СИНТЕЗ

4-ИМИНО-2-ТРИФТОРМЕТИЛ-3,4-ДИГИДРО-2Н-БЕНЗО[1,3]ТИАЗИНОВ

Ключевые слова: N-(1-арил-1-арилтио-1-трифторметил)-N'-арилкарбо-диимиды, 4-имино-2-трифторметил-3,4-дигидро-2H-бензотиазины, гетеро- циклизация.

4-Имино-2-оксо-3,4-дигидро-1,3-бензотиазины получают конденсацией 3-хлорбензизотиазолийхлорида с формамидами [1]. Их аналоги, содержа-щие в положении 2 тиазинового цикла трифторметильную группу, не из-вестны.

Нами осуществлен синтез 4-арилимино-2-трифторметил-3,4-дигидро-2H-бензо[1,3]тиазинов (**1a-d**), основанный на использовании N-(1-арил-1-арилтио-1-трифторметил)-N'-арилкарбодиимидов (**2a-d**), полученных взаи-модействием 1-хлоралкилкарбодиимидов (**3a-d**) [2] с тиофенолами (**4a,b**). Суть метода состоит в некаталитической внутримолекулярной циклизации гетерокумуленов **2** за счет электрофильной атаки карбодиимидного фраг-мента по активированному заместителем R *орто*положению арилтио-группы. По всей видимости, предложенный подход носит более общий характер, свидетельством чему является синтез [3, 4] других типов бензазиновых систем.

$$F_{3}C \xrightarrow{Ar^{1}} N = C = N - Ar^{2} + HS \xrightarrow{R} \xrightarrow{-HCl}$$

$$3a-d$$

$$F_{3}C \xrightarrow{Ar^{1}} N = C = N - Ar^{2} \xrightarrow{110 \text{ °C}} R \xrightarrow{-HCl} S \xrightarrow{R} Ar^{1}$$

$$NH = R \xrightarrow{NH} N = R$$

$$1a-d$$

1, 2, 3 a $Ar^1 = Ar^2 = Ph$; **b** $Ar^1 = Ph$, $Ar^2 = 4-MeC_6H_4$; **c** $Ar^1 = 4-MeC_6H_4$, $Ar^2 = Ph$, **d** $Ar^1 = Ar^2 = 4-MeC_6H_4$; **1, 2 a** R = Me, **b–d** R = MeO, **4 a** R = Me, **b** R = MeO

Спектры ЯМР 1 Н, 19 F измерены в ДМСО- d_{6} на спектрометре Varian Gemi- ni 300 (внутренний стандарт соответственно ТМС и CFCl₃). ИК спектры сняты на приборе UR-20; для соединений **2a–d** в толуоле, для соединений **1a–d** – в прессовках KBr.

К раствору 0.005 моль 1-хлоралкилкарбодиимида **3a-d** в 30 мл толуола добавляют при перемешивании раствор 0.005 моль тиофенола **4a,b** и 0.005 моль триэтиламина в 5 мл толуола. Смесь перемешивают 2 ч, осадок солянокислого триэтиламина отфильтровывают. Содержащиеся в фильтрате 1-(арилтио)алкилкарбодиимиды **2** (ИК спектр, v, см⁻¹): 2150−2165 (N=C=N); спектр ЯМР ¹⁹F, δ_F, м. д.: 73−74 [5]) без выделения кипятят 16 ч. Растворитель удаляют в вакууме, остаток перекристаллизовывают из смеси гексан—бензол. 1 : 1.

7-Метил-2-трифторметил-2-фенил-4-фенилимино-3,4-дигидро-2H-бензо [1,3]окса- зин (1а). Т. пл. 179–180 °С. ИК спектр, v, см $^{-1}$: 1645 (C=N), 3435 (N–H). Спектр ЯМР 1 H, δ , м. д.: 2.33 (3H, c, CH₃); 7.80 (1H, д, 5-H); 7.06 (1H, д, 8-H); 6.91 (1H, д. д, 6-H); 7.66–7.08 (10H, м, две группы C_6H_5); 9.11 (1H, c, NH). Спектр ЯМР 19 F: 81.37 (c, CF₃). Выход 24%. Найдено, %: С 66.54; H 4.02; N 7.38. $C_{23}H_1$ F₃N₂S. Вычислено, %: С 66.32; H 4.30; N 7.03.

7-Метокси-2-трифторметил-2-фенил-4-(4-толилимино)-3,4-дигидро-2H-бензо[1,3]- оксазин (1b). Т. пл. 195–196 $^{\circ}$ С. ИК спектр, ν , см $^{-1}$: 1640 (C=N), 3440 (N–H). Спектр ЯМР 1 Н, δ , м. д.: 2.29 (3H, c, CH₃); 3.81 (3H, c, CH₃O); 7.83 (1H, д, 5-H); 6.81 (1H, д, 8-H); 6.63 (1H, д. д, 6-H); 7.66–7.17 (9H, м, C₆H₅, C₆H₄); 8.99 (1H, c, NH). Спектр ЯМР 19 F: 81.37 (c, CF₃). Выход 48%. Найдено, %: С 64.82; H 4.30; N 6.48. C_{23} H₁₉F₃N₂OS. Вычислено, %: С 64.47; H 4.47; N 6.54.

7-Метокси-2-(4-толил)-2-трифторметил-4-фенилимино-3,4-дигидро-2H-бензо[1,3]- оксазин (1c). Т. пл. 190–191 $^{\circ}$ С. ИК спектр, v, см $^{-1}$: 1650 (C=N), 3465 (N–H). Спектр ЯМР 1 Н, δ , м. д.: 2.25 (3H, c, CH₃); 3.82 (3H, c, CH₃O); 7.83 (1H, д, 5-H); 6.81 (1H, д, 8-H); 6.64 (1H, д. д, 6-H); 7.54–7.06 (9H, м, C₆H₅, C₆H₄); 9.01 (1H, c, NH). Спектр ЯМР 19 F: 81.42 (c, CF₃). Выход 51%. Найдено, %: С 64.74; H 4.42; N 6.69. C_{23} H₁₉F₃N₂OS. Вычислено, %: С 64.47; H 4.47; N 6.54.

7-Метокси-2-(4-толил)-4-(4-толилимино)-2-трифторметил-3,4-дигидро-2H-бензо- [**1,3]оксазин (1d**). Т. пл. 172–173 °C. ИК спектр, v, см⁻¹: 1645 (C=N), 3450 (N-H). Спектр ЯМР 1 H, δ , м. д.: 2.25 (3H, c, CH₃); 2.29 (3H, c, CH₃); 3.81 (3H, c, CH₃O); 7.84 (1H, д, 5-H); 6.81 (1H, д, 8-H); 6.63 (1H, д. д, 6-H); 7.52–7.17 (8H, м, две группы C_6H_4); 9.00 (1H, c, NH). Спектр ЯМР 19 F: 81.46 (c, CF₃). Выход 54%. Найдено, %: C 64.82; H 5.01; N 6.20. $C_{24}H_{21}F_3N_2OS$. Вычислено, %: C 65.14; H 4.78; N 6.33.

- H. Boshagen, W. Geiger, H. Hulpke, H. Wunsche, *Chem. Ber.*, **104**, 3757 (1971).
 B. И. Горбатенко, В. Н. Фетюхин, Л. И. Самарай, *ЖОрХ*, **13**, 274 (1977).
 M. В. Вовк, А. А. Похоленко, А. В. Больбут, *ЖОрХ*, **32**, 476 (1996).
 М. В. Вовк, В. И. Дорохов, А. В. Больбут, *ЖОрХ*, **33**, 1749 (1997).
 М. В. Вовк, Л. И. Самарай, *Укр. хим. журн.*, **60**, 566 (1994).

А. В. Больбут, М. В. Вовк

Институт органической химии НАН Украины, Киев 02094 e-mail: hetfos@ukrpacknet

Поступило в редакцию 01.08.2000

 $X\Gamma C. - 2001. - N_{2} 4. - C. 566$