Е. Сулоева, М. Юре, Э. Гудриниеце, С. Беляков^а, М. Петрова, И. Калните

СИНТЕЗ 2,3-ДИГИДРО-7-ТРИФТОРМЕТИЛ-5-ФЕНИЛИМИДАЗО[1,2-*a*]ПИРИДИНОВ

Синтезирован ряд 2-алкиламино-4-трифторметил-6-фенилпиридинов. Взаимодействием 2-(гидроксиалкиламино)-4-трифторметил-6-фенил-3-цианопиридинов с тионилхлоридом получены соответствующие 2-(хлоралкиламино)пиридины, 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридины и 2,3,4-тригидро-8-трифторметил-6-фенил-9-цианопиридо[1,2-*a*]пиримидины. Методом РСА изучена структура 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиримидины. 8-цианоимидазо[1,2-*a*]пиримидины.

Ключевые слова: 2,3-дигидроимидазо[1,2-*а*]пиридины, 2,3,4-тригидропиридо[1,2-*а*]пиримидины, рентгеноструктурный анализ.

Проведенные нами исследования [1, 2] в ряду 2- и 3-аминопроизводных 4-трифторметил-6-фенилпиридина показали, что эти соединения обладают противовирусной активностью. Продолжая работу, на основе 4-трифторметил-6-фенил-2-хлор-3-цианопиридина (1) и 3-аминокарбонил-4-трифторметил-6-фенил-2-хлорпиридина (2) мы синтезировали ранее не известные 2-алкиламинопиридины (в том числе ряд β - и γ -гидроксиалкиламинопроизводных) **3b–е,h,i** и **4d,j** (табл. 1, 2) по методам [1, 3, 4]. С целью модификации гидроксильного заместителя в обладающем противовирусной активностью 2-(2-гидроксиэтиламино)пиридине **4a** [1] и его аналоге **3a** [3] ацилированием ацетилхлоридом и безоилхлоридом мы получили соединения **3f,g** и **4f**.

Реализовать замену гидроксильной группы на хлор в пиридине **3a** при обработке тионилхлоридом оказалось сложнее. При кипячении пиридина **3a** с 46 экв. тионилхлорида 2-(2-хлорэтиламино)пиридин **5a** выделить нам не удалось, но при этом был получен хлорид 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*a*]пиридиния (**6**), который при подщелачивании водным раствором аммиака дает имидазопиридин **7a**. Если упомянутую реакцию проводить с втрое меньшим количеством тионилхлорида, можно выделить как бициклическое соединение **7a**, так и хлорпроизводное **5a**, однако выход последнего не превышает ~20%. Внутримолекулярная циклизация протекает даже при охлаждении реагентов (пиридин **3a** – тионилхлорид, 1 : 1 или 1 : 2) до –5 °C, при этом образуются смеси из пиридинов **3a**, **5a** и хлорида имидазопиридиния **6**. С еще более низкими выходами хлорпроизводные **5** получены при нагревании пиридинов **3a,b,d,e** в РОСІ₃. Основными продуктами реакции в этом случае являются бициклические соединения **7**.

3, **4 a** $R = CH_2CH_2OH$, R' = H; **b** $R = CH_2CHMeOH$, R' = H; **c** $R = CH_2CH(Ph)OH$, R' = H; **d** $R = CH_2CH_2CH_2OH$, R' = H; **e** $R = CH_2CH_2CHMeOH$, R' = H; **f** $R = CH_2CH_2OCOMe$, R' = H; **g** $R = CH_2CH_2OCOPh$, R' = H; **h** R = Me, R' = H; **i** $R = CH_2CH=CH_2$, R' = H; **j** R = Et, R' = Et; **5**, **7 a** n = 1, R'' = H; **b** n = 1, $R'' = CH_3$; **c** n = 1, R'' = Ph; **d** n = 2, R'' = H; **e** n = 2, R'' = Me; **6** n = 1, R'' = H, X = CI; **9** n = 1, R'' = H, $X = NO_3$; **10** n = 1, R'' = H, $X = CIO_4$

Внутримолекулярное алкилирование с образованием бициклической системы протекает при нагревании (1 ч) соединения **3a** в конц. H₂SO₄, что приводит к трудноразделимой смеси веществ, в которой главными компонентами являются соединения **4a** и 2,3-дигидроимидазо[1,2-*a*]пиридин **8** (встречный синтез амида **8** мы осуществили нагреванием имидазопиридина **7a** с конц. H₂SO₄). Подобная циклизация происходит и при нагревании пиридина **3a** в уксусной кислоте в присутствии конц. H₂SO₄, в этом случае кроме ацилированного пиридина **3f** с выходом 21% был выделен имидазопиридин **7a**. Реакция циклизации N-(2-пиридил)аминоэтанолов в имидазо[1,2-*a*]пиридиниевую систему под действием конц. H₂SO₄ или уксусной кислоты до сих пор в литературе не описана, хотя с соляной и полифосфорной кислотами она осуществлена [5, 6].

Результаты поиска сведений о 2,3-дигидроимидазо[1,2-*a*]пиридинах [7, 8], показавшие недостаточную изученность этих гетероциклических соединений, побудили нас провести реакции тионилхлорида с другими 2-(гидроксиалкиламино)пиридинами **3b**-е. Нам удалось получить как 2-(хлоралкиламино)пиридины **5b**-е, так и конденсированные бициклические гетероциклы (табл. 3, 4) – имидазопиридин **7b** и пиридо[1,2-*a*]-пиримидины **7d,е** (в случае 2-(γ -гидроксиалкиламино)пиридинов **3d,е**).

359

Однако при наличии фенильного заместителя при углероде, связанном с гидроксильной группой в соединении **3с**, внутримолекулярная циклизация не наблюдалась.

Образующиеся в реакциях с тионилхлоридом соли имидазопиридинов и пиридопиримидинов без выделения были превращены в свободные основания. Исключением является хлорид имидазопиридиния **6**, который, как и нитрат **9** и перхлорат **10**, был получен обработкой имидазопиридина **7a** соответствующими кислотами. Синтезированные бициклические соединения ярко окрашены. Температура плавления ярко-желтых солей **6**, **9**, **10** от 172 °C у нитрата до 283 °C у перхлората. Темно-красные имидазопиридины **7** (n = 1) плавятся при 110–143 °C. Температура плавления оранжевых пиридопиримидинов **7** (n = 2) несколько выше (136–198 °C).

Таблица 1

Со- еди- не- ние	Брутто-формула	l B C	<u>Найдено, %</u> ычислено, Н	% %	Т. пл., °С	Продол- житель- ность реакции,	Выход, % (метод)
3 a	C ₁₅ H ₁₂ F ₃ N ₃ O				134–136 (134–136 [3])	ч (метод)	78
3b	$C_{16}H_{14}F_3N_3O$	<u>59.62</u> 59.81	$\frac{4.40}{4.39}$	<u>12.96</u> 13.08	124–125	2	89
3c	$C_{21}H_{16}F_3N_3O$	<u>65.46</u> 65.79	<u>4.12</u> 4.21	<u>10.67</u> 10.96	125–127	4	81
3d	$C_{16}H_{14}F_3N_3O$	<u>59.76</u> 59.81	$\frac{4.15}{4.39}$	<u>13.01</u> 13.08	134–135	5	87
3e	$C_{17}H_{16}F_3N_3O$	<u>60.97</u> 60.89	<u>4.83</u> 4.81	<u>12.59</u> 12.53	146–147	2	85
3f	$C_{17}H_{14}F_{3}N_{3}O_{2}\\$	<u>58.15</u> 58.45	<u>3.98</u> 4.04	<u>11.91</u> 12.03	167–170	2 (А), 4 (Б)	54 (А), 82 (Б)
3g	$C_{22}H_{16}F_3N_3O_2$	<u>63.94</u> 64.23	<u>3.86</u> 3.92	<u>10.17</u> 10.21	181–184	8	53
3h	$C_{14}H_{10}F_3N_3$	<u>60.57</u> 60.65	<u>3.63</u> 3.64	<u>15.10</u> 15.16	220–221	2	79
3i	$C_{16}H_{12}F_3N_3$	<u>63.27</u> 63.36	<u>3.97</u> 3.99	<u>13.81</u> 13.86	118–119	1	77
4 a	$C_{15}H_{14}F_3N_3O_2$				203–204 (201 [1])	2	80
4d	$C_{16}H_{16}F_{3}N_{3}O_{2}\\$	<u>56.50</u> 56.63	<u>4.78</u> 4.75	<u>12.29</u> 12.38	152–153	6	66
4f	$C_{17}H_{16}F_3N_3O_3$	<u>55.68</u> 55.59	<u>4.37</u> 4.39	<u>11.43</u> 11.44	215-218	1	84
4j	$C_{17}H_{18}F_3N_3O$	<u>60.52</u> 60.53	<u>5.45</u> 5.38	<u>12.42</u> 12.46	158–159	3	88

Характеристики 4-трифторметил-6-фенилпиридинов 3a-i, 4a,d,f,j

Таблица 2

Спектральные характеристики 4-трифторметил-6-фенилпиридинов 3b-i, 4d,f,j

Соеди-	ИК спектр,	Спектр ЯМР ¹ Н (CDCl ₃), б, м. д., <i>J</i> (Гц)
3b	3414, 2978, 2926, 2218, 1594, 1522	1.27 (3H, д, <i>J</i> = 5, CH ₃); 2.58 (1H, уш. с, OH); 3.34–4.07 (3H, м, CH ₂ –CH); 6.00 (1H, т, <i>J</i> = 5, NH); 7.29 (1H, с, =CH–); 7.49 (3H, м, Ph); 7.98 (2H, м, Ph)
3c	3362, 2930, 2222, 1592, 1578, 1540	2.88 (1H, уш. с, OH); 3.71 (1H, д. д. д., <i>J</i> = 5, <i>J</i> = 8, <i>J</i> = 14, CH); 4.11 (1H, д. д. д., <i>J</i> = 3.5, <i>J</i> = 6.5, <i>J</i> = 14, CH); 5.04 (1H, д. д., <i>J</i> = 3.5, <i>J</i> = 8, CH); 6.00 (1H, т, <i>J</i> = 5, NH); 7.24–7.53 (9H, м, Ph + =CH–); 7.98 (2H, м, Ph)
3d	3376, 3072, 2904, 2216, 1644, 1588, 1576, 1544, 1536	1.76–2.02 (2H, м, CH ₂); 2.28 (1H, т, <i>J</i> = 5, OH); 3.67–3.89 (4H, м, 2CH ₂); 6.00 (1H, т, <i>J</i> = 5, NH); 7.22 (1H, с, =CH–); 7.42 (3H, м, Ph); 7.93 (2H, м, Ph)
3e	3358, 2970, 2934, 2886, 2226, 1594, 1574, 1546	1.27 (3H, д, <i>J</i> = 7, CH ₃); 1.80 (2H, м, CH ₂); 2.42 (1H, уш. с, OH); 3.44–4.29 (3H, м, CH ₂ –CH); 6.20 (1H, т, <i>J</i> = 5, NH); 7.26 (1H, с, =CH–); 7.49 (3H, м, Ph); 8.02 (2H, м, Ph)
3f	3389, 2341, 2221, 1731, 1693, 1593, 1579, 1537	2.07 (3H, c, CH ₃); 3.98 (2H, кв, <i>J</i> = 6, CH ₂); 4.36 (2H, т, <i>J</i> = 6, CH ₂); 5.91 (1H, т, <i>J</i> = 6, NH); 7.38 (1H, c, =CH–); 7.53 (3H, м, Ph); 8.07 (2H, м, Ph)
3g	3381, 2365–2329, 2221, 1715, 1593, 1577, 1533	4.07 (2H, кв, <i>J</i> = 6, CH ₂); 4.60 (2H, т, <i>J</i> = 6, CH ₂); 5.93 (1H, т, <i>J</i> = 5, NH); 7.24–7.64 (7H, м, Ph + =CH–); 8.00 (4H, м, Ph)
3h	3372, 2944, 2900, 2216, 1605, 1589, 1578	3.13 (3H, д, <i>J</i> = 5, CH ₃); 6.00 (1H, уш. с, NH); 7.31 (1H, с, =CH–); 7.53 (3H, м, Ph); 8.00 (2H, м, Ph)
3i	3209, 3101, 2972, 2216, 1644, 1588, 1576, 1544, 1536	4.29 (2H, м, CH ₂); 5.04–5.48 (2H, м, =CH ₂); 5.63 (1H, т, <i>J</i> = 5, NH); 5.78–6.27 (1H, м, =CH–); 7.31 (1H, с, =CH–); 7.49 (3H, м, Ph); 8.03 (2H, м, Ph)
4d	3388, 3180, 2956, 2932, 2872, 1638, 1620, 1582, 1516	1.73 (2H, т, <i>J</i> = 6, CH ₂); 3.49 (4H, м, 2CH ₂); 4.46 (1H, т, <i>J</i> = 6, OH); 6.24 (1H, т, <i>J</i> = 6, NH); 7.21 (1H, с, =CH–); 7.43 (3H, м, Ph); 7.69 (1H, уш. с, NH); 8.02 (3H, м, Ph+NH) [*]
4f	3469, 3333, 3101, 2985, 2969, 1673, 1597, 1583	2.00 (3H, c, CH ₃); 3.38 (2H, кв, <i>J</i> = 6, CH ₂); 4.22 (2H, т, <i>J</i> = 6, CH ₂); 6.50 (1H, т, <i>J</i> = 6, NH); 7.38 (1H, c, =CH–); 7.50 (3H, м, Ph); 7.80 (1H, уш. c, NH); 8.10 (3H, м, Ph+NH) [*]
4j	3368, 3172, 2964, 2932, 2880	1.16 (6H, т, <i>J</i> = 7, 2CH ₃); 3.53 (4H, кв, <i>J</i> = 7, 2CH ₂); 5.89 (1H, уш. с, NH); 6.22 (1H, уш. с, NH); 7.40 (4H, м, Ph + =CH–); 8.00 (2H, м, Ph)

^{*} Спектр ЯМР ¹Н снят в ДМСО.

Бициклические соединения **7** хорошо растворимы в органических растворителях и частично растворяются в воде, поэтому их зачастую трудно выделить из растворов.

Для ИК спектров имидазопиридинов 7 характерна полоса поглощения связи C=N в области 1640–1644 и валентных колебаний C=N в области 2210–2226 см⁻¹. Особенностью резонансного поглощения протонов фрагмента N—CH₂—CH₂—N в спектрах ЯМР ¹Н (табл. 4) имидазопиридинов 7 является то, что при смене растворителя в последовательности диоксан–CDCl₃–ДМСО–C₆D₆ происходит постепенная трансформация спиновой системы AA'BB'.

Таблица З

Соеди-	Брутто-	E	<u>Найдено, %</u> Зычислено, %	6	Т. пл., °С	Выход, %
нение	формула	С	Н	Ν	C	(мегод)
5a	$C_{15}H_{11}ClF_3N_3$	<u>54.69</u> 55.31	<u>3.33</u> 3.40	<u>12.63</u> 12.90	170–173 (разл.)	20 (A)
5b	$C_{16}H_{13}ClF_{3}N_{3}$	<u>55.68</u> 56.56	<u>3.72</u> 3.86	<u>11.87</u> 12.37	127–130 (разл.)	60 (А)*, 10 (Б)
5c	$C_{21}H_{15}ClF_{3}N_{3}$	<u>61.87</u> 62.77	<u>3.68</u> 3.76	<u>9.87</u> 10.46	182–185 (разл.)	57 (A)
5d	$C_{16}H_{13}ClF_{3}N_{3}$	<u>56.27</u> 56.56	<u>3.92</u> 3.86	<u>12.32</u> 12.37	129–131 (разл.)	52 (А)*, 12 (Б)
5e	C ₁₇ H ₁₅ ClF ₃ N ₃	<u>57.41</u> 57.72	<u>4.20</u> 4.27	<u>11.72</u> 11.88	142–143 (разл.)	53 (А)*, 8 (Б)
6	$C_{15}H_{11}ClF_3N_3$	<u>54.99</u> 55.31	<u>3.36</u> 3.40	<u>12.01</u> 12.90	231–232 (разл.)	62 (А)*, 76 (Б)
7a	$C_{15}H_{10}F_3N_3$	<u>62.15</u> 62.29	<u>3.59</u> 3.48	<u>14.58</u> 14.15	142–143	92 (A), 78 (Б')*, 83 (B)
7b	$C_{16}H_{12}F_3N_3$	<u>63.37</u> 63.36	<u>3.96</u> 3.99	<u>13.98</u> 13.85	108–110	17 (Б'), 39 (В)*
7d	$C_{16}H_{12}F_3N_3$	<u>63.13</u> 63.36	<u>3.92</u> 3.99	<u>13.78</u> 13.85	196–198	4 (Б'), 42 (В)*
7e	$C_{17}H_{14}F_3N_3$	<u>64.13</u> 64.35	$\frac{4.40}{4.45}$	<u>13.17</u> 13.24	136–138	13 (Б')*, 36 (В)
8	$C_{15}H_{12}F_{3}N_{4}O$	<u>58.67</u> 58.63	<u>3.96</u> 3.94	<u>13.77</u> 13.68	214–216	62
9	$C_{15}H_{11}F_3N_4O_3$	<u>51.05</u> 51.14	<u>3.29</u> 3.15	<u>15.72</u> 15.90	172–174 (разл.)	70
10	$C_{15}H_{11}ClF_3N_3O_4$	<u>46.07</u> 46.23	<u>2.76</u> 2.85	<u>10.72</u> 10.78	290–292 (разл.)	74

Характеристика соединений 5а-е, 6, 7а,b,d,e, 8-10

* Элементный анализ соответствует образцу, полученному данным методом.

Так, в растворах диоксана и дейтерохлороформа метиленовые протоны фрагмента N—CH₂—CH₂—N практически эквивалентны по химическим сдвигам и наблюдаются в виде узких сигналов при 3.91 и 4.01 м. д. соответственно.

В растворе ДМСО указанные сигналы разнесены на 0.21 м. д. и представляют собой два мультиплета с центрами при 4.03 и 3.82 м. д. При растворении в C_6D_6 все резонансные сигналы спектра ЯМР ¹Н испытывают сильнопольный сдвиг из-за анизотропного влияния растворителя; при этом различие химических сдвигов метиленовых протонов составляет уже 0.74 м. д., а их сигналы, регистрируемые при 2.67 и 3.41 м. д., приобретают форму триплетов, расстояние между компонентами которых соответствует 10.4 Гц. Характер поглощения метиленовых групп у имидазопиридиниевых солей **6**, **9**, **10** тот же, что и у соединения **7а** в ДМСО.

Спектральные характеристики соединений 5а-е, 6, 7а,b,d,e, 8-10

Соеди- нение	ИК спектр, v, см ⁻¹	Спектр ЯМР ¹ Н (CDCl ₃), б, м. д., <i>J</i> (Гц)
5a	3349, 2973, 2225, 1589, 1577, 1533	3.67–3.82 (2H, м, CH ₂); 3.89–4.09 (2H, м, CH ₂); 5.91 (1H, т, <i>J</i> = 5, NH); 7.33 (1H, с, =CH–); 7.51 (3H, м, Ph); 7.98 (2H, м, Ph)
5b	3362, 3090, 2930, 2222, 1590, 1558, 1538	1.60 (3H, д, <i>J</i> = 6, CH ₃); 3.58–4.47 (3H, м, CH ₂ -CH); 6.00 (1H, т, <i>J</i> = 7, NH); 7.36 (1H, с, =CH–); 7.52 (3H, м, Ph); 8.03 (2H, м, Ph)
5c	3354, 3070, 2226, 1590, 1578, 1542, 1498	3.87–4.47 (2H, м, CH ₂); 5.16–5.31 (1H, м, CH); 5.96 (1H, уш. с, NH); 7.48 (8H, м, Ph); 8.07 (3H, м, Ph)
5d	3359, 2959, 2219, 1593, 1579, 1543	2.16 (2H, кв, <i>J</i> = 6, CH ₂); 3.58–3.94 (4H, м, <i>J</i> = 6, 2CH ₂); 5.74 (1H, уш. т, <i>J</i> = 6, NH); 7.39 (1H, с, =CH–); 7.52 (3H, м, Ph); 8.07 (2H, м, Ph)
5e	3356, 2984, 2220, 1591, 1577, 1543	1.58 (3H, д, <i>J</i> = 7, CH ₃); 1.84–2.36 (2H, м, CH ₂); 3.56–4.02 (2H, м, CH ₂); 3.93–4.29 (1H, м, CH); 5.72 (1H, т, <i>J</i> = 5, NH); 7.32 (1H, с, =CH–); 7.94 (3H, м, Ph); 8.07 (2H, м, Ph)
6	3000–2400, 2250, 1640, 1585	4.22 (2H, м, CH ₂); 4.91 (2H, м, CH ₂); 6.93 (1H, с, =CH–); 7.56–7.67 (5H, м, Ph); 11.07 (1H, уш. с, NH)* ²
7a*	3100–2700, 2210, 1640, 1530, 1460	4.01 (4H, м, 2CH ₂); 5.71 (1H, с, =CH–); 7.40 (2H, м, Ph); 7.53 (3H, м, Ph); 3.53 (4H, м, 2CH ₂); 5.74 (1H, с, =CH–); 7.50 (5H, м, Ph)* ³ ; 3.76–3.87 (2H, м, CH ₂); 3.98–4.09 (2H, м, CH ₂); 5.86 (1H, с, =CH–); 7.52–7.64 (5H, м, Ph)* ² 2.67 (2H, т, CH ₂); 3.41 (2H, т, CH ₂); 5.04 (1H, с, =CH–); 6.58–6.62 (2H, м, Ph); 6.91–6.95 (3H, м, Ph)* ⁴
7b	3066, 2930, 2870, 2226, 1644, 1586, 1562, 1538	0.92 (3H, д, <i>J</i> = 6, CH ₃); 3.63 (1H, д. д, <i>J</i> = 15, <i>J</i> = 4, CH); 4.16 (1H, д. д, <i>J</i> = 15, <i>J</i> = 10, CH); 4.65 (1H, м, CH); 5.72 (1H, с, =CH–); 7.52 (5H, м, Ph)
7d*	3066, 2940, 2860, 2232, 1622, 1576, 1542, 1516	1.82 (2H, кв, <i>J</i> = 6, CH ₂); 3.61 (4H, т, <i>J</i> = 6, 2CH ₂); 5.68 (1H, c, =CH–); 7.24 (2H, м, Ph); 7.45 (3H, м, Ph)
7e	2974, 2938, 2866, 2234, 1622, 1578, 1546, 1518	1.09 (3H, д, CH ₃); 1.53–2.02 (2H, м, CH ₂); 3.31–3.82 (2H, м, CH ₂); 4.11–4.33 (1H, м, CH); 5.63 (1H, с, =CH–); 7.36 (2H, м, Ph); 7.56 (3H, м, Ph)
8	3331, 3067, 1689, 1645, 1581, 1557	3.96 (4H, м, CH ₂); 5.87 (1H, с, =CH–); 5.93 (1H, уш. с, NH); 7.44 (5H, м, Ph); 8.40 (1H, уш. с, NH)
9	3099–2650, 2235, 1657, 1587	3.96 (2H, м, CH ₂); 4.64 (2H, м, CH ₂); 7.39 (1H, с, =CH–); 7.69 (5H, м, Ph); 10.67 (1H, уш. с, NH)* ²
10	3238, 3098, 2926, 2238, 1654, 1560, 1544	4.18 (2H, м, CH ₂); 4.71 (2H, м, CH ₂); 6.87 (1H, с, =CH–); 7.58 (5H, м, Ph); 11.10 (1H, уш. с, NH)* ²

 * Спектр ЯМР ¹Н регистрировался на приборе Varian-Mercury BB (200 МГц).

 *² Спектр ЯМР ¹Н снят в ДМСО-d₆.

 *³ Спектр ЯМР ¹Н снят в диоксане-d₈.

 *⁴ Спектр ЯМР ¹Н снят в C₆D₆.

	Молекула А			Молекула В			
Атом	x	у	z	x	у	Z	
N(1)	1210(11)	4375(2)	4835(8)	-3818(10)	3122(2)	5488(8)	
C(2)	1954(13)	4674(2)	5787(10)	-4051(12)	2802(2)	4741(10)	
C(3)	1949(14)	4679(2)	7337(11)	-5554(13)	2780(2)	3184(11)	
C(4)	1498(14)	4396(2)	7899(12)	-6417(13)	3072(2)	2513(10)	
C(5)	858(15)	4096(2)	6928(11)	-6053(13)	3391(2)	3336(10)	
C(6)	696(12)	4092(2)	5429(11)	-4760(13)	3409(2)	4845(11)	
C(7)	-50(13)	3793(2)	4359(10)	-4389(13)	3728(2)	5747(11)	
C(8)	552(14)	3459(2)	4890(11)	-4106(13)	4029(2)	5124(11)	
C(9)	-274(17)	3182(2)	3981(15)	-3818(15)	4340(2)	5923(16)	
C(10)	-1656(17)	3226(3)	2515(13)	-3834(17)	4346(2)	7394(14)	
C(11)	-2317(17)	3548(3)	1944(12)	-4193(17)	4052(3)	7974(13)	
C(12)	-1560(15)	3837(2)	2918(12)	-4444(17)	3744(3)	7225(14)	
C(13)	1398(14)	4420(2)	3349(10)	-2212(14)	3084(2)	7078(11)	
C(14)	2221(16)	4781(2)	3535(12)	-1634(15)	2707(3)	7000(12)	
N(2)	2463(12)	4908(2)	5094(9)	-2933(12)	2560(2)	5495(10)	
C(15)	2596(14)	4992(2)	8197(12)	-5928(14)	2443(3)	2482(12)	
N(3)	2989(16)	5252(3)	8778(13)	-6277(16)	2178(3)	1925(12)	
C(16)	1645(20)	4381(3)	9517(12)	-7869(17)	3063(3)	838(13)	
F(1)	740(18)	4606(3)	9850(11)	-7321(14)	2988(4)	-111(10)	
F(2)	758(15)	4113(2)	9821(10)	-8841(14)	3350(2)	443(9)	
F(3)	3207(15)	4375(4)	10549(10)	-9188(13)	2846(3)	684(11)	
H(5)	0470	3875	7399	-6822	3610	2771	
H(8)	1651	3425	6012	-4123	4025	3957	
H(9)	0200	2932	4411	-3564	4572	5453	
H(10)	-2251	3005	1843	-3543	4575	8097	
H(11)	-3421	3579	0823	-4287	4062	9075	
H(12)	-2127	4085	2545	-4705	3519	7775	
H(131)	0096	4406	2360	-1163	3259	7255	
H(132)	2237	4230	3202	-2613	3113	8033	
H(141)	1346	4946	2612	-0299	2705	7044	
H(142)	3487	4769	3439	-1626	2562	7950	

Координаты атомов* в молекулах А и В соединения 7а (×10⁴)

* Нумерацию атомов см. на рисунке.

Таблица б

Усредненные межатомные	е расстояния (d) н	в молекуле соединения 7	a

Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å	Связь	<i>d</i> , Å
C(2)–N(1)	1.433	C(15)–C(3)	1.430	C(12)–C(7)	1.396	N(2)–C(14)	1.470
C(6)–N(1)	1.373	C(5)–C(4)	1.434	C(9)–C(8)	1.360	N(3)–C(15)	1.128
C(13)–N(1)	1.468	C(16)–C(4)	1.465	C(10)–C(9)	1.366	F(1)-C(16)	1.260
C(3)–C(2)	1.449	C(6)–C(5)	1.349	C(11)–C(10)	1.378	F(2)–C(16)	1.361
N(2)–C(2)	1.280	C(7)–C(6)	1.485	C(12)–C(11)	1.413	F(3)–C(16)	1.225
C(4)–C(3)	1.334	C(8)–C(7)	1.402	C(14)–C(13)	1.532		

Таблица 7

Валентные углы (ω) в молекуле соединения 7а

Угол	ω, град.	Угол	ω, град.	Угол	ω, град.
N(1)-C(2)-C(3)	116.9	C(3)–C(4)–C(5)	120.5	C(7)–C(8)–C(9)	120.4
N(1)-C(2)-N(2)	113.7	C(3)–C(4)–C(16)	121.3	C(8)–C(7)–C(12)	119.1
C(2)–N(1)–C(6)	121.2	C(4)–C(3)–C(15)	125.2	C(7)–C(12)–C(11)	119.3
C(2)-N(1)-C13	107.8	C(3)-C(15)-N(3)	174.2	C(8)-C(9)-C(10)	120.4
N(1)-C(6)-C(5)	119.7	C(4)–C(5)–C(6)	121.1	C(9)–C(10)–C(11)	121.5
N(1)-C(6)-C(7)	17.5	C(5)-C(4)-C(16)	118.0	C(10)-C(11)-C(12)	118.7
C(6)-N(1)-C(13)	130.2	C(4)-C(16)-F(1)	114.9	C(13)-C(14)-N(2)	106.9
N(1)-C(13)-C(14)	102.4	C(4)-C(16)-F(2)	115.0	F(1)-C(16)-F(2)	93.9
C(2)–C(3)–C(4)	119.8	C(4)-C(16)-F(3)	114.9	F(1)-C(16)-F(3)	109.4
C(2)–C(3)–C(15)	114.7	C(5)–C(6)–C(7)	122.7	F(2)-C(16)-F(3)	106.3
C(3)-C(2)-N(2)	129.1	C(6)–C(7)–C(8)	120.3		
C(2)-N(2)-C(14)	108.9	C(6)–C(7)–C(12)	119.7		

Однако при этом сигналы протонов фрагмента N—CH₂—CH₂—N, представляющие собой два мультиплета, разнесены уже на 0.53–0.69 м. д. и наблюдаются в интервалах 3.96–4.22 и 4.64–4.91 м. д. Характерный для солей сигнал протона NH наблюдается в слабом поле в интервале 10.67–11.10 м. д.

Поскольку в литературе отсутствуют сведения о рентгеноструктурных исследованиях 2,3-дигидроимидазо[1,2-*a*]пиридинов, мы провели анализ выращенных из этанола кристаллов соединения **7a**, который показал, что в элементарной ячейке находятся две кристаллографически независимые молекулы A и B (рисунок). Координаты атомов приведены в табл. 5, усредненные межатомные расстояния и валентные углы в молекулах A и B – в табл. 6, 7. Угол между плоскостями фенильного заместителя и гетероциклической системы равен 132°.

Пространственная модель соединения 7а

Наши дальнейшие иследования посвящены изучению химических свойств синтезированных имидазо[1,2-*a*]пиридинов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на спектрометре Specord IR-75 в парафиновом масле (призма NaCl, область 1500–1800 см⁻¹) и гексахлорбутадиене (призма LiF, область 2000–3600 см⁻¹). Спектры ЯМР ¹Н регистрировали на спектрометрах Bruker WH-90/DS и Varian-Mercury BB (200 МГц), внутренний стандарт ТМС и ГМДС. Контроль за ходом реакций и индивидуальностью полученных соединений осуществляли с помощью TCX на пластинках Silufol UV-254 в системе этанол–хлороформ, 1 : 9.

Данные о синтезированных соединениях обобщены в таблицах (соединений **3**, **4** – в табл. 1, 2, **5–10** – в табл. 3, 4).

Рентгеноструктурный анализ имидазопиридина 7а. Кристаллы исследуемого соединения моноклинные. Параметры элементарной ячейки: a = 8.087(2), b = 38.880(4), c = 9.334(1) Å, $\beta = 114.859(8)^{\circ}$, V = 2662.9(8) Å³, $d_{\text{выч}} = 1.443$ г/см³, Z = 8; пространственная группа $P2_1/c$. Параметры элементарной ячейки и интенсивности 3189 независимых отражений измерены на автоматическом дифрактометре Syntex P2₁, монохроматическое молибденовое излучение (графитовый монохроматор), ω -сканирование до $2\theta_{\text{max}} = 50^{\circ}$. Структура расшифрована прямым методом [9] (начальный *R*-фактор 0.38) и уточнена методом наименьших квадратов в полноматричном анизотропном приближении. Водородные атомы найдены из дифференциального синтеза. Конечный *R*-фактор 0.099. Все расчеты проведены программным комплексом [10].

2-Алкиламино-4-трифторметил-6-фенилпиридины (За-е,h,i, 4a,d,j). Раствор 3.5 ммоль хлорпиридина **1** или **2** и 4.2 ммоль соответствующего амина в 10 мл диоксана кипятят 1–6 ч и выливают в 100 мл воды. Осадок перекристаллизовывают из этанола.

2-(2-Ацилоксиэтиламино)-4-трифторметил-6-фенилпиридины (**3f,g, 4f).** А. Раствор 1 г (3 ммоль) гидроксиэтиламинопиридина **3a** в 10 мл уксусной кислоты с каплей конц. H₂SO₄ кипятят 1 ч. Охлаждают и выливают в 100 мл воды. Осадок перекристаллизовывают из этанола. Получают 0.3 г (54%) соединения **3f**. При подщелачивании фильтрата водным раствором аммиака до pH 8–9 после перекристаллизации из этанола получают 0.1 г (21%) имидазопиридина **7a**.

Б. Раствор 1 г (3 ммоль) гидроксиэтиламинопиридина **За** в 10 мл диоксана и 6 ммоль соответствующего ацилхлорида кипятят 2–8 ч. Охлаждают и выливают в 100 мл воды. Осадок перекристаллизовывают (соединение **3f** из этанола, **3g** из смеси этанол–диоксан, 1 : 1).

По методу Б из пиридина **4a** и ацетилхлорида получено соединение **4f**, которое перекристаллизовывают из этанола.

4-Трифторметил-6-фенил-2-(хлоралкиламино)-3-цианопиридины (5а–е). А. Раствор 5.2 г (20 ммоль) гидроксиэтиламинопиридинов **5а–е** в 20 мл тионилхлорида кипятят 1 ч. Тионилхлорид отгоняют, в конце перегонки добавляют 20 мл диоксана и выливают на 50 г измельченного льда. Осадок перекристаллизовывают из этанола. Фильтраты используют для получения соединений **7а,b,d,e** (метод Б).

Б. Раствор 0.2 г (0.69 ммоль) гидроксиэтиламинопиридинов **За,b,d,e** в 5 мл хлорокиси фосфора кипятят 1 ч. Реакционную смесь охлаждают до комнатной температуры и выливают на 50 г измельченного льда. Соединения **5а,b,d,e** отфильтровывают и перекристаллизовывают из этанола. Фильтраты используют для синтеза соединений **7а,b,d,e** (метод В).

Хлорид 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*а*]пиридиния (6). А. Раствор 1 г (3 ммоль) пиридина **3а** в 10 мл тионилхлорида кипятят 1 ч. Тионилхлорид отгоняют, в конце перегонки добавляют 20 мл диоксана и отфильтровывают 0.69 г (62%) соли **6** в виде желтых кристаллов.

Б. Через раствор 0.2 г (0.69 ммоль) имидазопиридина **7a** в 10 мл абс. диоксана барботируют хлороводород в течение 10 мин. Кристаллы отфильтровывают и получают 0.17 г (76%) соли **6**.

2,3-Дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-а]пиридины (7а,b) и **2,3,4-тригидро-8-трифторметил-6-фенил-9-цианопиридо[1,2-а]пиримидины** (7d,e). А. Растворяют 1 г хлорида имидазопиридиния **6** в 50 мл воды и добавляют водный раствор аммиака до рН 8–9. Осадок перекристаллизовывают из этанола.

Б'. Фильтрат, полученный в синтезе соединения **5a** (метод A), подщелачивают водным раствором аммиака до рН 8–9. Оставляют на 1 ч при комнатной температуре. Осадок перекристаллизовывают из этанола. Получают 3.8 г (78%) имидазопиридина **7a**.

В. Имидазопиридин 7а выделяют так же, как в методе Б', используя фильтрат, полученный в синтезе соединения 5а (метод Б).

Соединения 7b,d,е получают аналогично по методу Б' или В.

8-Аминокарбонил-2,3-дигидро-7-трифторметил-5-фенилимидазо[1,2-*а***]пиридин (8). Нагревают 0.69 г (2 ммоль) имидазопиридина 7а в 5 мл конц. серной кислоты 1 ч при 120 °С (масляная баня). Выливают на 50 г измельченного льда. Раствор подщелачивают водным раствором аммиака до рН 8–9. Осадок перекристаллизовывают из этанола и получают 0.13 г (62%) оранжевых кристаллов.**

Нитрат (9) и перхлорат (10) 2,3-дигидро-7-трифторметил-5-фенил-8-цианоимидазо[1,2-*а*]пиридиния. К раствору 0.2 г (0.69 ммоль) имидазопиридина 7а в 10 мл абс. диоксана приливают 0.2 мл азотной или 0.4 мл хлорной кислоты. Смесь выдерживают при комнатной температуре 24 ч. Осадок отфильтровывают.

Образцы одинаковых соединений, синтезированных разными методами, идентичны (т. пл., ИК и ЯМР ¹Н спектры).

СПИСОК ЛИТЕРАТУРЫ

- 1. Э. Ю. Гудриниеце, М. Ю. Лидак, М. В. Юре, Г. В. Владыко, С. Н. Николаева, Е. И. Бореко, П. Г. Рытик, А. с. СССР 1769515; *Б. И.*, 1992, № 10.
- Э. Ю. Гудриниеце, М. Ю. Лидак, М. В. Юре, Г. В. Владыко, Е. И. Бореко, В. И. Вотяков, А. с. СССР 1704417; Б. И., 1992, № 1.
- 3. А. В. Гутцайт, С. В. Беляков, А. Ф. Мишнев, Я. Я. Блейделис, Э. Ю. Гудриниеце, *XTC*, 1233 (1987).
- 4. М. В. Юре, Э. Ю. Гудриниеце, М. В. Петрова, Э. К. Ранцане, И. Б. Мажейка, Изв. АН ЛатвССР, № 4, 439 (1990).
- 5. O. Bremer, Lieb. Ann. Chem., 521, 286 (1936).
- 6. L. Cossey, R. L. N. Harris, J. L. Hupatz, J. N. Phillips, Aust. J. Chem., 29, 1039 (1976).
- 7. Е. Сулоева, М. Юре, Э. Гудриниеце, *XГС*, 1299 (1999).
- 8. Е. Сулоева, М. Юре, Э. Гудриниеце, *ХГС*, 1011 (2000).
- 9. А. Ф. Мишнев, С. В. Беляков, *Кристаллография*, **33**, вып. 4, 835 (1988).
- П. Глузинский, Я. Краевский, А. Кемме, А. Мишнев, в кн. Прецизионные структурные исследования кристаллов. Тез. II Всесоюз. совещ., Рига, 1990, 30.

Рижский технический университет, Рига LV-1048, Латвия e-mail: mara@ktf.rtu.lv Поступило в редакцию 30.03.2000

^аЛатвийский институт органического синтеза, Рига LV-1006 e-mail: serg@osi.lv

367