада азида 2 под действием электронного удара, который полностью воспроизводит путь фрагментации фенилазидов [14]. Такой же механизм диссоциативной ионизации реализуется и для 4-азидотетрахлорпиридина [4]. Из схемы видно, что диагностическим признаком распада 4-азидопиридинов под действием электронного удара является присутствие в масс-спектре иона $[M-N_2-CN]^+$, который соответствует процессу отщепления радикала CN из молекулы 1,4-диазациклогептатетраена 7.

Напротив, термическое и фотохимическое разложение 2-азидопиридинов включает генерирование пиридил-2-нитренов, которые в условиях реакции, чаще всего, претерпевают реакцию сужения цикла с образованием 2-цианопирролов [11–13]. Очевидно, что в этом случае распад 2-азидопиридинов под действием электронного удара должен характеризоваться

Схема 1

93 (15%)

отсутствием в спектре пика иона $[M-N_2-CN]^+$ и присутствием пиков ионов, отвечающих процессу миграции цианогруппы на β -углеродный атом пиридинового цикла. При наличии на этом углеродном атоме атома фтора вполне вероятным представляется появление в спектре иона $[M-N_2-F]^+$.

На схеме 2 показан путь распада азида 3, первые две стадии которого включают последовательное элиминирование молекул азота и образование катион-радикалов 12 и 13. Отсутствие в спектре пика иона $[M-2N_2-CN]^+$ и присутствие пика иона $[M-2N_2-F]^+$ свидетельствует, что динитрен 13 далее претерпевает реакцию сужения цикла с образованием, по-видимому, иона 14 (или продукта его перегруппировки 15).

Схема 2

Отщепление радикала CN от 14 или 15 приводит к наиболее интенсивному иону 16, дальнейшая фрагментация которого дает ионы FCC–CN, C_2NF_2 , C_2N и FCN.

Ответ на вопрос, какая из азидных групп пиридина **3** в первую очередь теряет молекулу азота, можно получить из анализа геометрии катионрадикала **11**. Показано, что геометрия азидных групп у азидов, находящихся в различных возбужденных состояниях (синглетное, триплетное, анион-радикалы), существенно отличается от геометрии азидных групп в основном состоянии [15–17]. Резонно было ожидать, что геометрические параметры азидных групп для катион-радикалов также должны быть иными, чем у исходных азидов. В свою очередь, та группа катионрадикала, у которой в большей степени удлинена связь N–N₂, очевидно, и должна диссоциировать в первую очередь. Именно такая закономерность соблюдалась при фотолизе 2,4-диазидопиридинов [7].

Соеди-	Группа	Длина связи, Å			Валентный угол, град.
нение		$C-N_{(\alpha)}$	$N_{(\alpha)} - N_{(\beta)}$	$N_{(\beta)} - N_{(\gamma)}$	$(N_{(\alpha)}-N_{(\beta)}-N_{(\gamma)})$
2	4-N ₃	1.4143	1.2796	1.1223	167.99
3	2-N ₃	1.4162	1.2808	1.1213	169.22
	4-N ₃	1.4159	1.2778	1.1228	167.71
4	2-N ₃	1.4180	1.2763	1.1227	169.52
	4-N ₃	1.4175	1.2763	1.1233	167.57
	6-N ₃	1.4186	1.2773	1.1224	169.62
5	4-N ₃	1.3516	1.3491	1.1116	167.67
11	2-N ₃	1.3483	1.3438	1.1104	169.56
	4-N ₃	1.3926	1.3010	1.1169	168.67
21	2-N ₃	1.3603	1.3225	1.1124	169.85
	4-N ₃	1.3988	1.2966	1.1178	168.13
	6-N ₃	1.3632	1.3199	1.1127	170.00

Геометрические параметры азидных групп пиридинов 2–4 и катион-радикалов 5, 11 и 21 по данным расчетов методами RHF/PM3 и UHF/PM3-SCF*

* Для расчета геометрии катион-радикалов 5, 11 и 21.

Действительно, расчеты геометрии катион-радикала **5** методом UHF/PM3-SCF ($S = \frac{1}{2}$, q = +1) показали (табл.), что связь N–N₂ у данного радикала удлинена на 0.07 Å, а связь C–N₃ укорочена на 0.063 Å (близка длине связи С–N в нитренах [7]) по сравнению с аналогичными параметрами в молекуле исходного азида. Расчеты для катион-радикала **11** выявили, что длины связей N–N₂ в его α - и γ -азидных группах удлинены соответственно на 0.063 и 0.023 Å, а связи С–N₃ укорочены соответственно на 0.068 и 0.023 Å по сравнению с аналогичными связями в исходном диазиде **3**. Из этих данных следует, что разрыв связи N–N₂ в α -азидной группе катион-радикала **11** должен протекать в первую очередь. Наиболее вероятно, что именно этот фактор отчасти и предопределяет дальнейшее направление фрагментации динитрена **13** по пути сужения цикла с отщеплением фтор-радикала (схема 2). Отметим, что выводы

квантово-химического исследования геометрии катион-радикала **11** полностью согласуются с эмпирическими данными по влиянию свойств заместителей R в азидах $R-N-N_2$ на стабильность их катион-радикалов. Так, отмечалось, что усиление сопряжения электроноакцепторных заместителей R с азидной группой повышает стабильность азидных катион-радикалов [18]. В молекулах 2,4-диазидопиридинов γ -азидные группы намного сильнее сопряжены с пиридиновым кольцом [7] и, следовательно, должны быть более устойчивы при возбуждении электронным ударом, что и подтверждает схема распада диазида **3**.

В литературе отсутствуют данные по селективному термолизу азидных групп в молекулах ароматических полиазидов. Во многом это связано с трудностью выделения продуктов таких реакций, образующихся с низкими выходами и представляющих собой сложную смесь многих соединений [11]. В данной работе нами была предпринята попытка изучить термолиз диазида **3** методом хромато-масс-спектрометрии. Предполагалось, что при прохождении через хроматографическую колонку при высокой температуре исходный диазид будет частично разлагаться и по масс-спектрам образующихся продуктов можно будет составить схему термолиза данного соединения.

Пары диазида **3** в потоке гелия пропускали через хроматографическую колонку, заполненную метилсилоксаном, при 100 °С. Единственным продуктом термической обработки диазида **3** при этих условиях был азидоаминопиридин **17**, выход которого не превышал 1% (**3**: R_t 4.60 мин; **17**: R_t 5.44 мин). Строение соединения **17** подтверждает его масс-спектр (схема 3). Так, отсутствие в спектре пика иона $[M-N_2-N]^+$, типичного для

Схема 3

фрагментации 4-азидопиридинов, и присутствие интенсивного иона $[M-N_2-F]^+$, характерного для распада 2-азидо-3-фторпиридинов, убедительно свидетельствует, что азидная группа в молекуле данного соединения находится в положении 2 пиридинового кольца. Кроме того, присутствие в спектре интенсивного пика иона $[M-N_2-HCN]^+$, типичного для фрагментации ароматических аминов [19], указывает на наличие аминогруппы именно в положении 4 пиридинового кольца соединения **17**.

Селективность разложения γ -азидной группы при термолизе пиридина **3** полностью согласуется с данными расчетов RHF/PM3 молекулы этого соединения (табл.), согласно которым именно в этой группе связь N–N₂ является наиболее слабой (имеет значительно более низкую связывающую орбитальную плотность на атомах N_(α) и N_(β) и, как следствие, большее расстояние между этими атомами и меньший валентный угол N–N–N). Таким образом, в отличие от фрагментации под действием электронного удара, при термическом разложении 2,4-диазидопиридинов более лабильной является их азидная группа в положении 4 пиридинового кольца.

На схеме 4 показаны основные пути фрагментации триазидопиридина 4 под действием электронного удара. Первая стадия процесса включает отщепление молекулы азота и образование иона $[M-N_2]^+$.

Схема 4

Согласно квантово-химическим расчетам (табл.), азидная группа в положении 2 пиридинового кольца катион-радикала 21 должна быть наиболее лабильной. Присутствие в спектре пика иона [М-N₂]⁺ и отсутствие пиков ионов $[M-2N_2]^{+}$ и $[M-3N_2]^{+}$ позволяет предположить существование особых путей стабилизации иона $[M-N_2]^{+}$ за счет перераспределения химических связей в его молекуле. Наиболее вероятным путем такой стабилизации представляется образование тетразолопиридина 22, который далее претерпевает внутримолекулярную реакцию циклоприсоединения у-азидной группы по двойной связи C=CF образованием Термические интермедиата 25. превращения с α-азидоазинов в бициклические тетразолы типа 22 описаны в литературе [20, 21]. В пользу высказанного предположения говорит и тот факт, что за ионом $[M-N_2]^+$ в масс-спектре следует ион $[M-N_2-N_3-F-CN]^+$. Отщепление радикала N₃ является диагностической характеристикой распада тетразолов [18, 22]. Кроме того, ион [M-N₂-N₃-F-CN]⁺ формально содержит недиссоциированный фрагмент -N-N=N, что на фоне отщепления радикалов F и CN представляется возможным только в случае стабилизации этого фрагмента за счет его циклоприсоединения к двойной связи (структуры 25 и 26) и последующего встраивания в гетероциклическую систему (типа 27). Следующим за ионом [M–N₂–N₃–F–CN]⁺ в масс-спектре проявляется ион [M-3N₂-F-CN]⁺, схема образования которого может описываться последовательностью превращений: $22 \rightarrow 23 \rightarrow 24 \rightarrow 28$. Отметим, что основной путь фрагментации катион-радикала 21 проходит не через интермедиаты 27 и 28, а включает распад катион-радикала тринитрена 23 на фрагменты C₂N₂F и C₃N₂F. Такой путь распада наблюдался и в масс-спектрах 3,5-дихлор-, 3,5-дициано- и 3-хлор-5цианозамещенных триазидопиридинов, в которых самыми интенсивными пиками были пики ионов C₂N₂R (100%) и C₃N₂R (30-35%), где R = Cl или СМ.

Попытки изучить селективный термолиз азидных групп триазида 4 методом хромато-масс-спектрометрии не увенчались успехом. При температурах ниже 100 °С триазид 4 не претерпевал термических превращений, тогда как при более высоких температурах распадался на низкомолекулярные фрагменты и продукты их димеризации. Термическое разложение и масс-спектральный распад азидных групп 2.4-ди- и 2.4.6-триазидопиридинов протекают селективно, как и целый ряд других реакций с участием данных групп. При термолизе более лабильными являются азидные группы в положении 4 пиридинового кольца вследствие более низкой связывающей орбитальной плотности на этих группах. Напротив, в азидных катион-радикалах, образующихся при возбуждении азидов электронным ударом, более лабильны азидные группы в α-положении пиридинового кольца. Расчет геометрии азидных катион-радикалов методом PM3 может с успехом использоваться для диагностики последовательного разложения азидных групп ароматических полиазидов под действием электронного удара и более надежной интерпретации путей масс-спектрального распада таких соединений.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры в вазелине записаны на приборе Specord M-80, спектры $\text{ЯМP}^{13}\text{C}$ в растворе CDCl_3 – на приборе Bruker AM-400 (100.6 МГц). Спектры $\text{ЯМP}^{19}\text{F}$ зарегистрированы на приборе Bruker AC-200 (188.3 МГц) в растворе CDCl_3 с использованием C₆H₅CF₃ в качестве внутреннего стандарта, масс-спектры – на приборе Finnigan MAT-90 при энергии ионизации 70 эВ. Анализ продуктов термолиза азидов выполнен на спектрометре Hewlett-Packard 5890 (масс-детектор Hewlett-Packard 5970, энергия ионизации 70 эВ, хроматографическая колонка EC-5, сорбент метилсилоксан, содержащий 5% фенильных заместителей и имеющий пористость 0.25 мкм, газ-носитель гелий, температура прохождения образца через колонку 100 °C, растворитель – хлористый метилен). Контроль за реакциями осуществляли методом TCX на пластинах Silufol UV-254.

Расчет геометрии и электронных свойств соединений **3–4** и катион-радикалов **5**, **11** и **21** проводили с помощью полуэмпирического метода РМЗ [23], входящего в пакет программ Spartan [24]. Молекулярные структуры соединений рассчитывали с полной оптимизацией геометрических параметров. В работе использовался пентафторпиридин фирмы Aldrich.

4-Азидо-2,3,5,6-тетрафторпиридин (2). Раствор, содержащий 1.69 г (10 ммоль) пиридина **1** и 0.65 г (10 ммоль) азида натрия в 100 мл 10 % водного ацетона, перемешивают при комнатной температуре 12 ч, после чего растворитель отгоняют при комнатной температуре в вакууме, а остаток перегоняют на установке Kugelrohr (0.01 мм рт. ст., 25 °С), охлаждая конденсат льдом. Азид **2** получают в виде бесцветной маслянистой жидкости. Выход 1.46 г (76%). ИК спектр, v, см⁻¹: 2130, 2100 (N₃), 1640, 1620 1585, 1500 (C=C, C=N), 1345 (N₃), 1285, 1220 (C–N), 1000 (C–F). Спектр ЯМР ¹³С, δ , м. д., *J* (Гц): 132.1 (м, C₍₄)); 135.3 (м, C₍₃₎, C₍₅₎, ¹*J*_{C-F} = 262, ²*J*_{C-F} = 30); 143.5 (м, C₍₂₎, C₍₆₎, ¹*J*_{C-F} = 245, ²*J*_{C-F} = 30). Массспектр, *m*/*z* (*I*/I_{max}, %): M⁺·192 (48), [M–N₂]^{+·}·164 (100), [M–N₂–CN]⁺ 138 (15), [M–N₂–CN–F]⁺ 119 (26), [M–N₂–CN–F–CN]⁺ 93 (15), 78 (13), 70 (19). Другие спектральные характеристики соответствуют литературным данным [9].

2,4-Диазидо-3,5,6-дифторпиридин (3). Раствор, содержащий 1.69 г (10 ммоль) пиридина **1** и 2.6 г (40 ммоль) азида натрия в 200 мл 10% водного ацетона, перемешивают при комнатной температуре 6 ч, после чего реакционную смесь кипятят 72 ч. Растворитель отгоняют при комнатной температуре в вакууме, остаток промывают водой, сушат на воздухе и хроматографируют на колонке с окисью алюминия, используя в качестве элюента систему диэтиловый эфир–петролейный эфир, 2 : 98. Продукт дополнительно очищают дистилляцией на установке Kugelrohr (0.01 мм рт. ст., 25 °C), охлаждая конденсат льдом. Диазид **3** получают в виде бесцветной маслянистой жидкости. Выход 1.76 г (82%). ИК спектр, v, см⁻¹: 2140, 2105 (N₃), 1625, 1615, 1485, 1430 (C=C, C=N), 1380, 1340 (N₃), 1280, 1240 (C–N), 1000 (C–F). Спектр ЯМР ¹⁹F, δ , м. д. *J* (Гц): –25,87 (т, F₍₆₎, *J*₆₅ = 23.7); –82.11 (д, F₍₃₎); –92.20 (д, F₍₅₎, *J*₅₆ = 23.7). Спектр ЯМР ¹³С, δ , м. д. *J* (Гц): 130.5 (м, C₍₄₎); 134.7 (д. д, C₍₅₎, ¹*J*_{C-F} = 260, ²*J*_{C-F} = 32); 138.7 (д. д, C₍₆₎, ¹*J*_{C-F} = 262, ²*J*_{C-F} = 32); 139.1 (д, C₍₃₎, ¹*J*_{C-F} = 264); 144.1 (д. д, C₍₂₎, ²*J*_{C-F} = 13.8, ³*J*_{C-F} = 2.9). Масс-спектр, *m*/*z* (*I*/*I*_{max}, %): M⁺ 215 (13), [M–N₂]⁺ 187 (8), [M–2N₂]⁺ 159 (9), [M–2N₂–F]⁺ 140 (5), [M–2N₂–F–CN]⁺ 114 (100), 93(5), 88 (9), 83 (5), 76 (17), 74 (6), 71 (9), 69 (18), 64 (16), 62 (10), 57 (14), 38 (10). Найдено, %: C 27.62; N 45.84. C₅F₃N₇. Вычислено, %: C 27.91; N 45.58.

2,4,6-Триазидо-3,5-дифторпиридин (4). Раствор, содержащий 1.69 г (10 ммоль) пиридина **1** и 2.6 г (40 ммоль) азида натрия в 200 мл 10% водного ацетона, перемешивают при комнатной температуре 6 ч, после чего реакционную смесь кипятят 2 недели. Растворитель отгоняют при комнатной температуре в вакууме, остаток промывают водой, сушат на воздухе и хроматографируют на колонке с окисью алюминия, используя систему диэтиловый эфир – петролейный эфир, 2 : 98, в качестве элюента. Соединение дополнительно очищают дистилляцией на установке Kugelrohr (0.01 мм рт. ст., 28 °C), охлаждая конденсат льдом. Триазид **4** получают в виде бесцветной маслянистой жидкости. Выход 1.48 г (62%). ИК спектр, v, см⁻¹: 2168, 2140, 2108 (N₃), 1628, 1615, 1485, 1432, 1400 (C=C, C=N), 1380, 1340 (N₃), 1280, 1238 (C–N), 1000 (C–F). Спектр ЯМР ¹⁹F: –84.0 м.д. Спектр ЯМР ¹³С, δ , м. д., *J* (Гц): 147.2 (д. д, C₍₂₎, C₍₆₎, *J*_{C-F} = 14 и 3); 138.7 (д. C₍₃₎, C₍₅₎, *J*_{C-F} = 264); 135.0 (м, C₍₄₎). Масс-спектр, *m/z* (*I*/*I*_{max}, %): M⁺ 238 (13), [M–N₂]⁺ 210 (4), [M–N₂–N₃–F–CN]⁺ 123 (5), [M–3N₂–F–CN]⁺109 (12), 83(20), 71 (100), 69 (5), 57 (43), 52 (5), 50 (5), 43 (5), 38 (9). Найдено, %: C 25.43; N 58.61. C₅F₂N₁₀. Вычислено, %: C 25.21; N 58.82.

СПИСОК ЛИТЕРАТУРЫ

- 1. С. В. Чапышев, В. М. Анисимов, *ХГС*, 676 (1997).
- 2. С. В. Чапышев, В. М. Анисимов, ХГС, 1521 (1997).
- 3. С. В. Чапышев, ХГС, 1497 (2000).
- 4. S. V. Chapyshev, Mendeleev Commun., No. 4, 164 (1999).
- 5. С. В. Чапышев, *XГС*, 935 (2001).
- 6. S. V. Chapyshev, Mendeleev Commun., No. 4, 166 (1999).
- 7. S. V. Chapyshev, R. Walton, P. M. Lahti, Mendeleev Commun., No. 1, 7 (2000).
- 8. S. V. Chapyshev, R. Walton, J. A. Sanborn, P. M. Lahti, J. Am. Chem. Soc., **122**, 1580 (2000).
- 9. R. E. Banks, G. R. Sparker, J. Chem. Soc. Perkin Trans. 1, 2964 (1972).
- 10. C. L. Cheong, B. J. Wakefield, J. Chem. Soc. Perkin Trans. 1, 3301 (1988).
- 11. E. F. V. Scriven, K. Turnbull, Chem. Rev., 88, 297 (1988).
- 12. Azides and nitrenes (reactivity and utility), Ed. E. F. V. Scriven, Acad. Press, N. Y., 1984, 418.
- 13. R. Harder, C. Wentrup, J. Am. Chem. Soc., 98, 1259 (1976).
- 14. R. A. Abramovitch, E. P. Kyba, E. F. V. Scriven, J. Org. Chem., 36, 3796 (1971).
- 15. M. F. Budyka, T. S. Zyubina, J. Mol. Struct. (Theochem)., 419, 191 (1997).
- 16. М. Ф. Будыка, Т. С. Зюбина, *Ж. физ. химии*, **72**, 1420 (1998).
- 17. М. Ф. Будыка, Т. С. Зюбина, *Ж. физ. химии*, 72, 1634 (1998).
- Ю. В. Шурухин, А. В. Довгилевич, И. И. Грандберг, Б. П. Баскунов, XГС, 925 (1988).
- Масс-спектрометрический анализ биологически активных азотистых оснований, ред. П. Б. Терентьев, А. П. Станкявичюс, Мокслас, Вильнюс, 1987, 81.
- 20. Yu. A. Azeev, I. P. Loginova, O. L. Guselnikova, S. V. Shorshnev, N. A. Klyuev, V. L. Rusinov, O. N. Chupakhin, *Mendeleev Commun.*, 49 (1993).
- Ю. А. Азев, О. Л. Гусельникова, Н. А. Клюев, С. В. Шоршнев, В. А. Русинов, О. Н. Чупахин, ЖОрХ, 31, 1566 (1995).
- 22. Н. А. Клюев, Э. Н. Истратов, Р. А. Хмельницкий, В. П. Субоч, В. А. Русинов, В. А. Зырянов, *ЖОрХ*, **13**, 1501 (1977).
- 23. J. J. P. Stewart, J. Comput. Chem., 10, 221 (1989).
- 24. Spartan. Version 4.0, Wavefunction, Inc., 18401 Von Karman Ave., # 370 Irvine, Chem. Abstr., 92715, USA, 1995.

Институт проблем химической физики РАН, Черноголовка 142432, Московской обл., Россия e-mail: chap@icp.ac.ru Поступило в редакцию 23.03.2000