М. К. Исляйкин, А. Бараньски^а

ОСОБЕННОСТИ ПРОСТРАНСТВЕННОГО И ЭЛЕКТРОННОГО СТРОЕНИЯ БИС(3-ИМИНО-1-ИЗОИНДОЛИНИЛИДЕНАМИНО)АРИЛЕНОВ ПО ДАННЫМ МЕТОДА АМ1

С помощью полуэмпирического метода AM1 найдены стационарные точки на гиперповерхностях потенциальной энергии внутреннего вращения 1,3-бис(3-имино-1-изоиндолинилиденамино)бензола и 2,6-бис(3-имино-1изоиндолинилиденамино)пиридина, а также их таутомерных форм. Определены энергетические барьеры плоской инверсии терминальных иминогрупп и таутомерных превращений с их участием. Показано, что молекулы данных соединений являются структурно нежесткими.

Ключевые слова: бис(3-имино-1-изоиндолинилиденамино)арилены, AM1 расчеты, внутреннее вращение, инверсия иминогрупп, таутомерия.

Бис(3-имино-1-изоиндолинилиденамино)арилены **1**, **2** являются важными промежуточными продуктами в синтезе макрогетероциклических соединений [1–3]. Однако несмотря на сходство в строении эти соединения проявляют различную реакционную способность. Так, соединение **1** при взаимодействии с 1,3-дииминоизоиндолином образует макроциклическую систему, включающую три изоиндолин-1,3-диилиденовых остатка и один *мета*-фениленовый фрагмент, в то время как в данных условиях получить аналогичный продукт из соединения **2** не удается [2, 3].

1 X = CH; 2 X = N

Особенностью строения трехзвенных продуктов 1 и 2 является наличие двух достаточно "тяжелых" изоиндольных фрагментов, соединенных с остатком диамина аза-мостиками, что, по-видимому, должно определять склонность молекул к образованию неплоских структур в результате внутреннего вращения относительно простой связи N-C. Вместе с тем, по аналогии с 1,3-дииминоизоиндолином [4], следует ожидать, что подобные соединения могут проявлять склонность к плоской инверсии терминальных иминогрупп, а также к таутомерным превращениям. Эти особенности строения, определяющие в значительной мере реакционную способность продуктов 1 и 2 в реакциях как с диаминами, так и 1,3-дииминоизоиндолином, к настоящему времени изучены недостаточно полно. Поэтому целью данной работы явилось теоретическое изучение особенностей пространственного и электронного строения соединений 1 и 2 с помощью квантово-химического метода АМ1 [5]. Расчеты проводились с использованием пакета программ МОРАС-93 [6] на компьютере CONVEX C3220 в Краковском вычислительном центре CYFRONET.

В частности, в работе изучены энергетические профили внутреннего вращения изоиндольного фрагмента вокруг простой связи C(6)–N(1) в молекулах 1 и 2, а также изоиндоленинового и изоиндольного фрагментов вокруг связей C(6)–N(1) и C(2)–N(2) для их амино-иминных форм 1a и 2a (табл. 1). Значение двугранного угла C(5)–C(6)–N(1)–C(7) (для всех соединений) или C(3)–C(2)–N(2)–C(8) (для таутомеров 1a и 2a) варьировалось в интервале от 0 до 360° с шагом 10°. Для каждой точки проводилась полная оптимизация всех прочих геометрических параметров. Положения стационарных точек на гиперповерхности потенциальной энергии уточнялись с помощью процедур EF, NLLSQ и TS [6], после чего точки проверялись на соответствие критическим условиям [6, 7].

Во "внутренней сфере" 1,3-бис(3-имино-1-изоиндолинилиденамино)бензола (1) расположены три атома водорода: два атома циклических иминогрупп изоиндольных фрагментов и атом водорода бензольного кольца. В случае плоской структуры A0 (табл. 1), относящейся к точечной группе симметрии C_{2v} , эти атомы пространственно сближены, в результате чего наблюдается существенное отталкивание между ними, что проявляется, в частности, в увеличении валентного угла при мостиковых атомах азота до 129.9°. Как следует из данных, приведенных в табл. 1 и на рис. 1, *a*, в исследованном конфигурационном пространстве в случае соединения 1 обнаружено четыре минимума, которые соответствуют ротамерам A, C, E и G. При этом в структурах A и C изоиндольные ядра расположены по разные стороны от плоскости центрального бензольного ядра, что позволяет их отнести к *E*-изомерам, в то время как E и G являются *Z*-изомерами (рис. 2, *a*, *b*).

Поворотные изомеры A и C, а также E и G разделены низкими энергетическими барьерами B и F соответственно, не превышающими 0.7 ккал/моль, что свидетельствует о высокой скорости обмена между ними. Значение константы скорости (k), вычисленное в соответствии с данными [8] для 298 К и $\Delta\Delta G = 0.76$ ккал/моль составляет около 10^{12} с⁻¹. Появление этих барьеров при значениях ϕ , близких 90 и 270°, может указывать на наличие сопряжения между изоиндольными и бензольным фрагментами.

Таблица 1

Основные молекулярные свойства ротамеров бис(1-имино-3-изоиндолинилиденамино)ариленов 1, 2 и их таутомерных форм 1а, 2а

Соеди- нение	Рота- мер*	Угол (град.)				Рас-	Ди- поль-	Заряд на атоме •10 ³ [ед. зар.]				<u>Λ</u> <i>H</i> 208	A.5208	ÅGaas
		C(5)-C(6)- N(1)-C(7)	C(3)-C(2)- N(2)-C(8)	C(6)-N(1)- C(7)	C(2)-N(2)- C(8)	N(5)-N(6) [Å]	ный момент [D]	N(5)	C(11)	N(6)	C(12)	[ккал/моль] ^{*2}	[кал/моль·К]	[ккал/моль]
1	A0	180.0	180.0	129.9	129.9	5.59	1.88	-253	136	-253	153	207.98	126.1	170.40
(X = CH)	Α	49.9	136.0	122.8	123.0	11.54	0.31	-260	148	263	154	200.92	122.9	164.30
	В	93.1	135.0	122.3	1.22.9	10.38	0.39	-262	152	262	152	201.62	122.7	165.06
	C	134.6	134.6	122.9	122.9	8.54	0.75	-261	151	-261	151	200.80	120.5	164.89
	D	175.9	132.9	130.6	122.7	6.80	1.62	-260	149	-256	138	204.21	122.6	167.67
	E	233.4	140.9	122.6	124.2	5.67	1.46	-256	139	-264	158	202.36	123.1	165.68
	F	258.0	139.2	122.5	123.7	6.85	1.42	257	140	-264	155	202.44	122.9	165.82
	G	313.2	137.7	123.3	123.4	9.66	1.27	-262	151	-263	153	201.58	122.9	164.96
	Н	351.4	136.7	129.9	123.1	11.11	0.66	-257	141	-263	154	204.14	123.9	167.22
2	A0	180.0	180.0	126.2	126.2	4.37	1.38	-256	139	-256	139	212.62	123.9	175.70
(X = N)	Α	164.7	164.7	125.2	125.2	4.94	1.19	-261	149	-261	149	211.25	123.3	174.51
	В	180.0	204.5	125.7	124.6	4.81	1.25	-258	144	-261	149	211.50	123.5	174.70
	C	195.3	195.3	125.2	125.2	4.94	1.19	261	149	-261	149	211.25	123.3	174.51
	D	353.3	179.5	129.4	125.4	11.00	1.51	-254	143	-265	158	221.41	125.5	184.01

														· · · · · · · · · · · · · · · · · · ·
1a	A0	180.0	180.0	127.9	129.7	5.16	3.81	-335	167	-267	148	209.87	123.9	172.95
(X = CH)	А	43.7	136.5	124.1	123.0	11.57	4.82	-342	168	-267	154	206.88	123.3	170.14
	В	93,5	136.5	123.0	123.0	10.31	4.65	340	166	267	153	207.83	123.0	171.18
	С	140.0	136.5	124.1	123.1	7.98	4.05	-337	165	-268	154	206.92	122.4	170.44
	D	169.0	134.7	127.3	123.1	6.42	4.63	-337	168	-270	158	207.34	122.5	170.84
	Е	215.8	133.8	124.0	121.6	4.61	4.58	-340	171	-279	165	206.00	122.5	169.50
	F	274.2	135.1	123.0	122.7	7.54	5.00	-343	168	-268	153	207.63	122.7	171.07
	G	316.5	136.3	124.0	123.0	9.85	4.98	-338	164	-266	152	206.87	122.8	170.28
	H	360.0	136.7	127.4	123.1	11.29	4.66	-340	169	-267	153	207.60	126.1	170.02
ļ	I	220.6	50.7	123.9	122.7	9.43	5.14	-337	164	-264	147	207.02	126.1	169.44
	J	220.3	82.7	123.9	122.1	7.64	5.10	-337	165	-226	148	207.47	122.9	170.85
	K	215.7	133.8	124.0	121.6	4.61	4.60	-341	172	-279	164	206.00	122.5	169.50
	L	215.3	188.4	124.7	130.1	6.18	4,90	-334	162	-264	144	209.22	122.8	172.63
	Μ	220.7	223.5	124.1	123.1	8.15	3,99	-339	167	267	152	206.95	123.0	170.30
	Ν	220.1	270.0	124.2	122.2	10.30	5.01	-340	166	-266	153	208.03	123.5	171.23
	0	220.9	311.0	124.1	122.8	11.49	4.93	-338	165	-264	148	207.32	123.4	170.55
	Р	221.1	351.3	124.0	130.0	11.32	4.93	-332	164	-261	141	210.31	123.3	173.57
2a	A0	180.0	180.0	127.9	129.7	5.16	3.69	-335	167	-267	148	219.22	126.9	181.40
(X = N)	А	149.9	187.5	124.5	125.1	4.45	4.22	-335	159	275	160	218.76	121.3	182.61
	В	180.0	191.6	126.5	124.8	4.11	3.76	-336	162	-278	159	219.05	124.7	181.89
	С	210.0	172.2	124.5	125.1	4.44	4.22	-335	159	-275	160	218.76	121.6	182.52
	D	360.8	180.2	126.4	125.4	11.05	5.49	-334	180	_270	159	224.42	125.0	187.17
	E	150.0	187.6	124.5	125.1	4.45	4.22	-335	167	-267	148	219.20	126.9	181.38
	F	352.6	227.8	12.6	129.6	11.25	4.08	-331	158	-258	141	232.35	123.6	195.52
3		134.5	222.33	122.8	123.0	5.04	5.44	-278	159	-268	148	155.42	140.5	113.55
3a	-	125.9	226.3	121.9	122.5	5.09	5.99	-357	188	358	186	127.14	143.9	84.26
4	-	180.2	191.3	122.7	122.0	3.57	3.89	-253	153	-250	144	91.27] 137.8	50.21

* Ротамеры A0 не находятся на пути свободного вращения соединений 1, 2 и 1а, 2а. $*^2$ 1 ккал = 4.18 кДж.

Рис. 2. Модели PLUTO ротамеров С (а) и Е (b) 1,3-бис(1-имино-3-изоиндолинилиденамино)бензола 1, сольвата 3 (c) и комплекса с алюминием 4 (d)

Переход между *E*- и *Z*-конформерами (**C-D-E**), а также внутреннее вращение через переходное состояние **H** также осуществляются с низкими активационными барьерами, не превышающими 3.5 ккал/моль ($k\approx 10^{10}c^{-1}$). Таким образом, данная молекула может быть отнесена к структурно нежестким с заторможенным внутренним вращением и выраженной склонностью к поворотной изомерии.

Во внутренней полости соединения 2 присутствуют лишь два атома водорода циклических иминогрупп, что приводит к уменьшению отталкивания между ними по сравнению с соединением 1. В частности, для плоской конфигурации A0 соединения 2 (табл. 1) значение валентного угла при мостиковом атоме азота меньше, чем в случае структуры A0 соединения 1.

Сечение поверхности потенциальной энергии внутреннего вращения соединения 2 (рис. 1, *b*) оказалось симметричным относительно $\varphi = 180^{\circ}$, а структуры **A** и **C** – зеркальными изомерами. Переход между ними, характеризующийся активационным барьером, равным 0.25 ккал/моль и свидетельствующим о быстром конформационном обмене ($k\approx 10^{12} \text{ c}^{-1}$), а также величина барьера внутреннего вращения (10.14 ккал/моль, $k\approx 10^5 \text{ c}^{-1}$), локализованного при φ , близком 0°, указывают на то, что молекула также может быть отнесена к структурно нежестким с внутренним вращением. Причиной большей заторможенности в данном случае, по-видимому, является стабилизация структур **A** и **C** в результате образования внутримолекулярной водородной связи между атомами водорода циклических иминогрупп и атомом азота пиридинового цикла.

1052

В случае низкосимметричных амино-иминопроизводных 1а и 2а изучены энергетические профили внутреннего вращения изоиндоленинового 1а (A-H), 2a (A-D) и изоиндольного фрагментов 1a (I-P), 2a (E, F) (табл. 1, рис. 1, 2).

В целом характер энергетических профилей сохраняется при переходе от молекул 1 и 2 к их таутомерам 1а и 2а соответственно (табл. 1, рис. 1a,b). При этом меньшие значения барьеров активации в случае вращения фрагментов с первичной аминогруппой объясняются отсутствием атома водорода при атоме N(3). Таким образом, молекулы 1а и 2а также могут быть отнесены к структурно нежестким с заторможенным внутренним вращением и выраженной склонностью к поворотной изомерии. Отметим, что энтальпия образования изомеров в результате внутреннего вращения, плоской инверсии и таутомерии изменяется незначительно, вследствие чего свободная энергия Гиббса изменяется симбатно энтропии (табл. 1).

Структурная нежесткость соединений 1 и 2 теоретически может быть вызвана плоской (*in plane*) инверсией терминальных иминогрупп [9]. С этой целью изучена возможность образования топомеров по одной из терминальных иминогрупп в соединениях 1 и 2 *E*- и *Z*-конфигураций. Данные расчетов приведены в табл. 2.

Таблица 2

Основные термодинамические характеристики плоской инверсии (направление а) и таутомерных превращений (направление b) бис(1-имино-3-изоиндолинилиденамино) ариленов 1 и 2

транс-[1(С), 1(Е), 2(А)]

1(C), 1(E), 2(A)

1a(C), 1a(E), 2a(A)

Направ- ление	Переход	<i>ΔН[≠]₂₉₈</i> [ккал/моль]	Δ <i>G</i> [≠] 298 [ккал/моль]
а	$1(C) \rightarrow mpahc-1(C)$	22.22	21.31
	$1(E) \rightarrow mpanc-1(E)$	21.65	21.72
	$2(A) \rightarrow mpahc-2(A)$	22.05	21.59
b	$1(C) \rightarrow 1a(C)$	75.87	75.31
	$1(E) \rightarrow 1a(E)$	74.66	74.91
	$2(A) \rightarrow 2a(A)$	76.60	76.01

Установлено, что в результате плоской инверсии образуются соответствующие устойчивые *транс*-изомеры. Величины активационных барьеров переходов между ними находятся на уровне 22 ккал/моль ($k \approx 10^{-3} \text{ c}^{-1}$), что также служит основанием для отнесения данных молекул к структурно нежестким. Отметим, что эти характеристики хорошо согласуются с результатами, полученными для 1,3-дииминоизоиндолина (22.13 ккал/моль) [4], а также с экспериментальными значениями барьеров плоской инверсии N-алкил- и N-арилкетиминов (10–40 ккал/моль) [10, 11].

Вклад в структурную нежесткость молекул могут вносить таутомерные превращения [10]. Как следует из данных табл. 2, для реализации таутомерных переходов $1 \rightarrow 1a$ и $2 \rightarrow 2a$ по внутримолекулярному механизму в газовой фазе требуется энергия активации порядка 75 ккал/моль, что хорошо согласуется с аналогичной характеристикой, рассчитанной методом AM1 в случае 1,3-дииминоизоиндолина [4], а также методом *ab initio* (базис 4-31G) для формамидина [12]. Таким образом, ротамеры C и E соединения 1 и ротамер A соединения 2 отделены от соответствующих таутомерных структур соединений 1а и 2а достаточно высоким энергетическим барьером и внутримолекулярные надбарьерные переходы не вносят существенного вклада в структурную нежесткость рассматриваемых молекул.

Ввиду того, что пространственное строение нежестких молекул в значительной степени зависит от внешних факторов, преимущественное содержание той или иной формы в растворах может определяться природой растворителя [13, 14]. С целью оценки влияния апротонного растворителя проведен расчет соединения **3**, представляющего собой сольват соединения **1** с молекулой ДМФА (табл. 1, рис. 2, *c*).

Сольват 3 формируется за счет межмолекулярных водородных связей между атомами водорода иминогрупп и неподеленными парами электронов атома кислорода растворителя. Молекула трехзвенного продукта находится при этом в Z-конфигурации. Формирование данной структуры энергетически выгодно, так как энтальпия ее образования около 11 ккал/моль меньше суммы энтальпий образования структуры А и ДМФА, что существенно больше величин барьеров внутреннего вращения. Подобная структура (За, табл. 1) получена в результате расчетов молекулы 3, окруженной сольватной оболочкой ДМФА (программа AM1/COSMO, EPS = 36.7, NSPA = 42 [6, 15]). При этом трехзвенного оказалось, что молекула продукта сохраняет Z-конфигурацию, а вклад молекулы ДМФА составляет около 30% от вычисленной энергии сольватации, равной 39.46 ккал/моль. Таким образом, растворитель за счет специфической сольватации вызывает смещение конформационного равновесия в сторону образования устойчивого сольвата.

Особый интерес с точки зрения синтеза макрогетероциклических соединений представляет реакционная способность терминальных иминогрупп. Как следует из данных, приведенных в табл. 1, присутствие бензольного или пиридинового ядер, а также пространственное расположение изоиндольных фрагментов не оказывают существенного влияния на распределение зарядов на этих группах. Так, величины зарядов на атоме азота N(5) для *E*-конфигураций 1 и 2 одинаковы, в то время как заряды на атомах C(5) отличаются незначительно. Следовательно, отмеченные выше отличия в реакционной способности этих соединений не могут быть объяснены различиями в зарядах данных групп. По-видимому, это может быть связано с нарушением геометрического соответствия между реакционными центрами в продуктах присоединения 1,3-дииминоизоиндолина к 2.

Подобные структуры хелатного типа могут быть стабилизированы в результате комплексообразования [1, 16]. Влияние комплексообразования на особенности пространственного и электронного строения рассмотрено на 1054 примере комплекса соединения 2 с алюминием (структура 4), содержащего гидроксигруппу в качестве аксиального лиганда (табл. 1, рис. 2, *d*).

Расчетные данные показали, что молекула лиганда жестко закреплена в Z-конфигурации. При этом заряды на атомах азота и углерода терминальных иминогрупп по сравнению с аналогичными характеристиками структуры 2 (A) изменяются лишь незначительно. Вместе с тем, расстояние между рассматриваемыми атомами азота уменьшается до 3.57 Å, чем объясняется привлекательнсть данной структуры для темплатной конденсации. Этот вывод находится в согласии с экспериментальными данными. В частности в работе [16] темплатной конденсацией комплекса 4 с 1,3-дииминоизоиндолином в феноле получен соответствующий комплекс несимметричного пиридинового макрогетероциклического соединения.

Работа выполнена во времия научной стажировки одного из авторов (М.К.И) в Краковском политехническом институте. Авторы выражают благодарность Польскому комитету по научным исследованиям за финансовую поддержку данной работы (грант Nr KBN/SPP/PK/076).

СПИСОК ЛИТЕРАТУРЫ

- 1. F. Fernández-Lázaro, T. Torres, B. Hauschel, M. Hanack, Chem. Rev., 98, 563 (1998).
- 2. J. A. Elvidge, J. H. Golden, J. Chem. Soc., 700 (1957).
- 3. M. E. Baguley, J. A. Elvidge, J. Chem. Soc., 709 (1957).
- 4. А. В. Любимцев, А. Бараньски, М. К. Исляйкин, Р. П. Смирнов, XTC, 1074 (1997).
- 5. J. M. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc., 107, 3902 (1985).
- 6. J. J. P. Stewart, MOPAC 93.00. Manual, Fujitsu Limited, Tokyo, 1993.
- В. И. Минкин, Б. Я. Симкин, Р. М. Миняев, Квантовая химия органических соединений. Механизмы реакций, Химия, Москва, 1986.
- 8. В. Г. Дашевский, Конформационный анализ органических молекул, Химия, Москва, 1982.
- 9. F. L. Scott, Organic Reaction Mechanisms, ed. A. R. Butler and M. J. Perkins, Intersci., N. Y., 1973, 470.
- В. И. Минкин, Б. Я. Симкин, Р. М. Миняев, *Теория строения молекул*, Феникс, Ростовна-Дону, 1997.
- 11. Y. Shvo, A. Nahlieli, Tetrah. Lett., 4273 (1970).
- 12. K. Yamashita, M. Kaminoyama, T. Yamabe, K. A. Fukui, Theor. chim. acta, 60, 303 (1981).
- 13. В. В. Самошин, Н. С. Зефиров, ЖВХО, 29, 521 (1984).
- 14. Ю. Я. Фиалков, *Растворитель как средство управления химическим процессом*, Химия, Ленинград, 1990.
- 15. A. Klamt, G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 799 (1993).
- 16. Е. В. Кудрик, Дис. канд. хим. наук, Иваново, 1995.

Ивановский государственный химико-технологический университет, Иваново 153470, Россия e-mail:isl@icti.ivanovo.su Поступило в редакцию 15.09.2000

^aPolitechnika Krakowska, Poland, 31-155 Krakow e-mail: pcbarans@usk.pk.edu.pl