В. М. Тимошенко, Я. В. Николин, А. Н. Чернега, Э. Б. Русанов, Ю. Г. Шермолович

СИНТЕЗ

4-БЕНЗИЛСУЛЬФОНИЛ-5-ПОЛИФТОРАЛКИЛ-v-ТРИАЗОЛОВ ИЗ 1,1-ДИГИДРОПОЛИФТОРАЛКИЛБЕНЗИЛСУЛЬФОНОВ

При взаимодействии 1,1-дигидрополифторалкилбензилсульфонов с NaN_3 или триметилсилизаидом в присутствии третичных аминов образуются аммониевые соли 4-бензилсульфонил-5-полифторалкил-v-триазолов. Предложена схема реакции, заключающаяся в участии каталитических количеств азид-иона в циклизации промежуточно образующихся винилазидов в триазолы. Проведено рентгеноструктурное исследование соли 4-бензилсульфонил-5- $(\omega$ -H-гексафторпропил)-v-триазола и 1,4-диазабицикло[2,2,2]октана.

Ключевые слова: 4-бензилсульфонил-5-полифторалкил-v-триазол, 1,1-дигидрополифторалкилсульфон.

1,1-Дигидрополифторалкилбензилсульфоны **1a,b** являются эфективными реагентами для синтеза фторсодержащих винилсульфонов, енаминов, иминов, кетонов, пиразолов [1–3]. В основе их синтетического использования лежит реакция дегидрофторирования под действием оснований, приводящая к образованию реакционноспособных фторвинилбензилсульфонов **2a,b**, легко взаимодействующих с такими нуклеофильными реагентами, как аммиак, амины, гидразины [3].

1, **2 a**
$$R_F = HCF_2$$
; **b** $R_F = H(CF_2)_3$

В настоящей работе мы исследовали реакции сульфонов 1a,b с триметилсилилазидом и NaN_3 и нашли, что в присутствии третичных аминов (триэтиламина или 1,4-диазабицикло[2,2,2]октана) образуются триалкиламмониевые соли 4-бензилсульфонил-5-полифторалкил- ν -триазолов 3a-d.

Вполне уместно предположить, что в этом случае, как и в случае реакций сульфонов **1a,b** с другими нуклеофилами [2, 3], вначале образуются винилфториды **2a,b**, реагирующие затем с азидом. Циклизация получающихся при этом винилазидов **4a,b** в присутствии основания и приводит к конечным солям **3a–d**. Для подтверждения этого предположения мы синтезировали винилазиды **4a,b** реакцией винилфторидов **2a,b** с триметилсилилазидом. Винилазиды **4a,b** получены также и при непродолжительном кипячении суспензии, содержащей эквимолярные количества сульфона **1a,b**, Et₃N и 15% мольный избыток NaN₃, в бензоле.

$$1a,b \xrightarrow{B} -B \cdot HF 2a,b \xrightarrow{MN_3} R_F - C = CHSO_2CH_2Ph \xrightarrow{+N_3} R_F - C = CHSO_2CH_2Ph \xrightarrow{+N_3} R_F - C = CHSO_2CH_2Ph \xrightarrow{+N_3} SO_2CH_2Ph \xrightarrow{-N_3} S$$

Согласно литературным данным, циклизация в триазолы не является характерной для винилазидов [4]. Однако в соответствии с предположениями, высказанными в работе [5], такая циклизация может реализовываться при наличии в молекуле винилазида электроноакцепторных заместителей у атомов углерода связи С=С. Соединения 4а, в отвечают этому условию, однако даже продолжительное нагревание их с третичными аминами не приводит к образованию солей триазолов За-d. Последние образуются только при добавлении каталитических количеств (5% мольных) триметилсилилазида или NaN₃ к эквимолярной смеси винилазидов 4a,b и третичного амина. Этот факт позволил нам предложить схему протекания реакции, заключающуюся в том, что молекула винилазида 4а, в способна присоединять азид-анион, появляющийся в реакционной смеси при добавлении NaN₃ или триметилсилилазида (в последнем случае в результате частичного гидролиза). Образующийся карбанион 5 циклизуется до соединения 6, превращающегося в соль 3а-d под действием оснований. Подобная схема циклизации карбаниона, содержащего в о-положении азидную группу [6], хорошо объясняет каталитическую роль азид-иона.

Соли **3а,с** – вязкие жидкости, растворимые в бензоле. Соли триазолов и 1,4-диазабицикло[2,2,2]октана **3b,d** – кристаллические вещества, плохо растворимые в бензоле. При действии на триэтиламмониевые соли **3a,c** бензольного раствора 1,4-диазабицикло[2,2,2]октана происходит обмен аммониевого катиона. Растворимость соединений **3a–d** в воде зависит от длины полифторалкильного заместителя. Соли **3a,b** с дифторметильным заместителем хорошо растворяются в воде, тогда как соли **3c,d** плохо растворимы (последняя очищена нами кристаллизацией из воды). Соединения **3a–d** являются солями сильных органических NH-кислот **8a,b**, которые были выделены в свободном состоянии путем последовательных превращений солей **3b,d** в соли серебра **7a,b** и обработки последних соляной кислотой.

Определение р K_a соединения **8b** дало значение 2.00, т. е. кислотность этого соединения на 3–4 порядка превышает кислотность других известных триазолов с электроноакцепторными заместителями [7, 8].

Строение соли 3d было подтверждено методом рентгеноструктурного анализа. Общий вид катиона и аниона 3d показан на рисунке, их основные геометрические параметры приведены в табл. 1.

Общий вид катиона и аниона соединения 3d

 $\begin{tabular}{ll} $\mathsf{T}\,\mathsf{a}\,\mathsf{б}\,\mathsf{\pi}\,\mathsf{u}\,\mathsf{u}\,\mathsf{a} & 1 \\ \end{tabular}$ Основные длины связей d и валентные углы $\pmb{\omega}$ в соли $3\mathbf{d}$

Связь	d, Å	Угол	ω, град.
$S_{(1)}$ – $O_{(1)}$	1.432(5)	$O_{(1)}$ - $S_{(1)}$ - $O_{(2)}$	117.3(3)
$S_{(1)} - O_{(2)}$	1.417(6)	$O_{(1)}$ - $S_{(1)}$ - $C_{(2)}$	107.4(3)
$S_{(1)}$ – $C_{(2)}$	1.749(5)	$O_{(2)}-S_{(1)}-C_{(2)}$	108.5(3)
$S_{(1)}$ – $C_{(3)}$	1.774(7)	$O_{(1)}-S_{(1)}-C_{(3)}$	108.5(4)
$N_{(1)}$ - $N_{(2)}$	1.334(7)	$O_{(2)}-S_{(1)}-C_{(3)}$	110.3(3)
$N_{(1)}$ – $C_{(2)}$	1.334(8)	$C_{(2)}$ – $S_{(1)}$ – $C_{(3)}$	104.0(3)
$N_{(2)}$ - $N_{(3)}$	1.321(8)	$N_{(2)}$ - $N_{(1)}$ - $C_{(2)}$	107.8(5)
$N_{(3)}$ – $C_{(1)}$	1.351(9)	$N_{(1)}$ - $N_{(2)}$ - $N_{(3)}$	110.2(5)
$N_{(4)}$ – $C_{(14)}$	1.490(8)	$N_{(2)}$ - $N_{(3)}$ - $C_{(1)}$	106.9(6)
$N_{(4)}$ – $C_{(15)}$	1.494(9)	$C_{(14)}-N_{(4)}-C_{(15)}$	108.1(6)
$N_{(4)}$ – $C_{(17)}$	1.486(9)	$C_{(14)}-N_{(4)}-C_{(17)}$	108.7(6)
$N_{(5)}$ – $C_{(13)}$	1.464(9)	$C_{(15)}-N_{(4)}-C_{(17)}$	109.8(6)
$N_{(5)}$ – $C_{(16)}$	1.474(8)	$C_{(13)}-N_{(5)}-C_{(16)}$	108.3(5)
$N_{(5)}$ – $C_{(18)}$	1.447(9)	$C_{(13)}-N_{(5)}-C_{(18)}$	109.3(6)
$C_{(1)}$ – $C_{(2)}$	1.368(9)	$C_{(16)}-N_{(5)}-C_{(18)}$	109.2(6)
$C_{(1)}$ – $C_{(19)}$	1.477(11)	$N_{(3)}$ - $C_{(1)}$ - $C_{(2)}$	107.9(6)
$C_{(3)}$ – $C_{(4)}$	1.508(9)	$N_{(3)}$ – $C_{(1)}$ – $C_{(19)}$	119.5(7)
		$C_{(2)}$ – $C_{(1)}$ – $C_{(19)}$	131.9(7)
		$S_{(1)}$ – $C_{(2)}$ – $N_{(1)}$	119.5(5)
		$S_{(1)}$ – $C_{(2)}$ – $C_{(1)}$	133.4(5)
		$N_{(1)}$ – $C_{(2)}$ – $C_{(1)}$	107.2(5)
		$S_{(1)}$ – $C_{(3)}$ – $C_{(4)}$	111.5(4)

Центральный триазольный гетероцикл $N_{(1-3)}C_{(1)}C_{(2)}$ планарный (отклонения атомов от среднеквадратичной плоскости не превышают 0.002~Å), бензольное кольцо $C_{(4-9)}$ образует с этой плоскостью двугранный угол 21.1° . Длины связей и валентные углы в гетероцикле $N_{(1-3)}C_{(1)}C_{(2)}$ близки соответствующим значениям, найденным в молекулах $\mathbf{9}$ [9] и $\mathbf{10}$ [10]. Геометрические параметры группировки $-\text{SO}_2\text{CH}_2\text{Ph}$ обычные [11, 12].

$$CF_3$$
 $N=N$
 $N=N$

 ${\rm T}\, {\rm a}\, {\rm f}\, {\rm л}\, {\rm u}\, {\rm ц}\, {\rm a}\, \, 2$ Координаты атомов и эквивалентные изотропные тепловые параметры $U_{\rm экв}\,\,\,$ в структуре 3d

Атом	x	у	z	$U_{\scriptscriptstyle m SKB},{ m \AA}^2$
$S_{(1)}$	0.29075(11)	0.2138(3)	0.56210(6)	0.0547
$O_{(1)}$	0.3692(3)	0.108(1)	0.53573(18)	0.0757
$O_{(2)}$	0.2679(4)	0.4311(9)	0.5461(2)	0.0817
$N_{(1)}$	0.3916(4)	0.094(1)	0.6496(2)	0.0569
N ₍₂₎	0.3974(4)	0.1229(12)	0.7026(2)	0.0716
N ₍₃₎	0.3289(5)	0.2587(12)	0.7184(2)	0.0732
N ₍₄₎	0.5322(4)	-0.210(1)	0.62170(19)	0.0487
N ₍₅₎	0.6456(4)	-0.5321(9)	0.6147(2)	0.0561
$C_{(1)}$	0.2781(5)	0.3181(13)	0.6739(3)	0.0667
$C_{(2)}$	0.3180(4)	0.2147(12)	0.6309(2)	0.0483
C ₍₃₎	0.1870(5)	0.0434(13)	0.5564(3)	0.0634
C ₍₄₎	0.1466(4)	0.0416(13)	0.4998(2)	0.0545
C ₍₅₎	0.0869(4)	0.2075(13)	0.4819(3)	0.0611
C ₍₆₎	0.0496(5)	0.2019(17)	0.4293(3)	0.0778
C ₍₇₎	0.0735(6)	0.0308(18)	0.3964(3)	0.0798
$C_{(8)}$	0.1325(6)	-0.1299(16)	0.4145(3)	0.0808
C ₍₉₎	0.1702(5)	-0.1289(13)	0.4651(3)	0.0652
$C_{(13)}$	0.5730(5)	-0.5405(13)	0.5713(3)	0.0635
$C_{(14)}$	0.5075(5)	-0.3418(13)	0.5729(3)	0.0641
$C_{(15)}$	0.5218(5)	-0.3553(14)	0.6696(3)	0.0670
C(16)	0.5949(6)	-0.5372(13)	0.6663(3)	0.0661
$C_{(17)}$	0.6339(6)	-0.1342(14)	0.6180(4)	0.0871
$C_{(18)}$	0.6996(5)	-0.3295(12)	0.6110(3)	0.0690
$C_{(19)}$	0.2043(8)	0.4923(18)	0.6776(4)	0.1196
$C_{(20)}$	0.1817(9)	0.5765(19)	0.7338(5)	0.1331
$C_{(21)}$	0.1330(11)	0.769(2)	0.7380(5)	0.4113
$F_{(1)}$	0.1270(5)	0.4283(19)	0.6501(4)	0.2115
$F_{(2)}$	0.2353(7)	0.6915(13)	0.6541(3)	0.1832
$F_{(3)}$	0.1479(6)	0.3970(15)	0.7616(3)	0.1821
$F_{(4)}$	0.2600(8)	0.6538(15)	0.7585(4)	0.2001
F ₍₅₎	0.0608(12)	0.757(4)	0.7085(5)	0.3784
$F_{(6)}$	0.1082(13)	0.810(2)	0.7869(4)	0.2863
$H_{(4)}$	0.485(6)	-0.118(13)	0.626(3)	0.07(2)

В кристалле соединения **3d** катион и анион объединены посредством весьма прочной [13] водородной связи $N_{(1)} \cdots H_{(4)} - N_{(4)}$. Основные геометрические параметры этой связи: $N_{(1)} \cdots N_{(4)}$ 2.783(8), $N_{(1)} \cdots H_{(4)}$ 1.92(8), $N_{(4)} - H_{(4)}$ 0.87(8) Å, $N_{(1)} - H_{(4)} - N_{(4)}$ 168(5)°.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Спектры ЯМР 1 Н, 19 F и 13 С зарегистрированы на спектрометре Varian-VXR-300 с рабочими частотами 299.943, 282.203 и 75.43 МГц соответственно. Внутренние стандарты — тетраметилсилан и гексафторбензол (-162.9 м. д. относительно CCl₃F). Контроль за протеканием реакций проводили методом спектроскопии ЯМР 19 F. ИК спектры сняты на приборе UR-20. Константу ионизации определяли методами спектрофотометрического и рН-титрования при $\lambda = 227$ нм, используя спектрофотометры СФ-16, Specord UV-vis и рН-метр ЭВ-74 [14]. Оба метода дают совпадающие результаты. Значение константы при 20 $^{\circ}$ С и ионной силе 0.1 (КСl) составляет: $pK_a = 2,00 \pm 0,03$. Анионная форма соединения **8b** имеет в УФ спектре слабо выраженные максимумы светопоглощения при $\lambda = 212$ и 217 нм, $\varepsilon = 1.5 \cdot 10^4$, молекулярная форма — при $\lambda < 212$ нм. Обе формы в области 250–270 нм имеют 4 малоинтенсивных максимума поглощения, $\varepsilon = 150$ –250.

2-Азидо-1-бензилсульфонил-3,3-дифторпропен-1 (**4a**). Суспензию 0.54 г (2 ммоль) сульфона **1a**, 0.28 мл (2 ммоль) E_{13} N и 0.15 г (2.3 ммоль) E_{14} N и 0.15 г (2.3 ммоль) E_{15} N и 0.15 г E_{15} N и 15 и 0.15 г E_{15}

2-Азидо-1-бензилсульфонил-3,3,4,4,5,5-гексафторпентен-1 (4b). А. Получают аналогично соединению **4a** из 0.74 г (2 ммоль) сульфона **1b**, 0.28 мл (2 ммоль) Et_3N и 0.15 г (2.3 ммоль) NaN_3 в 10 мл бензола. Время кипячения 15 мин. После упаривания бензола получают медленно кристаллизующееся масло. Выход 0.65 г (87%).

Б. К раствору 0.7 г (2 ммоль) винилфторида **2b** в 15 мл бензола добавляют по каплям раствор 0.23 г (2 ммоль) триметилсилилазида в 5 мл бензола и смесь выдерживают 8 ч при 40 °C. Растворитель упаривают, в остатке – соединение **4b**. Выход количественный. ИК спектр (тонкий слой), \mathbf{v} , \mathbf{cm}^{-1} : 2150 (N₃). Спектр ЯМР 1 H (CDCl₃), δ , м. д., J (Гц): 7.40 (5H, м, C₆H₅); 6.05 (1H, c, CH=); 6.01 (1H, т. т., $^{2}J_{\mathrm{HF}} = 52.0$, $^{3}J_{\mathrm{HF}} = 5.4$, HCF₂); 4.45 (2H, c, CH₂). Спектр ЯМР 19 F (CDCl₃), δ , м. д., J (Гц): -114.58 (2F, c, CF₂); -129.98 (2F, c, CF₂); -137.48 (2F, д, $^{2}J_{\mathrm{FH}} = 52.0$, CF₂H). Найдено, %: S 8.56; N 11.21. $C_{12}H_{9}F_{6}N_{3}O_{2}S$. Вычислено, %: S 8.59; N 11.26.

Соль 4-бензилсульфонил-5-дифторметил-v-триазола и 1,4-диазабицикло[2,2,2]-октана (3b) и 4-бензилсульфонил-5-дифторметил-v-триазол (8a). К нагретому до 80 °C раствору 0.54 г (2 ммоль) сульфона 1а и 0.45 г (4 ммоль) 1,4-диазабицикло[2,2,2]октана в 10 мл бензола добавляют раствор 0.28 мл (2.1 ммоль) триметилсилилазида в 2 мл бензола и после охлаждения до 20 °C смесь перемешивают 8 ч. Растворитель медленно упаривают, получают маслянистое кристаллическое вещество, которое быстро промывают 5 мл холодной воды. Получают 0.28 г (36%) соединения 3b, т. пл. 133–135 °C. Спектр ЯМР 1 H (CDCl₃), δ , м. д., J (Γ ц): 11.28 (1H, уш, NH); 7.21–7.32 (3H, м, C_{6} H₅); 7.02–7.10 (2H, м, C_{6} H₅); 6.87 (1H, т. т, $^{2}J_{HF}$ = 55.0, HCF₂); 4.45 (2H, c, CH₂SO₂); 3.04 (12H, c, NCH₂). Спектр ЯМР 19 F (CDCl₃), δ , м. д., J (Γ ц): -112.10 (2F, д, $^{2}J_{FH}$ = 55.0, CF₂H). Найдено, %: S 8.41; N 17.82. C_{16} H₂1F₅N₅O₂S. Вычислено, %: S 8.32; N 18.17.

К водному маточному раствору от промывки соединения **3b** добавляют раствор 0.6 r AgNO₃, выпавший осадок Ag-соли **7a** отфильтровывают, промывают на фильтре 2×5 мл воды и растворяют в 30 мл CH₃CN. Раствор фильтруют через целиты и добавляют к нему 1 мл конц. HCl, выпавший осадок AgCl отфильтровывают и CH₃CN упаривают в вакууме. К остатку добавляют 10 мл бензола, органический слой отделяют, сушат CaCl₂ и упари-

вают. В остатке – соединение **8a**. Выход 0.26 г (47%). Т. пл. 143–145 °C (из смеси гексанэфир, 3 : 2). Спектр ЯМР ¹H (CDCl₃), δ , м. д., J (Гц): 12.35 (1H, уш, NH); 7.31–7.36 (3H, м, C₆H₅); 7.10–7.19 (2H, м, C₆H₅); 6.73 (1H, т. т, $^2J_{\rm HF}$ = 53.0, HCF₂); 4.57 (2H, с, CH₂). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д., J (Гц): –116,20 (2F, д, $^2J_{\rm FH}$ = 53.0, CF₂H). Найдено, %: S 11.63; N 15.63. C₁₀H₉F₂N₃O₂S. Вычислено, %: S 11.73; N 15.38.

Соль 4-бензилсульфонил-5-(ω -Н-гексафторпропил)-v-триазола и 1,4-диазабицикло[2,2,2]октана (3d). А. К нагретому до 80 °C раствору 0.74 г (2 ммоль) сульфона 2b и 0.45 г (4 ммоль) 1,4-диазабицикло[2,2,2]октана в 10 мл бензола добавляют раствор 0.28 мл (2.1 ммоль) триметилсилилазида. Выпавший после охлаждения до 20 °C осадок отфильтровывают. Выход соединения 3d 0.94 г (97%).

Б. Суспензию 0.74 г (2 ммоль) сульфона 1b, 0.28 мл (2 ммоль) E_{13} N и 0.15 г (2.3 ммоль) NaN₃ в 15 мл бензола перемешивают 16 ч при 20 °C. Осадок отфильтровывают и к маточному раствору доливают раствор 0.24 г (2.1 ммоль) 1,4-диазабицикло[2,2,2]октана в 5 мл бензола. Смесь перемешивают еще 30 мин, выпавший осадок соединения 3d отфильтровывают. Выход 0.86 г (89%). Т. пл. 210-212 °C (из воды). Спектр 9 MP 9 H (CDCl₃), 9 м. д., 9 (9 H) 9 H (9 H) 9 H, 9 H,

4-Бензилсульфонил-5-(\omega-H-гексафторпропил)-v-триазол (8b). К раствору 0,97 г (2 ммоль) соли **3d** в 40 мл воды при 85–90 °C добавляют по каплям раствор 0.34 г (2 ммоль) AgNO₃ в 3 мл воды. Выпавший осадок Ag-соли **7b** отфильтровывают, промывают 5 мл воды и растворяют в 25 мл CH₃CN. Раствор фильтруют через целиты, добавляют к нему 2 мл конц. HCl и осадок AgCl отфильтровывают. Маточный раствор упаривают, к остатку добавляют 15 мл бензола, органический слой сушат CaCl₂ и упаривают. В остатке – соединение **8b** в виде масла, кристаллизующегося при стоянии. Выход 0.56 г (75%). Т. пл. 95–97 °C (из смеси гексан–эфир, 4 : 1). Спектр ЯМР ¹H (CDCl₃), δ , м. д., J (Γ ц): 13.12 (1H, уш, NH); 7.19–7.40 (5H, м, C_6 H₅); 6.26 (1H, т. T, C_6 H₇ = 52.2, C_6 H₇ = 6.0, HCF₂); 4.63 (2H, C_6 CH₂). Спектр ЯМР ¹⁹F (CDCl₃), δ , м. д., C_6 H₇ = 7.131.25 (2F, C_6 CF₂); -137.98 (2F, C_6 CF₂H). Спектр ЯМР ¹³C (ДМСО), C_6 CH₆H₇ = 32.2, C_6 CH₇ = 251.5, C_6 CH₈ = 31.0, C_6 CH₉ = 31.0, C_6 CH₉ = 29.9, C_6 CH

Рентгеноструктурное исследование монокристалла соединения 3d с линейными размерами $0.18 \times 0.19 \times 0.56$ мм проведено при комнатной температуре на автоматическом четырехкружном дифрактометре Enraf-Nonius CAD-4 (СиК_а-излучение, отношение скоростей сканирования $\omega/2\theta = 1.2$, $\theta_{\text{max}} = 60$, сегмент сферы $0 \le h \le 16$, $0 \le k \le 7$, $-29 \le l \le 29$). Всего было собрано 3603 отражений, из которых 3103 являются симметрически независимыми (R-фактор усреднения 0.036). Кристаллы соединения 3d моноклиные, a = 13.833(2), b = 6.0914(9), c = 24.922(2) Å, $\beta = 90.95(1)^{\circ}$, V = 2099.6 Å³, M = 485.45, $Z=4,\,d_{\mathrm{выч}}=1.54\,\mathrm{г/cm^3},\,\mu=20.75\,\mathrm{cm^{-1}},\,$ пространственная группа $P2_1/c\,$ (N 14). Структура расшифрована прямым методом и уточнена методом наименьших квадратов в полноматричном анизотропном приближении с использованием комплекса программ CRYSTALS [15]. Учет поглощения в кристалле выполнен по методу азимутального сканирования [16]. В уточнении использовано 1812 отражений с $I > 5\sigma(I)$ (293 уточняемых параметра, число отражений на параметр 6.2, весовая схема Чебышева [17] с 5 параметрами: 1.97, -0.58, 0.72, -0.71 и -0.29). Около 50% атомов водорода выявлено в разностном синтезе электронной плотности, остальные атомы Н были посажены геометрически. Все атомы водорода были включены в расчет с фиксированными позиционными и тепловыми параметрами. Лишь атом 4-Н, участвующий в образовании водородной связи, уточнялся изотропно. Окончательные значения факторов расходимости R = 0.082 и $R_{\rm W} = 0.088$. Остаточная электронная плотность из разностного ряда Фурье 0.64 и -0.45 е/Å³. Координаты атомов приведены в табл. 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. В. М. Тимошенко, В. В. Листван, Э. Б. Русанов, Ю. Г. Шермолович, Л. Н. Марковский, *ЖОрХ*, **33**, 70 (1997).
- Ю. Г. Шермолович, В. М. Тимошенко, В. В. Листван, Л. Н. Марковский, ЖОрХ, 34, 1167 (1998).
- 3. В. М. Тимошенко, Я. В. Николин, Н. П. Колесник, Ю. Г. Шермолович, $\mathcal{K}OpX$, (в печати).
- 4. I. H. Boyer, F. C. Canter, Chem. Rev., 54, 1 (1954).
- 5. H. C. Зефиров, Н. К. Чаповская, *ЖОрХ*, **6**, 2596 (1970).
- 6. N. S. Zefirov, N. K. Chapovskaya, V. V. Kolesnikov, *Chem. Commun.*, No. 17, 1001 (1971).
- 7. A. H. Несмеянов, М. H. Рыбинская, *ДАН*, **167**, 109 (1966).
- 8. S. Maiorana, D. Pocar, P. Dalla Croce, Tetrah. Lett., No. 48, 6043 (1966).
- 9. Н. П. Степанова, В. А. Галишев, Е. С. Турбанова, А. В. Малеев, К. А. Потехин, Е. Н. Куркутова, Ю. Т. Стручков, А. А. Петров, *ЖОрХ*, **25**, 1612 (1989).
- 10. Г. Г. Баргамов, К. А. Лысенко, М. Д. Баргамов, Ю. Т. Стручков, *Изв. АН. Сер. хим.*, 2465 (1995).
- 11. В. А. Наумов, О. Н. Катаева, Молекулярное строение органических соединений кислорода и серы в газовой фазе, Наука, Минск, 1990, 192.
- 12. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, *J. Chem. Soc. Perkin* 2, 1 (1987).
- 13. L. N. Kuleshova, P. M. Zorkii, Acta crystallogr. (B), 37, 1363 (1981).
- 14. И. Е. Калиниченко, ЖОХ, 54, 998 (1984).
- 15. D. J. Watkin, C. K. Prout, J. R. Carruthers, P. W. Betteridge, *CRYSTALS*. Issue 10, Chemical Crystallography Laboratory, Univ. of Oxford, 1996.
- 16. A. C. T. North, D. C. Phillips, F. Scott, F. S. Mathews, Acta crystallogr. (A), 24, 351 (1968).
- 17. J. R. Carruthers, D. J. Watkin, *Acta crystallogr.* (A), **35**, 698(1979).

Институт органической химии НАН Украины, Киев 02094 e-mail: sherm@ukrpack.net

Поступило в редакцию 31.05.2000