Н. Н. Колос, В. Д. Орлов, Б. В. Папонов, О. В. Шишкин

2,3-ДИАМИНО-5-АРИЛ-7-(4-НИТРОФЕНИЛ)-1,2,4-ТРИАЗОЛО[1,5-*а*]ПИРИМИДИНИЙ-6-ОЛАТЫ

При реакции 3,4,5-триамино-1,2,4-триазола с 1-арил-3-(4-нитрофенил)-2,3-дибромпропанонами образуются соответствующие соли триазолопиримидиния и 1,2,4-триазоло[1,5-*а*]пиримидиний-6-олаты. Структура одного из последних установлена с помощью РСА.

Ключевые слова: мезоионные соединения, олат, триазол, халкондибромид, резонансная структура, рентгеноструктурное исследование.

Взаимодействием 3,4,5-триамино-1,2,4-триазола (1) с 1-арил-3-(4-нитрофенил)-2,3-дибромпропанонами 2а-d нами были получены [1] соли триазолопиримидиния 3а-d. В настоящей работе мы показали, что наряду с указанными солями образуются также 1,2,4-триазоло[1,5-*a*]пиримидинийолаты 4а-d, выход которых возрастает с увеличением времени кипячения реакционной смеси. Использование в реакции с триамином 1 α -бромхалконов 5а,b вместо дибромидов 2 позволяет несколько увеличить выход целевых продуктов 4a,b.

2–5 a Ar = Ph, **b** Ar = $C_6H_4Cl_-p$; **c** Ar = $C_6H_4Br_-p$; **d** Ar = $C_6H_4NO_2-p$

Таблица 1

Физико-химические характеристики соединений 3b-d, 4а-d

Соеди- нение	Брутто-формула	<u>Найдено N. %</u> Вычислено N, %	Т. пл., ℃	Электронные спектры поглощения, λ_{max} , нм	ИК спектр, v, см ⁻¹		Выход, %, по методу А (В)
				(ɛ _{max} ·10°)	vC=C, C=N	v NH2	
3b	C ₁₇ H ₁₃ BrClN ₇ O ₂ H ₂ O	<u>20.3</u> 20.4	227228	276(17.2), 349(11.1), 468(4.9)	1652, 1629	3437, 3300, 3107	56
3c	C ₁₇ H ₁₃ Br ₂ N ₇ O ₂ ·H ₂ O	<u>18.9</u> 18.7	246–247	279(17.3), 347(10.8), 471(4.8)	1669, 1627	3476, 3337, 3103	62
3d	C ₁₇ H ₁₃ BrN ₈ O ₄ H ₂ O	<u>22.9</u> 22.8	253254	293(17.4), 356(11.7), 477(6.1)	1653, 1638	3453, 3330, 3130	54
4a	C ₁₇ H ₁₃ N ₇ O ₃ · C ₃ H ₇ NO	<u>25.9</u> 25.7	280–281	248(12.9), 332(11.2), 469(9.3)	1669, 1632	3430, 3350, 3103	53 (67)
4b	C ₁₇ H ₁₂ CIN7O3	<u>24.6</u> 24.6	303–304	251(13.9), 334(12.2), 470(8.1)	1664, 1637	3436, 3376, 3136	56 (65)
4c	C ₁₇ H ₁₂ BrN7O3	<u>22.1</u> 22.2	307–308	252(12.6), 331(13.4), 471(11.0)	1669,1632	3403, 3377, 3153	54
4đ	C ₁₇ H ₁₂ N ₈ O ₅	<u>27.3</u> 27.4	295297	255(12.8), 341(13.2), 474(9.8)	1650, 1626	3433, 3353, 3103	57

369

Соли 3 отмывали из осадка продуктов реакции горячим метанолом, а кристаллизацией остатка из диметилформамида выделяли цвиттер-ионы 4.

Соединение **За** идентично образцу, описанному ранее [1] (т. пл., ИК и УФ спектры). Строение продуктов **3b**-d и **4a**-d согласуется с результатами элементного анализа, данными ЯМР ¹H, УФ и ИК спектров, пространственная и молекулярная структура соединения **4a** установлена методом РСА (рис. 1).

Рис. 1. Распределение зарядов (в долях заряда электрона е) в молекуле 4а

В ИК спектрах соединений **4а-d** присутствуют группа полос при 3430, 3350 и 3100 см⁻¹, отнесенная к колебаниям аминогрупп триазольного цикла, а также полосы в области 1670 и 1630 см⁻¹, отнесенные к суперпозиции колебаний С=С и С=N связей пиримидинового и триазольного циклов (табл. 1). Для спектров ЯМР ¹Н соединений **4а-d** характерны уширенный синглет группы 2-NH₂ в области 6.00 м. д., слабо расщепленный дублет группы 3-NH₂ в слабом поле, а также сигналы ароматических протонов арильного и нитрофенильного заместителей (табл. 2). По данным РСА, в кристалле молекулы **4а** образуют сольват с ДМФА (1:1).

Аминогруппа при атоме C(1) имеет плоское строение (сумма валентных углов при атоме азота 359.7°) и почти копланарна плоскости триазольного кольца (торсионный угол N(2)–C(1)–N(6)–H(6NB) 15°). Группа NH₂ при атоме N(3) имеет пирамидальное строение (сумма валентных углов при атоме N(7) 332.7°) и повернута практически перпендикулярно плоскости азольного цикла (торсионный угол C(1)–N(3)–N(7)–H(7NA) 115°). При этом атомы водорода направлены в сторону пиримидинового кольца.

Соединение	2-NH ₂ уш. с	3-NH ₂ д (J = 7.5)	5-Ar	7-C ₆ H ₄ NO ₂
4a	6.01	8.77	7.40 м	8.28 д (J = 7.8) 8.49 д (J = 8.0)
4b	6.01	8.88	7.38 д (J = 8.0) 7.51 д (J = 8.0)	8.29 д (<i>J</i> = 7.8) 8.49 д (<i>J</i> = 8.0)
4d	5.99	9.09	8.57 д (<i>J</i> = 8.0) 8.78 д (<i>J</i> = 8.0)	8.27 д (J = 7.8) 8.56 д (J = 8.0)

Спектры ЯМР ¹Н соединений 4а,b,d, б, м. д. (КССВ, *J*, Гц)

Таблица 2

Такая ориентация обусловлена, вероятно, неблагоприятными невалентными взаимодействиями с соседней аминогруппой, на что в частности укороченный внутримолекулярный указывает контакт H(6NA)...N(7) 2.54 Å (сумма ван-дер-ваальсовых радиусов 2.66 Å [2]). Отталкивание между атомами водорода в орто-положениях фенильных заместителей при C(3), C(5) и атомами O(1), C(4), N(4), N(2) (укороченные контакты H(7)...N(4) 2.40 Å, H(11)...O(1) 2.39 Å (2.45 Å), H(17)...O(1) 2.22 Å, H(17)...C(4) 2.68 Å (2.77 Å), H(13)...N(2) 2.55 Å) приводят к развороту фенильных ядер на 25.9(5)° и 37.9(4)° соответственно (торсионные углы N(4)-C(3)-C(6)-C(7), N(1)-C(5)-C(12)-C(13)). Нитрогруппа практически копланарна бензольному циклу С(12)...С(17); торсионный угол C(14)-C(15)-N(5)-O(2) 10.1(5)°.

В кристалле молекулы **4a** образуют трехмерные сетки за счет водородных связей H(6NA)...O(1)' (-x, -0.5 + y, 2.5 - z) (O...H 1.79 Å, O...H-N 156.7°), H(7NA)...O(1S)' (1 - x, -0.5 + y, 2.5 - z) (O...H 2.18 Å, O...N-H 136.9°), H(7NB)...O(1)' (x, 1.5 + y, -0.5 + z) (O...H 1.88 Å, O...H-N 165°) и укороченного межмолекулярного контакта H(17)...N(7)' (-x, 0.5 + y, 2.5 - z) 2.50 Å.

Строение молекулы 4а можно представить в виде набора основных резонансных структур А-Е:

371

Для анализа вклада этих структур выполнен расчет зарядов и порядков связей (рис. 1, 2) для установленной методом РСА геометрии молекулы. По сравнению со связью C(2)–N(4) существенно большая длина (1.363(4) Å) и меньший порядок связи C(2)–N(3) указывают на ее одинарный характер и позволяют исключить из рассмотрения резонансную структуру В.

Рис. 2. Порядки связей в молекуле 4а

Порядок связи C(4)–O(1) (рис. 2) указывает на ее преимущественно двойной характер, а связей C(3)–C(4) и C(4)–C(5) – на одинарный. Близкие значения длин и порядков связей N(4)–C(3) и N(4)–C(2) свидетельствуют о значительной делокализации электронной плоскости в этом фрагменте. Аналогичная делокализация наблюдается и во фрагменте C(2)–N(1)–C(5), но при значительно меньших порядках связей. Это позволяет сделать вывод, что основной вклад вносят структуры C–E. С этим выводом согласуется также существование пиримидинового цикла в конформации сильно уплощенной ванны. Отклонения атомов C(2) и C(4) от плоскости остальных атомов цикла –0.05 и –0.07 Å соответственно.

Получение мезоионных соединений в реакциях аминоазолов с поляризованными олефинами описано в работе [3], где на основании данных ИК спектров рассматриваются вклады олатных и оксо-форм для подобных структур. 6-Гидроксипроизводные азолопиримидиновых систем получены авторами работ [4, 5], в то время как образование мезоионных соединений окислением соответствующих пиримидиниевых солей не было описано. Мы предполагаем, что превращение солей **3а-d** в соединения **4а-d** происходит по аналогии с процессами, описанными в этих работах, где в роли окислителя выступает кислород воздуха. В пользу этого говорит целевое окисление соли **3а** в мезоионное соединение **4а** при выдерживании ее раствора в ДМСО в течение 40 ч на кипящей водяной бане на воздухе.

Таблица З

Длины связей (*l*) в структуре 4a

Связь	l, Å	Связь	l, Å
N(1)-C(2)	1.346(4)	C(5)-C(12)	1.465(5)
N(1)-C(5)	1.370(4)	C(6)-C(7)	1.391(5)
N(1)-N(2)	1.398(4)	C(6)-C(11)	1.398(5)
N(2)-C(1)	1.329(4)	C(7)-C(8)	1.382(6)
N(3)–C(2)	1.365(4)	C(8)–C(9)	1.371(6)
N(3)-C(1)	1.363(4)	C(9)-C(10)	1.371(6)
N(3)N(7)	1.409(4)	C(10)-C(11)	1.388(5)
N(4)-C(2)	1.315(4)	C(12)-C(13)	1.396(5)
N(4)-C(3)	1.329(4)	C(12)-C(17)	1.405(4)
N(5)-O(3)	1.223(4)	C(13)-C(14)	1.384(5)
N(5)-O(2)	1.230(4)	C(14)-C(15)	1.378(5)
N(5)-C(15)	1.464(5)	C(15)-C(16)	1.377(5)
N(6)-C(1)	1.343(4)	C(16)-C(17)	1.378(6)
O(1)–C(4)	1.276(4)	N(1S)-C(1S)	1.302(5)
C(3)–C(4)	1.450(5)	N(1S)C(3S)	1.447(6)
C(3)–C(6)	1.484(5)	N(1S)C(2S)	1.446(6)
C(4)–C(5)	1.438(5)	O(1S)C(1S)	1.226(6)

Таблица 4

Валентные углы (ω) в структуре 4а

Угол	ω, град.	Угол	ω, град.
C(2)-N(1)-C(5)	121.5(3)	N(1)C(5)C(12)	120.0(3)
C(2)-N(1)-N(2)	111.1(3)	C(4)-C(5)-C(12)	123.9(3)
C(5)-N(1)-N(2)	126.9(3)	C(7)-C(6)-C(11)	119.3(3)
C(1)N(2)N(1)	103.3(3)	C(7)-C(6)-C(3)	118.0(3)
C(2)-N(3)-C(1)	106.8(8)	C(11)-C(6)-C(3)	122.6(3)
C(2)–N(3)–N(7)	126.4(3)	C(8)C(7)C(6)	119.6(4)
C(1)-N(3)-N(7)	125.9(3)	C(9)-C(8)-C(7)	121.2(4)
C(2)-N(4)-C(3)	116.6(3)	C(10)-C(9)-C(8)	119.6(4)
O(3)–N(5)–O(2)	123.5(4)	C(9)-C(10)-C(11)	120.7(4)
O(3)-N(5)-C(15)	118.4(4)	C(10)-C(11)-C(6)	119.6(4)
O(2)-C(5)-C(15)	118.1(4)	C(13)-C(12)-C(17)	119.1(3)
N(2)-C(1)-N(6)	124.8(3)	C(13)-C(12)-C(5)	121.4(3)
N(2)-C(1)-N(3)	112.3(3)	C(17)-C(12)-C(5)	119.5(3)
N(6)-C(1)-N(3)	122.9(3)	C(14)-C(13)-C(12)	120.3(3)
N(4)-C(2)-N(1)	125.6(3)	C(15)C(14)C(13)	118.6(3)
N(4)-C(2)-N(3)	128.0(3)	C(14)-C(15)-C(16)	123.0(3)
N(1)-C(2)-N(3)	106.4(3)	C(14)-C(15)-N(5)	118.6(4)
N(4)-C(3)-C(4)	123.0(3)	C(16)-C(15)-N(5)	118.4(4)
N(4)-C(3)-C(6)	114.5(3)	C(17)-C(16)-C(15)	118.1(3)
C(4)-C(3)-C(6)	122.5(3)	C(16)C(17)C(12)	121.0(3)
O(1)-C(4)-C(5)	121.7(3)	C(1S)-N(1S)-C(3S)	121.3(5)
O(1)-C(4)-C(3)	121.4(3)	C(1S)-N(1S)-C(2S)	118.9(5)
C(5)-C(4)-C(3)	116.9(3)	C(3S)-N(1S)-C(2S)	119.7(5)
N(1)-C(5)-C(4)	116.0(3)	O(1S)-C(1S)-N(1S)	127.4(5)

Атом	x	у	z	
N(1)	97(2)	6572(2)	13910(3)	39(1)
N(2)	-675(2)	5958(2)	13729(3)	43(1)
N(3)	503(2)	5594(2)	12756(3)	43(1)
N(4)	1620(2)	6805(2)	13309(3)	45(1)
N(5)	-3069(3)	8273(3)	16611(4)	67(1)
N(6)	-939(3)	4682(2)	12542(3)	54(1)
N(7)	913(2)	5175(2)	11862(3)	51(1)
O(1)	940(2)	8648(1)	14711(3)	50(1)
· O(2)	-3448(3)	7743(2)	17147(4)	102(1)
O(3)	-3313(2)	8999(2)	16561(3)	84(1)
C(1)	-398(3)	5386(2)	13003(3)	43(1)
C(2)	807(3)	6355(2)	13326(4)	41(1)
C(3)	1695(3)	7559(2)	13833(4)	42(1)
C(4)	915(3)	7894(2)	14362(3)	40(1)
C(5)	104(3)	7341(2)	14451(3)	41(1)
C(6)	2622(3)	8042(2)	13788(3)	43(1)
C(7)	3030(3)	7844(3)	12763(4)	62(1)
C(8)	3930(4)	8252(3)	12735(5)	. 80(1).
C(9)	4444(4)	8838(3)	13720(5)	75(1)
C(10)	4044(3)	9040(2)	14731(5)	67(1)
C(11)	3136(3)	8648(2)	14781(4)	54(1)
C(12)	-714(3)	7569(2)	15018(4)	40(1)
C(13)	-1075(3)	7011(2)	15778(3)	47(1)
C(14)	-1853(3)	7239(2)	16295(4)	50(1)
C(15)	-2272(3)	8022(2)	16026(4)	51(1)
C(16)	-1947(3)	8590(2)	15268(4)	49(1)
C(17)	-1161(3)	8362(2)	14775(4)	46(1)
N(1S)	6007(3)	9244(3)	10130(5)	81(1)
O(1S)	6785(3)	9733(2)	12357(4)	101(1)
C(1S)	6159(4)	9283(3)	11460(6)	83(1)
C(2S)	6643(6)	9767(4)	9599(7)	124(2)
C(3S)	5258(5)	8663(4)	9197(6)	121(2)

Координаты (× 10⁴) и эквивалентные изотропные тепловые параметры (Å $^2 \times 10^3$) неводородных атомов в структуре 4a

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры сняты на спектрометре Specord IR-75 для таблеток с KBr, электронные спектры поглощения – на спектрометре Specord M-40 для растворов в метаноле; спектры ЯМР ¹Н – на спектрометре Gemini-200, внутренний стандарт ТМС, растворитель ДМСО-d₆.

Индивидуальность синтезированных соединений контролировали методом TCX на пластинках Silufol UV-254, элюент – метанол.

Рентгеноструктурное исследование соединения 4а. Кристаллы сольвата с ДМФА триазолопиримидинийолата 4а ($C_{20}H_{20}N_8O_4$) моноклинные. При 20 °С a = 13.354(3), b = 16.298(5), c = 10.246(3) Å, $\beta = 112.12(2)^\circ$, V = 2066(1) Å³, $d_{\text{выч}} = 1.403$ г/см³,

пространственная группа P_{21}/c , Z = 4. Параметры элементарной ячейки и интенсивности 3463 независимых отражений измерены на автоматическом дифрактометре Siemens P3/PC (λ МоК α , графитовый монохроматор, $\theta/2\theta$ -сканирование, $2\theta_{max} = 50^{\circ}$). Первичная обработка экспериментальных данных проведена по методике работы [6]. Структура расшифрована прямым методом с использованием комплекса программ SHELXTL PLUS [7]. Положения атомов водорода выявлены из разностного синтеза электронной плотности и уточнены по модели "наездника" с фиксированным $U_{\mu 30} = 1.2 U_{eq}$ неводородного атома, связанного с данным атомом водорода. Уточнение по F^2 полноматричным МНК в анизотропном приближении для неводородных атомов по 2792 отражениям проведено до $wR_2 = 0.149$ ($R_1 = 0.061$ по 1564 отражениям с $F>4\sigma(F)$, S = 0.97). Координаты неводородных атомов приведены в табл. 4

Образцы соединений **За-d** синтезированы с выходами 54-64% по методике, описанной в работе [1].

2,3-Диамино-7-(*п***-нитрофенил)-5-фенил-1,2,4-триазол[1,5-***а***]пиримидиний-6-олат (4а). А. Смесь 2.0 г (4 ммоль) кетона 2а**, 0.5 г (4 ммоль) триамина **1**, 1 мл триэтиламина в 70 мл метанола кипятят 5 ч. Выпавший при охлаждении осадок отфильтровывают, обрабатывают горячим метанолом. Кристаллизацией остатка из диметилформамида выделяют 0.76 г соединения **4а**. Метанольный раствор упаривают на роторном испарителе до 1/3 объема, охлаждают и отфильтровывают 0.3 г.(16%) бромида **3а**.

Б. Раствор 0.5 г (1.2 ммоль) бромида **За** в 2 мл ДМСО выдерживают на кипящей водяной бане 40 ч. После охлаждения реакционной смеси отфильтровывают 0.3 г (71%) соединения **4а**.

В. Из 1.6 г (4 ммоль) α-бромхалкона **5а** и 0.5 г (4 ммоль) триамина **1** по методике А получают продукт **4а**. Смешанная проба образцов **4а**, синтезированных по методикам А и В, не дает депрессии температуры плавления.

2,3-Диамино-7-(*n*-нитрофенил)-5-{(*n*-хлорфенил/*n*-бромфенил/*n*-нитрофенил)-1,2,4триазоло[1,5-*a*]пиримидиний-6-олаты 4b-d получают по методике А из триамина 1 и кетонов 2b-d соответственно. Соединение 4b получают также из α-бромхалкона 5b по методике Б.

СПИСОК ЛИТЕРАТУРЫ

- 1. Н. Н. Колос, В. Д. Орлов, Б. В. Папонов, О. В. Шишкин, С. В. Баумер, Н. А. Квашницкая, *XГС*, 796 (1999).
- 2. Ю. В. Зефиров, П. М. Зоркий, Успехи химии, 58, 713 (1989).
- Yoshiro Matsuda, Yasusige Chiyomaru, Kazuki Furuno, Takanobu Nishiyori, *Heterocycles*, 41, 2777 (1995).
- С. М. Десенко, В. Д. Орлов, В. В. Липсон, О. В. Шишкин, К. А. Потехин, Ю. Т. Стручков, XTC, 109 (1993).
- С. М. Десенко, В. Д. Орлов, В. В. Липсон, О. В. Шишкин, С. В. Линдеман, Ю. Т. Стручков, XTC, 688 (1993).
- 6. R. H. Blessing, J. Appl. Cryst., No. 22, 396 (1989).
- 7. G. M. Sheldrick, *SHELXTL PLUS. PC Version.* A system of computer programs for the determination of crystal structure from X-ray diffraction data. Rev. 5.02. 1994.

Харьковский национальный университет им. В. Н. Каразина, Харьков 61077, Украина e-mail: desenko@univer.kharkov.ua Поступило в редакцию 14.04.99 После переработки 27.05.99