А. Н. Васильев, Я. С. Каюков, О. Е. Насакин, А. Н. Лыщиков, В. Н. Нестеров, О. В. Каюкова, О. В. Пульхеровская

СИНТЕЗ АЛКИЛ-2-АМИНО-5,6-ДИАЛКИЛ-3-ЦИАНОПИРИДИН-4-КАРБОКСИЛАТОВ

Обнаружено необычное направление гидролиза 3-амино-4-арил-1,1-диалкокси-6,7-диалкил-3а,4,5,7а-тетрагидро-1Н-пирроло[3,4-*c*]пиридин-3а,7адикарбонитрилов в кислой среде, приводящего к образованию алкил-2-амино-3-циано-5,6-диалкилпиридин-4-карбоксилатов.

Ключевые слова: 3-амино-4-арил-1,1-диалкокси-6,7-диалкил-3а,4,5,7атетрагидро-1Н-пирроло[3,4-*с*]пиридин-3а,7а-дикарбонитрилы, алкил-2-амино-3-циано-5,6-диалкилпиридин-4-карбоксилаты.

При исследовании реакций присоединения нуклеофилов по цианогруппе 1,1,2,2-тетрацианозамещенных циклических систем показано, что данный процесс протекает избирательно по одной цианогруппе с дальнейшей циклизацией и формированием 2-амино-5,5-диалкоксипирролинового или 2-аминопирролин-5-онового фрагмента [1–4]. Реакция гидролиза соединений, содержащих эти фрагменты, изучена на многих объектах. В большинстве случаев гидролиз при действии минеральных кислот протекает без затрагивания оставшихся цианогрупп и приводит к образованию имидов [4, 5]. Известны также примеры, когда реакция гидролиза протекает более глубоко, но и в этих случаях предполагается, что имиды образуются на промежуточных стадиях [5, 6].

Обнаруженное нами необычное для 3-амино-4-арил-1,1-диалкокси-6,7диалкил-3а,4,5,7а-тетрагидро-1Н-пирроло[3,4-*c*]пиридин-3а,7а-дикарбонитрилов **1a-i** [7] направление реакции гидролиза с разбавленной серной кислотой состоит в том, что вместо ожидаемых имидов **2** образуются алкил-2-амино-5,6-диалкил-3-цианопиридин-4-карбоксилаты (**9**). Их структура предположена на основе ряда экспериментальных фактов и данных физико-химических методов анализа. Так, соединения **1a** и **1f**, различающиеся только алкоксигруппами, в ходе реакции дают разные вещества и, следовательно, алкоксигруппы частично или полностью сохраняются в структуре. Среди продуктов реакции обнаружены ароматические альдегиды, а гидролиз соединений **1a** и **1e**, имеющих различные арильные заместители, приводит к одному и тому же соединению **9a**, т. е. в процессе гидролиза происходит элиминирование фрагмента, содержащего ароматический заместитель, и превращение его в условиях реакции в альдегид.

В ИК спектрах полученных соединений (табл. 1) наблюдаются полосы поглощения при 3300–3200 и 1660 см⁻¹, отвечающие валентным и деформационным колебаниям группы NH₂, и интенсивные полосы поглощения сопряженной цианогруппы в области 2230–2240 см⁻¹.

Таблица 1

Соеди- нение	vNH	δΝΗ	vC=N	vC=O
9a	3190, 3315, 3400, 3420	1635	2227	1705
9b	3190, 3323, 3387, 3412	1640	2232	1723
9c	3170, 3250, 3330, 3380	1640	2230	1705
9d	3165, 3250, 3320, 3383	1639	2223	1698
9e	3150, 3240, 3335, 3410	1640	2229	1722
9f	3120, 3220, 3330, 3400	1662	2232	1715
9g	3160, 3330, 3387, 3405	1649	2230	1710
9h	3175, 3315, 3369, 3415	1645	2227	1707

ИК спектры (см⁻¹) соединений 9а-h

Характер полос поглощения циано- и аминогрупп позволяет предположить наличие в молекуле продукта гидролиза енаминонитрильного фрагмента. Наличие в области 1705–1725 см⁻¹ интенсивной полосы поглощения свидетельствует о присутствии в синтезированных соединениях карбонильной группы. Данные масс-спектра вещества, полученного гидролизом соединения **1a**, позволяют предположить, что исходное соединение в ходе реакции помимо присоединения молекулы воды элиминирует молекулы бензальимина, метанола и циановодорода. Для однозначного установления структуры продуктов реакции проведено рентгеноструктурное исследование монокристалла соединения **9b** (рисунок).

Молекулярная структура метил-2-амино-5,6-диметил-3-цианопиридин-4-карбоксилата **9b**

Сравнительный анализ соединений, содержащих 2-амино-3,4-дициано-5,5-диалкоксипирролиновый фрагмент (гидролиз которых приводит к соответствующим имидам), и обсуждаемых здесь пирроло[3,4-*c*]пиридинов **1** показал, что одним из существенных отличий последних является присутствие кратной связи, имеющей енаминный характер в непосредственной близости от пирролинового фрагмента. Благодаря такому расположению кратной связи она способна оказывать анхимерное содействие расщеплению пирролинового кольца [8]. С другой стороны, присоединение образующейся при этом амидиновой группы к электрофильному атому углерода енамина открывает возможность последующей стабилизации с образованием ароматической системы конечного продукта. Эти факторы, на наш взгляд, предопределяют ход реакции и являются наиболее вероятной причиной ее аномального характера. В связи с этим мы предполагаем следующую схему реакции.

 $\begin{array}{l} \label{eq:constraint} 1 \mbox{ a } R^1, R^2 = (CH_2)_4, \mbox{ R } = CH_3, \mbox{ Ar } = Ph; \mbox{ b } R^1 = R^2 = CH_3, \mbox{ R } = CH_3, \mbox{ Ar } = Ph; \\ \mbox{ c } R^1 = CH_3, \mbox{ R^2 } = H, \mbox{ R } = CH_3, \mbox{ Ar } = Ph; \mbox{ d } R^1, R^2 = (CH_2)_3, \mbox{ R } = CH_3, \mbox{ Ar } = Ph; \\ \mbox{ e } R^1, R^2 = (CH_2)_4, \mbox{ R } = CH_3, \mbox{ Ar } = 4-\text{MeOC}_6H_4; \mbox{ f } R^1, R^2 = (CH_2)_4, \mbox{ R, R } = (CH_2)_2, \mbox{ Ar } = Ph; \\ \mbox{ g } R^1 = R^2 = CH_3, \mbox{ R, R } = (CH_2)_2, \mbox{ Ar } = Ph; \mbox{ h } R^1 = CH_3, \mbox{ R^2 } = H, \mbox{ R, R } = (CH_2)_2, \mbox{ Ar } = Ph; \\ \mbox{ i } R^1, R^2 = (CH_2)_4, \mbox{ R } = C_2H_5, \mbox{ Ar } = Ph; \mbox{ h } R^1 = CH_3, \mbox{ R^2 } = H, \mbox{ R, R } = (CH_2)_4; \mbox{ b } R = R^1 = R^2 = CH_3; \\ \mbox{ c } R = R^1 = CH_3, \mbox{ R^2 } = H; \mbox{ d } R = CH_3, \mbox{ R^1}, \mbox{ R^2 } = (CH_2)_4; \mbox{ B } R = R^2 = CH_3; \\ \mbox{ f } R = \text{HOCH}_2\text{CH}_2, \mbox{ R^1} = R^2 = CH_3; \mbox{ g } R = \text{HOCH}_2\text{CH}_2, \mbox{ R^1} = CH_2)_4; \\ \mbox{ f } R = \text{HOCH}_2\text{CH}_2, \mbox{ R^1} = R^2 = CH_3; \mbox{ g } R = \text{HOCH}_2\text{CH}_2, \mbox{ R^1} = CH_3, \mbox{ R^2} = H; \\ \mbox{ h } R = C_2H_5, \mbox{ R^1}, \mbox{ R^2} = (CH_2)_4 \end{aligned}$

Соеди-	Брутто- формула	<u>Найдено, %</u> Вычислено, %			Т. пл., °С	Выход, %
нение		С	Н	Ν		
9a	$C_{12}H_{13}N_3O_2$	<u>62.30</u>	<u>5.71</u>	<u>18.15</u>	195–196	56
		62.33	5.66	18.17		
9b	$C_{10}H_{11}N_3O_2$	<u>58.55</u>	<u>5.43</u>	20.45	171-172	78
		58.59	5.40	20.41		
9c	$C_9H_9N_3O_2$	56.51	4.77	21.95	188-189	51
		56.54	4.74	21.98		
9d	$C_{11}H_{11}N_3O_2$	60.78	5.15	19.31	219-220	58
		60.82	5.11	19.34		
9e	C ₁₃ H ₁₅ N ₃ O ₃	59.79	5.76	16.15	143-144	42
		59.77	5.74	16.09		
9f	$C_{11}H_{13}N_3O_3$	56.17	5.53	17.85	225-226	57
		56.17	5.56	17.88		
9g	$C_{10}H_{11}N_3O_3$	54.27	4.96	19.05	185-186	82
-		54.29	4.97	19.00		
9h	$C_{13}H_{15}N_3O_2$	68.15	6.56	18.32	155-156	75
		68.12	6.55	18.34		

Характеристика синтезированных соединений 9а-h

Таблица З

Таблица 2

Атом	d, Å	Угол	ω, град.
O(41)–C(41)	1.190(5)	C(41)–O(42)–C(42)	115.5(4)
O(42)–C(42)	1.458(5)	N(21)-C(2)-N(1)	116.6(3)
N(l)-C(2)	1.348(4)	N(1)-C(2)-C(3)	120.6(3)
N(31)–C(31)	1.148(5)	C(4)–C(3)–C(31)	122.4(3)
C(3)–C(4)	1.402(5)	N(31)-C(31)-C(3)	178.0(4)
C(4)–C(5)	1.372(5)	C(5)–C(4)–C(41)	120.5(3)
C(5)–C(6)	1.419(5)	O(41)-C(41)-O(42)	125.2(4)
C(6)–C(61)	1.496(5)	O(42)–C(41)–C(4)	111.8(3)
O(42)–C(41)	1.310(5)	C(4)–C(5)–C(51)	122.4(3)
N(1)–C(6)	1.340(4)	N(1)-C(6)-C(5)	123.0(3)
N(21)–C(2)	1.339(5)	C(5)–C(6)–C(61)	120.8(3)
C(2)–C(3)	1.415(5)	C(6)–N(1)–C(2)	120.0(3)
C(3)–C(31)	1.435(5)	N(21)-C(2)-C(3)	122.8(3)
C(4)–C(41)	1.514(5)	C(4)–C(3)–C(2)	118.4(3)
C(5)–C(51)	1.518(5)	C(2)–C(3)–C(31)	119.2(3)
		C(5)–C(4)–C(3)	121.2(3)
		C(3)-C(4)-C(41)	118.3(3)
		O(41)-C(41)-C(4)	123.0(4)
		C(4)–C(5)–C(6)	116.8(3)
		C(6)–C(5)–C(51)	120.8(4)
		N(1)-C(6)-C(61)	116.2(3)

Длина связей (d) и валентные углы (w) в молекуле 9b

Первоначально протонированный субстрат претерпевает расщепление пирролинового фрагмента с образованием интермедиата **3**, в котором, повидимому, возможна дополнительная стабилизация за счет взаимодействия карбокатионного центра с π -орбиталью двойной связи, что может быть представлено структурой Льюиса **4**. В результате должно происходить увеличение частичного положительного заряда у атома C(6) тетрагидропиридинового кольца, благоприятствующее протеканию 341

Атом	x	у	z	U(eq)
O(41)	463(4)	8142(4)	-68(4)	83(1)
O(42)	2788(3)	8795(3)	-701(2)	43(1)
N(l)	4301(3)	5558(3)	1727(2)	26(1)
N(21)	5245(5)	7537(4)	2935(3)	53(1)
N(31)	3863(5)	10577(4)	2075(3)	45(1)
C(2)	4392(4)	6989(4)	2035(3)	27(1)
C(3)	3629(4)	7847(4)	1417(3)	25(1)
C(31)	3740(5)	9366(4)	1771(3)	30(1)
C(4)	2750(4)	7168(4)	493(3)	27(1)
C(41)	1848(5)	8074(4)	-130(3)	32(1)
C(42)	2028(8)	9739(7)	-1298(5)	52(1)
C(5)	2645(4)	5711(4)	180(3)	26(1)
C(51)	1738(5)	4950(5)	-830(3)	38(1)
C(6)	3472(4)	4934(4)	834(3)	23(1)
C(61)	3425(5)	3340(4)	560(3)	28(1)
O(4lA)	1010(6)	6368(5)	2650(3)	23(1)
O(42A)	569(6)	7849(5)	4102(3)	18(1)
O(41')	2281(8)	8466(7)	3759(5)	60(2)
O(42')	71(9)	6924(7)	3389(6)	60(2)
N(IA)	3314(4)	4346(3)	5679(2)	27(1)
N(21A)	4279(4)	6345(4)	6883(3)	37(1)
N(31A)	3364(5)	9373(4)	5999(4)	59(1)
C(2A)	3484(4)	5786(4)	5957(3)	26(1)
C(3A)	2814(5)	6656(4)	5297(3)	34(1)
C(31A)	3086(5)	8183(5)	5659(4)	43(1)
C(4A)	1949(5)	6001(5)	4366(3)	39(1)
C(41A)	1240(7)	6928(8)	3679(4)	76(2)
C(42A)	-161(13)	8734(12)	3440(9)	32(2)
C(42')	-627(16)	8021(14)	2889(11)	47(3)
C(5A)	1787(5)	4519(5)	4083(3)	45(1)
C(51A)	858(9)	3691(9)	3099(4)	83(2)
C(6A)	2507(5)	3733(5)	4775(3)	34(1)
C(61A)	2419(7)	2135(5)	4524(4)	49(1)

Координаты неводородных атомов (× 10⁴) и коэффициенты эквивалентного изотропного смещения (${\rm \AA}^2 \times 10^3$) соединения 9b

внутримолекулярного присоединения амидиновой группы. Образующийся в ходе этих превращений карбокатион **5** далее стабилизируется путем формирования сложноэфирной группы и последовательным отщеплением альдимина и циановодорода. Для интермедиата **6** можно предположить два пути элиминирования альдимина – постадийное отщепление через интермедиат **7** либо синхронное циклоэлиминирование через таутомерную форму **8**.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за ходом реакций и чистотой синтезированных веществ осуществляли методом TCX на пластинах Silufol UV-254, проявитель УФ облучение и пары иода. ИК спектры получены для тонкого слоя (суспензия в вазелиновом масле) на приборе UR-20. Масс-спектры высокого и низкого разрешения регистрировали на приборе Varian MAT-212 при энергии ионизации 70 зВ.

Алкил-2-амино-5,6-диалкил-3-цианопиридин-4-карбоксилаты (9а-h) (общая методика). Суспендируют 0.01 моль соединения 1 в 5 мл смеси вода-пропанол-2, 1 : 1, и добавляют 1.1 г (0.011 моль) серной кислоты в виде 15% водного раствора. Больший

избыток кислоты вызывает некоторые трудности при выделении конечных веществ. Полученную смесь доводят до кипения и затем охлаждают. Нейтрализуют бикарбонатом натрия до нейтральной реакции, отфильтровывают образующийся осадок, промывают пропанолом-2 и очищают перекристаллизацией из этилацетата или возгонкой в вакууме. Т. пл., выход и данные элементного анализа приведены в табл. 2. Масс-спектр соединения **9a**, *m*/*z* (относительная интенсивность, %): 231(42), 216(100), 200(14), 188(7), 172(10), 170(22), 157(9), 143(8), 77(14), 63(9), 43(10) (приведены пик молекулярного иона и 10 наиболее интенсивных пиков осколочных ионов).

Рентгеноструктурное исследование соединения 9b. Кристаллы 9b ($C_{10}H_{11}N_3O_2$, M = 205.22) триклинные, пространственная группа P1, при 20 °C *a* = 8.479(2), *b* = 9.491(2), *c* = 12.939(3) Å, α = 98.62(2), β = 92.64(3), γ = 97.37(3)°, *V* = 1018.7(4) Å³, *Z* = 4 (две кристаллографически независимые молекулы), $d_{\text{выч}}$ = 1.338 г/см³. Параметры элементарной ячейки и интенсивности 4780 отражений измерены на автоматическом четырехкружном дифрактометре Siemens P3/PC (293 K, λ МоК α , графитовый монохроматор, $\theta/2\theta$ -сканирование, θ_{max} = 27°) (табл. 3). Структура расшифрована прямым методом и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов (табл. 4). Атомы водорода, локализованные объективно в разностном Фурье-синтезе, уточнены в изотропном приближении. В кристалле обнаружена разупорядоченность метоксикарбонильной группы одной из кристаллографически независимых молекул. Окончательные факторы расходимости R_1 = 0.083 по 4412 независимым отражениям с $l>2\sigma(I)$ и wR_2 = 0.264 по всем 4473 независимым отражениям. Расчеты проведены по программам SHELXTL PLUS; SHELXL-93.

СПИСОК ЛИТЕРАТУРЫ

- А. Б. Золотой, О. А. Дьяченко, С. В. Коновалихин, Л. О. Атовмян, О. Е. Насакин, П. М. Лукин, С. П. Зильберг, А. Н. Лыщиков, М. Ю. Скворцова, А. Х. Булай, Изв. АН СССР. Сер. хим., 1818 (1987).
- 2. О. Е. Насакин, А. Н. Лыщиков, П. М. Лукин, С. В. Коновалихин, А. Х. Булай, П. Б. Терентьев, А. Б. Золотой, А. П. Плешкова, Деп. НИИТЭХИМ, № 337-хп92, Черкассы, 1992, 35.
- С. В. Коновалихин, А. Б. Золотой, С. П. Зильберг, П. М. Лукин, А. Н. Лыщиков, О. А. Дьяченко, О. Е. Насакин, *Тез. докл. V Всесоюз. совещания по органической* кристаллохимии, Черноголовка. 1987, 39.
- 4. О. Е. Насакин, П. М. Лукин, Е. В. Вершинин, О. В. Яшканова, А. Н. Лыщиков, Я. Г. Урман, С. В. Линденман, Ю. Т. Стручков, А. Х. Булай, *ЖОрХ*, **31**, 370 (1995).
- 5. W. J. Middleton, R. E. Heckert, E. L. Little, C. G. Krespan, J. Am. Chem. Soc., 80, 2783 (1958).
- 6. R. H. Boyd, J. Am. Chem. Soc., 83, 4288 (1961).
- Я. С. Каюков, О. Е. Насакин, Я. Г. Урман, В. Н. Хрусталев, В. Н. Нестеров, М. Ю. Антипин, А. Н. Лыщиков, П. М. Лукин, *XTC*, 367 (1997).
- 8. Дж. Марч, Органическая химия, Мир, Москва, 1987, 2, 33.

Чувашский государственный университет им. И. Н. Ульянова, Чебоксары 428015, Россия e-mail: intruder@chuvsu.ru Поступило в редакцию 03.02.2000