А. В. Решетников, Т. А. Бабушкина^а, Г. В. Кириллова⁶, Г. В. Пономарев

ПОРФИРИНЫ

39*. СИНТЕЗ И ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ ПОРФИРИНОВ И ХЛОРИНОВ С 2-АЦЕТИЛ-1-МЕТИЛ-3-ОКСОБУТИЛЬНЫМИ ЗАМЕСТИТЕЛЯМИ

Порфирины и хлорины, содержащие остатки ацетилацетона в периферических заместителях [-CH(Me)CHAc₂], в щелочных условиях превращаются в соответствующие дезацетилированные соединения с остатками [-CH(Me)CH₂Ac]. Восстановлением последних в форме кислот с помощью борогидрида натрия после этерификации получены соответствующие спирты и их ацетаты с разветвленным периферическим заместителем [-CH(Me)CH₂CH(OAc)Me]. Порфирины и хлорины с такими заместителями в водорастворимой форме могут представить интерес в качестве новых фотосенсибилизаторов для фотодинамической терапии рака.

Ключевые слова: ацетилацетон, дейтеропорфирин-IX, феофорбид А, хлорин е₆, кетонное расщепление.

В области синтетических работ по химии тетрапирролов имеется тенденция к созданию соединений с заданными свойствами на основе так называемого структурно-функционального подхода, нашедшего применение при конструировании и получении новых фотосенсибилизаторов для фотодинамической терапии опухолей, характеризующихся повышенной туморотропностью и высокой эффективностью разрушения опухолевой ткани при облучении [2–7]. Порфирины, содержащие алкоксиметильные или 1-(алк)оксиэтильные заместители (например, тетраметиловый эфир гематопорфирина-IX) [1, 8–11], легко и с высоким выходом реагируют с ацетилацетоном и другими β -дикетонами в присутствии ацетата цинка с образованием Zn-комплексов (например, **1** [1,10]), из которых кратковременной обработкой HCl получают порфирины (например, **2**).

Данная работа является логическим продолжением работ, посвященных исследованию химических свойств порфиринов, содержащих остатки β-дикетонов, и их производных, с целью поиска соединений, обладающих избирательной туморотропностью. Порфирины, содержащие остатки β-дикетонов, не исследовались с точки зрения их применимости в фотодинамической терапии опухолей. То же самое можно сказать и об их производных.

Чтобы выяснить влияние 2-ацетил-1-метил-3-оксобутильного заместителя на фотодинамические свойства порфиринов, нами были получены аналогичным путем новые порфирины **3–6**, содержащие по периферии только одну такую группу. При получении таких соединений, мы исходили из хорошо известных диметиловых эфиров 2- и 4-ацетилдейтеропорфирина-IX **7** и **8** [12–15],

^{*} Сообщение 38 см. [1].

 $\begin{array}{l} 1-6 \ R = CH(Me)CHAc_2; \ 7, \ 8 \ R = Ac; \ 9,10 \ R = CH(OH)Me; \ 11-19 \ R = CH(Me)CH_2Ac; \\ 20-28 \ R = CH(Me)CH_2CH(OH)Me; \ 29-31 \ R = CH(Me)CH_2CH(OAc)Me; \\ 1-10, \ 14-19, \ 23-31 \ R^1 = Me; \ 11-13, \ 20-22 \ R^1 = K; \ 1, \ 3, \ 5, \ 11-16, \ 20-25 \ M = Zn; \\ 2, \ 4, \ 6, \ 17-19, \ 26-31 \ M = 2H \end{array}$

востановлением которых борогидридом натрия были получены индивидуальные изомеры – диметиловый эфир 2-(1-окси)этил-(9) и диметиловый эфир 4-(1-окси)-этилдейтеропорфирина-IX (10). Их строение подтверждено данными ЯМР ¹Н с использованием экспериментов по ядерному эффекту Оверхаузера. Эти эксперименты показали, что хроматографически более подвижный изомер соответствует структуре диметилового эфира 2-(1-окси)этил-9, а менее подвижный – 4-(1-окси)этилдейтеропорфирина-IX 10, что согласуется с данными, полученными другими исследователями [15, 16] относительно хроматографической подвижности этих соединений.

При нагревании изомеров 9 и 10 в ацетилацетоне в присутствии ацетата цинка были получены Zn-комплексы порфиринов 3 и 5 с высоким выходом. Порфирины с заместителями –CH(CH₃)CH(COCH₃)COCH₃, что отмечалось также в работе [1], в спектрах ЯМР ¹Н имеют несколько отличительных особенностей. Во-первых, два очень уширенных сигнала при 5.26 и 5.50–5.55 м. д. Во-вторых, широкий бесструктурный сигнал от метильной группы –CH(C<u>H</u>₃)– в области 2.00–2.12 м. д. В-третьих, протоны метильных заместителей ацетильных групп проявляются в виде двух сигналов – острого синглета при 2.60–2.61 и уширенного при 1.50–1.58 м. д.

Исследование методом двойного резонанса структуры **3** показало, что облучение протона, сигнал которого проявляется при 5.26 м. д., приводит к улучшению разрешения мультиплета и росту интенсивности сигнала при 5.55 м. д. Подавление взаимодействия протонов, проявляющихся при 5.55 и 2.12 м. д., выражалось в изменении структуры каждого из сигналов. Это означает, что сигналы при 5.55 и 2.12 м. д. связаны и отвечают соответственно протонам –С<u>H</u>(C<u>H</u>₃)CH(COCH₃)COCH₃. Протону группы CH(CH₃)C<u>H</u>(COCH₃)COCH₃ приписан сигнал с химическим сдвигом 5.26 м. д.

Различия в форме и сдвиге сигналов в остатках метилов ацетильных групп связаны, по-видимому, с различным окружением: одна из них максимально удалена от макроцикла, а другая находится под влиянием π -тока макроцикла. Аналогичное отнесение установлено и в Zn-комплексе порфирина **5**. Исследование методом двойного резонанса свободных

оснований 4 и 6, а также дизамещенных производных 1 и 2 подтвердило сделанные отнесения. Для исследования биологических свойств диметиловые эфиры порфиринов 2, 4 и 6 были переведены в соответствующие дикислоты гидролизом в соляной кислоте согласно методике, приведенной в работе [17].

В ИК спектрах 2,4-ди-, 2- и 4-(2-ацетил-1-метил-3-оксобутил)дейтеропорфиринов-IX 2, 4, 6, рассматриваемых как структурные аналоги 3-порфиринил-2,4-пентандиона (очень объемный заместитель в положении 3), наблюдался острый пик при 1700 см⁻¹, характерный для кетогруппы, в то время как при 1730–1740 см⁻¹ – поглощение сложноэфирных карбонилов. Данное отличие от спектра ацетилацетона, в котором имеется очень широкая полоса в области 1639–1538 см⁻¹ с интенсивностью более чем в 100 раз превышающей ее у обычного карбонила [18, 19], позволяет сделать предположение о практически полном отсутствии у таких порфиринов енольной формы.

Обычно для получения водорастворимых порфиринов соответствующие метиловые эфиры подвергают щелочному омылению при нагревании порфиринов в диоксане или тетрагидрофуране при 50-60 °C. В случае порфиринов, содержащих остатки В-дикетонов, этот процесс сопровождается также и дезацетилированием [20]. Так, при нагревании порфирина 2 был получен продукт дезацетилирования, который после этерификации соответствовал структуре 17. В настоящей работе мы подвергали щелочному омылению не свободные основания таких порфиринов, а их Zn-комплексы, поскольку известно, что металлокомплексы порфиринов более устойчивы в щелочной среде, чем свободные основания. В результате щелочного омыления и дезацетилирования из комплексов 1, 3 и 5 были получены соединения 11, 12, 13, которые этерифицировали диазометаном до соответствующих диметиловых эфиров 14-16. После деметаллирования соляной кислотой были получены диметиловые эфиры порфиринов **17–19.** В их спектрах ЯМР ¹Н концевая метильная группа заместителя CH(CH₃)CH₂COCH₃ проявлялась как синглет при 2.10 м. д., а протоны метиленовой группы (данные двойного резонанса) находились в области сигналов ядерных метильных групп (3.80–3.60 м. д.). В ИК спектрах полоса поглощения кетогруппы у всех производных сдвигалась примерно на 15 см⁻¹ в область высоких частот по сравнению с В-дикетоновыми производными. Последующий щелочной гидролиз этих порфиринов давал карбоксильные производные, пригодные для использования в качестве фотосенсибилизаторов.

При попытке восстановления диметиловых эфиров порфиринов 17–19 была получена смесь продуктов восстановления, содержащая порфирины с восстановленными остатками эфиров пропионовых кислот. Образование таких γ -оксипропильных производных при использовании в качестве восстановителя борогидрида натрия ранее наблюдалось при восстановлении диметиловых эфиров моноацетилпорфиринов [21]. Использование соответствующих кислот порфиринов – 11–13 – в щелочных условиях позволило нам избежать восстановления эфирных остатков и получить искомые гидроксибутилпорфирины 20–22 с высоким выходом.

Поскольку процесс дезацетилирования и одновременного омыления сложноэфирных групп проходит одинаково легко как со свободными основаниями, так и с их Zn-комплексами, то оптимальный вариант

получения соответствующих гидроксипроизводных заключается в щелочном дезацетилировании Zn-комплексов 1, 3 и 5 до комплексов 11-13 и восстановлении *in situ* щелочных растворов этих соединений до комплексов 20-22. Последние этерифицировали диазометаном и выделяли комплексы 23-25, которые переводили обработкой HCl в соответствующие диметиловые эфиры порфиринов 26-28. Соединения 26-28, содержащие свободную гидроксильную группу, ЛЛЯ получения удовлетворительных спектров ЯМР ¹Н обработкой уксусным ангидридом в пиридине переводили в соответствующие ацетоксипроизводные 29-31, позволившие получить однозначный пик молекулярного иона при массспектрометрии и улучшить кристаллизуемость соединений. У соединений 30 и 31 появляется два асимметрических центра, поэтому, например, в спектре ЯМР ¹Н производного 30 каждая из групп протонов заместителя СН(СН₃)СН₂СН(ОСОСН₃)СН₃ проявлялись в виде двух сигналов неравной интенсивности соответственно при 4.93 и 4.71, 2.13 и 2.11, 3.04 и 2.60, 5.30-5.24. 2.16 и 1.94. 1.36 и 1.21 м. д. Соотношение диастереомеров 3 : 1.

Водорастворимые комплексы порфиринов 29-31 получали щелочным гидролизом до дикислот с последующей обработкой N-метил-D-глюкозамином. Аналогичным образом мы подошли к синтезу производных хлоринового ряда. Исходным соединением для синтеза этих хлоринов являлся триметиловый эфир 2-дезвинил-2-(1-метоксиэтил)хлорина е₆ (32), полученный по известным метоликам [6, 22, 23, 29]. Из данного хлорина были получены последовательно соединения 33 и 34, 35 и 36, 37 и 38, 39. В отличие от порфиринов, у хлоринов **33, 34** в спектрах ЯMP ¹H сигналы протонов –СН(СН₃)СН(СОСН₃)СОСН₃ скрыты под мультиплетными сигналами от протонов 8-Н и 7-Н, а у продукта восстановления 39 под этими мультиплетами скрыт сигнал от протона -CH(CH₃)CH₂CH(OAc)CH₃. Поэтому данные протоны детектировались только по возросшей интегральной интенсивности указанных мультиплетов. Для исследования биологических свойств полученные карбэтоксильные производные порфиринов растворяли в 1% водном растворе N-метил-D-глюкозамина, нейтрализовали до рН 8.2 1 н. соляной кислотой и определяли концентрацию фотосенсибилизаторов спектрофотометрически [24].

Соели-	Envrto-	Масс-спектр	Спектр поглошения в вилимой	
нение	формула	m/z (отн. инт., %)	области, λ _{max} (ε*10 ⁻³), нм	R_{f}
1	2	3	4	5
ТМГ	$C_{38}H_{36}N_4O_6$		402 (270.91); 499 (11.75); 533 (7.41); 568 (5.26); 595 (1.63); 621 (3.66)	0.52
1	$C_{46}H_{52}N_4O_8Zn$		404 (335.31); 495 (2.78); 533 (15.51); 568 (18.79)	0.39
2	$C_{46}H_{54}N_4O_8$		402 (197.13); 498 (13.45); 532 (9.29); 567 (6.33); 594 (1.19); 620 (4.35)	0.45
3	$C_{39}H_{42}N_4O_6Zn$		402 (258.51); 495 (2.91); 532 (14.75); 567 (16.93)	0.50
4	$C_{39}H_{44}N_4O_6$	664 (M ⁺ , 85); 633 (4); 621 (3); 591 (2); 565 (100); 491 (5); 419 (5)	399 (195.62); 496 (15.79); 530 (9.97); 558 (7.15); 592 (1.33); 619 (4.82)	0.56
5	$C_{39}H_{42}N_4O_6Zn$		403 (250.68); 500 (2.55); 532 (12.02); 569 (14.02)	0.49
6	$C_{39}H_{44}N_4O_6$	664 (M ⁺ , 100); 633 (3); 565 (47)	400 (195.62); 498 (15.46); 531 (9.64); 566 (6.81); 595 (1.16); 619 (4.65)	0.54
7	$C_{34}H_{36}N_4O_5$		415 (165.79); 508 (8.86); 545 (10.45); 575 (6.39); 632 (1.54)	0.56
8	$C_{34}H_{36}N_4O_5$		409 (158.53); 507 (8.86); 546 (10.45); 574 (6.82); 631 (1.60)	0.54
9	$C_{34}H_{38}N_4O_5$		400 (187.34); 496 (12.24); 530 (7.28); 566 (5.39); 594 (0.87); 618 (3.79)	0.33
10	$C_{34}H_{38}N_4O_5$		400 (185.74); 497 (12.67); 530 (8.03); 555 (6.07);593 (1.25); 619 (3.75)	0.29
17	$C_{42}H_{50}N_4O_6$	706 (M ⁺ , 100); 675 (5); 663 (7); 649 (52); 633 (10); 605 (5); 591 (12); 577 (5); 531 (5); 517 (10)	399 (177.96); 498 (14.67); 531 (9.90); 594 (1.24); 619 (4.77)	0.48
18	$C_{37}H_{42}N_4O_5$	622 (M ⁺ , 100); 591 (4); 579 (5); 565 (40); 549 (10); 505 (3); 491 (5); 417 (5)	400 (207.86); 498 (16.11); 532 (9.71); 568 (7.23); 592 (1.03); 619 (4.55)	0,57
19	$C_{37}H_{42}N_4O_5$	622 (M ⁺ , 100); 591 (3); 579 (10); 565 (58); 549 (20); 505 (10); 491 (16); 419 (20)	400 (209.57); 495 (15.41); 530 (9.65); 565 (7.16); 592 (1.09); 617 (4.67)	0.56
26	$C_{42}H_{54}N_4O_6$		400 (200.07); 498 (16.52); 532 (11.50), 568 (7.74); 595 (1.25); 619 (5.85)	0,25* 0,05
27	$C_{37}H_{44}N_4O_5$		400 (161.13); 497 (12.87); 531 (8.96); 564 (7.70); 590 (2.85); 616 (4.64)	0.22
28	$C_{37}H_{44}N_4O_5$		400 (164.95); 497 (13.17); 531 (9.18); 564 (7.88); 590 (2.91); 616 (4.75)	0.27
29	$C_{46}H_{58}N_4O_8\\$	794 (M ⁺ , 100); 763 (2); 721 (2); 693 (7); 633 (2); 591 (2)	400 (195.74); 498 (15.70); 532 (10.93); 568 (7.35); 595 (1.19); 619 (5.55)	0.61
30	$C_{39}H_{46}N_4O_6$	668 (M ⁺ , 100); 635 (9); 626 (12); 584 (14); 566 (19)	398 (206.96); 495 (14.69); 530 (9.18); 564 (6.84); 591 (1.17); 618 (4.51)	0.63
31	$C_{39}H_{46}N_4O_6$	668 (M ⁺ , 100); 626 (10); 605 (10); 584 (12)	398 (203.68); 496 (16.46); 531 (10.17), 565 (7.26); 592 (0.97); 618 (4.84)	0.60

Характеристики синтезированных соединений

Окончание таблицы

1	2	3	4	5
32	$C_{38}H_{46}N_4O_7\\$	670 (M ⁺ , 100); 654 (8); 638 (42); 623 (3); 611 (13); 597 (17); 579 (10); 565 (12); 511 (22); 479 (18)	411 (280.1); 498 (18.7); 530 (8.6); 558 (7.8); 602 (10.6); 659 (53.4)	0.58
33	$C_{42}H_{48}N_4OZn$	801 (M ⁺ , 100); 759 (10); 743 (2); 729 (2); 701 (38); 653 (9); 541 (42)	410 (138.4); 512 (4.1); 555 (2.4); 591 (8.0); 632 (55.0)	0.25
34	$C_{42}H_{50}N_4O_8$		400 (142.31); 499 (15.15); 525 (5.17); 555 (2.36); 602 (6.28); 657 (59.48)	0.47
36	$C_{40}H_{48}N_4O_7\\$		401 (112.25); 498 (16.72); 525 (4.53); 544 (3.14); 599 (6.27); 654 (53.65)	0.49
38	$C_{40}H_{50}N_4O_7$		404 (232.7); 498 (17.8);525 (8.0); 561 (6.6); 600 (7.3); 656 (50.3)	0.22
39	$C_{42}H_{52}N_4O_8$	740 (M ⁺ , 100); 709 (9); 681 (21); 667 (17); 653 (10); 639 (8); 593 (12); 581 (40)	398 (189.37); 496 (14.08); 523 (2.96); 555 (1.11); 598 (5.56); 654 (53.72)	0.53

* Для системы хлороформ—ацетон, 5:1.

В результате данного исследования разработаны и оптимизированы методики получения порфириновых и хлориновых производных **17–19**, **29–31**, **33**, **34**, **36** и **39**, водорастворимые формы которых, содержащие объемные амфифильные заместители, обладают повышенным сродством к раковым клеткам в тестах *in vitro*, превышающим таковое для известных производных тетрапиррольного ряда. Начаты исследования по изучению корреляций структура–функциональная активность для этих фотосенсибилизаторов *in vitro* на культурах клеток аденокарциномы яичника CaOv [25, 26] и нейроглиомы PC 12.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Контроль за выделением и очисткой полученных соединений осуществляли при помощи TCX на пластинках Kieselgel 60 F₂₅₄ (Merck), элюент хлороформ-этанол-ацетон, 99:1:10, или 49.5:0.5:10. Колоночную хроматографию проводили в системах хлороформ-ацетон (хлористый метилен-метанол) с использованием силикагеля 100/160 или окиси алюминия (Lachema, Chemapol, Czechia). Масс-спектры получены на спектрометрах VG 7070E (VG Analytical, Manchester) и SFQ-710 (Finnigan, USA) при энергии ионизирующих электронов 70 эВ. Спектры ЯМР ¹Н регистрировали на приборах WM-250 (Bruker, Germany) и JEOL L400 (Jeol, Tokyo, Japan) в CDCl₃ с TMC в качестве внутреннего стандарта. ИК спектры снимали на приборах Perkin-Elmer 683 (USA) и Unicam SP-1000 (Cambridge, UK) в таблетках KBr. Спектры в видимой области измеряли на спектрофотометре Hitachi 557 (Japan).

Диметиловый эфир 2,4-ди[2-ацетил-1-метил--З-оксобутил]дейтеропорфирина-IX (2) и его Zn-комплекс (1). Получение и свойства см. [1, 10].

Диметиловый эфир 2-[2-ацетил-1-метил--3-оксобутил]дейтеропорфирина-IX (4) и его Zn-комплекс (3). Растворяют 1 г (1.72 ммоль) диметилового эфира 2-(1-гидроксиэтил)дейтеропорфирина-IX (9) в 25 мл свежеперегнанного ацетилацетона, содержащего 10 г Zn(OAc)₂•2H₂O. Нагревают несколько минут при 60 °C для превращения исходного соединения в цинковый комплекс, после чего повышают температуру до 110 °C на 1 ч 10 мин. Ацетилацетон удаляют в вакууме и промывают остаток теплой водой. Остаток растворяют в хлористом метилене, хроматографируют на окиси алюминия (IV ст. акт.) и затем на силикагеле в системе хлористый метилен-метанол, 30:1, кристаллизуют из этанола и получают 0.75 г (60 %) комплекса **3**. ИК спектр, см⁻¹ (CO): 1697, 1700, 1732, 1740. Спектр ЯМР ¹H, δ , м. д., *J*, Гц: 10.28, 9.98, 9.76, 9.62 (4H, все с, *мезо*-H); 9.06 (1H, с, β -H); 5.50 (1H, уш. м, $-C\underline{H}CH_3$); 5.26 (1H, уш. м, $-CHAc_2$); 4.16, 4.22 (4H, два т, *J* = 7.5, 2 × $-C\underline{H}_2COOCH_3$); 3.83, 3.74, 3.61, 3.54, 3.44 (3H, 3H, 6H, 3H, 3H, все с, $6 \times -CH_3$); 3.15, 3.11 (4H, два т, *J* = 7.5, 2 × $-CH_2C\underline{H}_2COOCH_3$); 2.60 (3H, с, $-COC\underline{H}_3$); 2.12 (3H, уш. д, *J* = 5, $-CHC\underline{H}_3$); 1.50 (3H, с, $-COC\underline{H}_3$).

Деметаллируют 2 мин комплекс **3** 6 н. соляной кислотой (1 : 1) к раствору порфирина в хлороформе. Органический слой отделяют, нейтрализуют водным аммиаком, промывают водой, фильтруют через 2 см окиси алюминия (I ст. акт.) и получают 0.65 г (95 %) порфирина **4**, который кристаллизуют из смеси хлороформ-метанол. ИК спектр, см⁻¹ (СО): 3315 (v_{NH}); 1697, 1700, 1732, 1740. Спектр ЯМР ¹Н, δ , м. д., *J*, Гц: 10.27, 10.13, 10.09, 10.04 (4H, все с, *мезо*-H); 9.12 (1H, с, β -H); 5.53 (1H, уш. м, –С<u>Н</u>СН₃); 5.26 (1H, уш. м, –СНАс₂); 4.42, 4.41 (4H, два т, *J* = 7.5, 2 × –С<u>Н</u>₂СР₂СОССН₃); 3.83, 3.74, 3.66, 3.65, 3.64, 3.62 (18H, все с, δ × –СН₃); 3.28 (4H, два т, *J* = 7.5, 2 × –С<u>Н</u>₂С<u>С</u>ОССН₃); 2.60 (3H, с, –СОСН₃); 2.05 (3H, уш. д, –СНС<u>Н</u>₃); 1.54 (3H, с, –СОСН₃); -3.78 (2H, с, NH).

Диметиловый эфир 4-[2-ацетил-1-метил-3-оксобутил]дейтеропорфирина-IX (6) и его Zn-комплекс (5). Получают аналогично соединениям 4 и 3.

ΚΟΜΠΛΕΚΕ 5. ИК СПЕКТР, СМ⁻¹ (CO): 1700, 1732, 1739. СПЕКТР ЯМР ¹H, δ, м. д., *J*, Гц: 10.28, 10.00, 9.96, 9.90 (4H, все с, *мезо*-H); 9.04 (1H, с, β-H); 5.50 (1H, уш. м, $-C\underline{H}CH_3$); 5.26 (1H, уш. м, $-CHAc_2$); 4.42, 4.29 (4H, два т, J = 7.8, $2 \times -C\underline{H}_2CH_2COOCH_3$); 3.74, 3.73, 3.70, 3.66, 3.64, 3.51 (все по 3H, все с, $6 \times -CH_3$); 3.29, 3.21 (4H, два т, J = 7.8, $2 \times -C\underline{H}_2C\underline{H}_2COOCH_3$); 2.00 (3H, уш. д, $-CHC\underline{H}_3$); 1.53 (3H, с, $-COCH_3$).

Порфирин 6. ИК спектр, см⁻¹ (CO): 3315 (NH); 1700, 1732, 1739. Спектр ЯМР ¹H, δ , м. д., *J*, Гц: 10.24, 10.14, 10.13, 10.05 (4H, все с, *мезо*-H); 9.10 (1H, с, β -H); 5.50 (1H, уш. м, -C<u>H</u>CH₃); 5.26 (1H, с, -CHAc₂); 4.46, 4.43 (4H, два т, *J* = 7.5, 2 × -C<u>H</u>₂CH₂COOCH₃); 3.75, 3.74, 3.71, 3.68, 3.65 (все 3H, последний 6H, все с, $6 \times -CH_3$); 3.31, 3.27 (4H, два т, *J* = 7.5, 2 × -CH₂C<u>H</u>₂COOCH₃); 2.61 (3H, с, -COCH₃); 2.03 (3H, уш. д., -CHC<u>H₃</u>); 1.55 (3H, с, -COCH₃); -3.79 (2H, с, 2 × -NH-).

Диметиловый эфир 2-ацетилдейтеропорфирина-IX (7) и диметиловый эфир 4-ацетилдейтеропорфирина-IX (8). Получены по известным методикам [12–14].

Порфирин 7. Спектр ЯМР ¹Н, δ , м. д., *J*, Гц: 10.75, 9.94, 9.87 (1H, 2H, 1H, все с, *мезо*-H); 9.06 (1H, с, β -H); 4.37, 4.28 (4H, два т, *J* = 7.5, 2 × –С<u>H</u>₂CH₂COOCH₃); 3.77, 3.75, 3.66, 3.63, 3.57, 3.50 (все 3H, все с, 6 × –CH₃); 3.26 (3H, с, –СОСН₃); 3.23 (4H, два т, *J* = 7.5, 2 ×–CH₂CH₂COOCH₃); -2.86 (2H, с, 2 ×–NH–).

Порфирин 8. Спектр ЯМР ¹H, δ , м. д., *J*, Гц: 10.73, 9.95, 9.92, 9.91 (4H, все с, *мезо*-H); 9.04 (1H, с, β -H); 4.40, 4.28 (4H, два т, *J* = 7.5, 2 × –С<u>H</u>₂CH₂COOCH₃); 3.78, 3.70, 3.66, 3.64, 3.51 (6H, 3H, 3H, 3H, Bce с, 6 × –CH₃); 3.27 (3H, с, –СОСH₃); 3.25, 3.23 (4H, два т, *J* = 7.5, 2 × –CH₂C<u>H</u>₂COOCH₃); –2.90 (2H, с, 2 × –NH–).

Диметиловый эфир 2-(1-гидроксиэтил)дейтеропорфирина-IX (9). Растворяют 1 г (1.72 ммоль) порфирина 7 в 320 мл смеси хлороформ-метанол, 2:1, нагревают до 40 °С и при интенсивном перемешивании добавляют 1.3 г (37.14 ммоль) борогидрида натрия, через 9 мин охлаждают до 0 °С и нейтрализуют добавалением 5.8 мл раствора 6 н. соляной кислоты, органические растворители упаривают в вакууме, порфирин экстрагируют из нейтральной суспензии хлороформом (2 × 20 мл), упаривают, и остаток хроматографируют на колонке 35 × 200 мм с окисью алюминия (IV ст. акт.), элюируя системой хлороформон ацетон, 95 : 5, кристаллизуют из смеси хлороформом-метанол и получают 0.91 г (91 %) порфирина 9 в виде мелких игольчатых кристаллов. Спектр ЯМР ¹H, м. д., *J*, Гц: 10.12 (1H, с, α -*мезо*-H); 9.90 (1H, с, β -*мезо*-H); 9.84 (1H, с, γ -*мезо*-H); 9.80 (1H, с, δ -*мезо*-H); 9.00 (1H, с, β -*мезо*-H); 9.84 (2H, т, *J* = 7.3, 6-C<u>H</u>₂CH₂COOC<u>H</u>₃); 3.66 (3H, с, 7-CH₂CH₂COOC<u>H</u>₃); 3.64 (3H, с, 6-CH₂CH₂COOC<u>H</u>₃); 3.60 (3H, с, 3-CH₃); 3.52 (3H, с, 5-CH₃); 3.48 (3H, с, 8-CH₃); 3.33 (3H, с, 1-CH₃); 3.22 (2H, т, *J* = 7.3, 6-CH₂C<u>H</u>₂COOC<u>H</u>₃); 3.20 (2H, т, *J* = 7.3, 7-CH₂C<u>H</u>₂COOCH₃); 2.12 (1H, с, -OH); 2.00 (3H, д, *J* = 7.9, -CHC<u>H</u>₃); -4.16 (2H, с, 2 × -NH–).

Диметиловый эфир 4-(1-гидроксиэтил)дейтеропорфирина-IX (10). Растворяют 1 г (1.72 ммоль) диметилового эфира 4-ацетилдейтеропорфирина-IX (8) в 300 мл смеси хлороформ-метанол, 2:1, нагревают до 40 °C и при интенсивном перемешивании добавляют 1.4 г (40 ммоль) борогидрида натрия. Через 15 мин охлаждают до 0 °C и при перемешивании добавляют 6 мл раствора 6 н. соляной кислоты. Растворители отгоняют в вакууме, порфирин экстрагируют из нейтральной суспензии хлороформом (2 × 20 мл),

хлороформ упаривают, и остаток хроматографируют на колонке 35×200 мм с окисью алюминия (IV ст. акт.), элюируя системой хлороформ–ацетон, 19 : 1. Кристаллизуют из смеси хлороформ–метанол. Выход порфирина **10** в виде крупных кристаллов 0.92 г (92 %). Спектр ЯМР ¹H, δ , м. д., *J*, Гц: 10.25 (1H, с, β -*мезо*-H); 10.03 (1H, с, δ -*мезо*-H); 10.00 (1H, с, γ -*мезо*-H); 9.92 (1H, с, α -*мезо*-H); 9.05 (1H, с, β -H); 6.24 (1H, к, *J* = 7.3, -C<u>H</u>CH₃); 4.38 (2H, т, *J* = 7.5, 6-C<u>H</u>₂CH₂COOCH₃); 4.35 (2H, т, *J* = 7.5, 7-C<u>H</u>₂CH₂COOCH₃); 3.71 (3H, с, 1-CH₃); 3.66 (6H, с, $2 \times$ -CH₂CH₂COOC<u>H₃</u>); 3.57 (3H, с, 8-CH₃); 3.55 (3H, с, 5-CH₃); 3.48 (3H, с, 3-CH₃); 3.26 (4H, т, *J* = 7.5, $2 \times$ -CH₂C<u>H</u>₂COOCH₃); 2.32 (1H, с, -OH); 2.11 (3H, д, *J* = 7.3, -CHC<u>H₃</u>); -3.99 (2H, с, $2 \times$ -NH–).

2,4-ди[1-метил-3-оксобутил]дейтеропорфирина-IX Лиметиловый эфир Растворяют 0.72 г (0.91 ммоль) Zn-комплекса 1 в 7.2 мл свежеперегнанного диоксана и добавляют 7.2 мл 20 % водного раствора КОН. Реакцию ведут при перемешивании 4 ч при 50-55 °С. Нейтрализуют до pH 4 раствором соляной кислоты (6 н., примерно 5 мл) при охлаждении до 0 °C и интенсивном перемешивании. Диоксан упаривают, к остатку добавляют 20 мл хлороформа и 10 мл воды, этерифицируют раствором диазометана в диэтиловом эфире, органический слой упаривают, остаток фильтруют через 2 см окиси алюминия (I ст. акт.) со слоем безводного сульфата натрия сверху, элюируя хлороформом. Хроматографируют на колонке 30 × 200 мм с силикагелем в системе хлороформ-ацетон, 15:1. Наиболее подвижную фракцию упаривают и получают 0.385 г вещества, которое деметаллируют как показано выше и получают 0.34 г порфирина 17 (53 %) в виде призматических кристаллов. ИК спектр, см⁻¹, (CO): 3310 (NH); 1713, 1734, 1738. Спектр ЯМР ¹H, δ , м. д., *J*, Гц: 10.24, 10.23, 10.11, 10.09 (4H, все с, *мезо*-H); 5.20 (2H, уш. м, 2 × –С<u>H</u>CH₃); 4.43 (4H, два уш. т, *J* = 7.5, 2 × -С<u>H</u>₂CH₂COOCH₃); 3.76, 3.73, 3.69, 3.66, 3.65 (3H, 3H, 3H, 3H, 6H, все с, 6 × -СН₃); 3.80-3.60 (4H, уш. м, 2 × -СН₂Ac); 3.29 (4H, два т, J = 7.5, 2 × -СН₂CH₂COOCH₃); 2.13, 2.12 (6H, два д. J = 5.5 и 6.5, -СНСН₃); 2.10 (6H, с. 2 × -СОСН₃); -3.78 (2H, с. 2 × -NH-).

Диметиловый эфир 2-[1-метил-3-оксобутил]дейтеропорфирина-IX (18). Получают как показано выше для порфирина 17 из 0.75 г (1.03 ммоль) порфирина 3 в 7.5 мл диоксана и 7.5 мл 20 % водного раствора КОН за 3 ч при 50–55 °С. Нейтрализуют соляной кислотой (6 н., примерно 5.2 мл) до рН 3–3.5. Выход 0.46 г (65 %). Деметаллируют как описано выше для соединений 3 и 4. Кристаллизуют из смеси хлороформ-метанол в течение 3 сут в холодильнике. Выход 0.42 г (56%) больших прозрачных кристаллов вишневого цвета. ИК спектр, см⁻¹ (СО): 3315 (v_{NH}); 1710, 1715, 1734. Спектр ЯМР ¹Н, δ , м. д., *J*, Гц: 10.26, 10.13, 10.09, 10.04 (4H, все с, *мезо*-H); 9.09 (1H, с, β -H); 5.21 (1H, кв, -C<u>H</u>CH₃); 4.42 (4H, уш. т, 2 × -C<u>H</u>₂CH₂COOCH₃); 3.78, 3.75 (6H, с, 2 × -CH₃) 3.70, 3.67 (2H, д. д, $J_{AB} = 5.0$, -CH₂Ac); 3.653, 3.648, 3.64 (3H, 6H, 3H, все с, 3 × -CH₃); 3.28 (4H, уш. т, 2 × -CH₂CQOCH₃); 2.13 (3H, д, J = 6.0, -CHC<u>H₃</u>); 2.10 (3H, с, -COCH₃); -3.79 (2H, с, 2 × -NH–).

Диметиловый эфир 4-[1-метил-3-оксобутил]дейтеропорфирина-IX (19). Получают из соединения 5 аналогично порфирину 18. ИК спектр, см⁻¹ (СО): 3315 (v_{NH}); 1715, 1719, 1735, 1739. Спектр ЯМР ¹Н, δ, м. д., *J*, Гц: 10.23, 10.13, 10.12, 10.04 (4H, все с, *мезо*-H); 9.07 (1H, с, β-H); 5.20 (1H, м, –С<u>H</u>CH₃); 4.43 (4H, два т, *J* = 7.5, 2 × –С<u>H</u>₂CH₂COOCH₃); 3.74, 3.71, 3.68, 3.66, 3.65 (18H, с, 6 × –CH₃); 4.08, 3.70 (2H, м, –CH₂Ac); 3.29 (4H, два т, *J* = 7.5, 2 × –CH₂CQOCH₃); 2.12 (3H, д, перекр. с сигн. 2.10, –CHC<u>H₃</u>); 2.10 (3H, с, –СОCH₃); -3.80 (2H, с, 2 × –NH–).

Диметиловый эфир 2,4-ди[1-метил-3-гидроксибутил]дейтеропорфирина-IX (26) и диметиловый эфир 2,4-ди[1-метил-3-ацетоксибутил]дейтеропорфирина-IX (29). Получают восстановлением промежуточного комплекса 11 в форме дикислоты. После проведения кетонного расщепления органический слой (содержит 0.626 г комплекса 11) отделяют, добавляют 10 мл метанола и 3.13 г NaBH₄ и перемешивают 6 ч при 40 °С. По окончании реакции смесь охлаждают до 0 °C и осторожно нейтрализуют соляной кислотой (примерно 13.7 мл 6 н. раствора). Органические растворители частично упаривают и соединеение 20 отделяют центрифугированием из нейтрального раствора. Для получения комплекса 23 соединение 20 растворяют в метаноле и добавляют раствор диазометана в диэтиловом эфире до полноты этерификации (по TCX). Растворители упаривают, и остаток фильтруют через 1-1.5 см окиси алюминия (III ст. акт.), элюируя хлороформом. Хроматографируют на колонке 30×200 мм с силикагелем в системе хлороформ-ацетон, 5:1, или хлористый метилен-ацетон, 3:1. Исходное соединение элюируется первым, далее следует смесь продуктов моновосстановления и, наконец, искомое соединение. Выход 0.386 г (60 %). Деметаллирование осуществляют как для соединения 4. Кристаллизуют из смеси хлороформ-метанол. Выход 26 0.284 г (80 %) в виде крупных 220

игольчатых кристаллов красного цвета. Спектр ЯМР ¹Н (выборочно), δ, м. д., *J*, Гц: 10.24, 10.22, 10.10, 10.07 (4H, все с, *мезо*-H); 4.42 (4H, два уш. т, 2 × –С<u>H</u>₂CH₂COOCH₃); 3.72, 3.65, 3.63, (18H, все с, 6 × –СH₃); 3.28 (4H, два т, *J* = 7.5, 2 × –CH₂C<u>H</u>₂COOCH₃); -3.78 (2H, с, 2 × –NH–).

Диметиловый эфир 2,4-ди[3-ацетоксибутил]-1-метилдейтеропорфирина-IX (29). Получают из порфирина 26, как в случае соединений 30 и 31, увеличивая время реакции до 24 ч. ИК спектр, см⁻¹ (CO): 3312 (v_{NH}); 1732, 1736. Спектр ЯМР ¹Н, 8, м. д., *J*, Гц: 10.18, 10.17, 10.12, 10.10 (4H, все с, *мезо*-H); 5.32, 4.97 (2H, м, $2 \times -C_{(1)}H(CH_3)C_{(2)}H_2C_{(3)}H(OAc)C_{(4)}H_3$); 4.67 (2H, м, $2 \times -CHCH_3$); 4.43 (4H, два уш. т, $J = 7.5, 2 \times -CH_2CH_2COOCH_3$); 3.72, 3.71, 3.669, 3.670, 3.661, 3.660 (18H, все с, $6 \times -CH_3$); 3.310, 3.300 (4H, два т, J = 7.5 Гц, $2 \times -CH_2CH_2COOCH_3$); 3.00, 2.60 (4H, м, $2 \times -C_{(2)}H_2-$); 2.14, 2.10 (6H, д. д, $J = 6.8, 2 \times -C_{(1)}CH_3$); 1.55 (6H, с, $2 \times -Ac$); 1.370, 1.360, (6H, два д, $2 \times -C_{(3)}CH_3$); -3.77 (2H, с, $2 \times -NH-$).

Диметиловый эфир 2-[3-гидроксибутил]-1-метилдейтеропорфирина-IX (27) и диметиловый эфир 2-[1-метил-3-ацетоксибутил]дейтеропорфирина-IX (30). Получают аналогично порфирину 26 из 0.67 г (1.02 ммоль) комплекса 12 и 3.36 г (86.15 ммоль) NaBH₄ в 10 мл метанола при перемешивании 3.5 ч при 40 °C. Нейтрализуют 14.6 мл раствора 6 н. соляной кислоты. Выход соединения 24 0.26 г (40 %) и 27 0.22 г (37 %) в виде крупных игольчатых кристаллов красного цвета (после деметаллирования аналогично 3 и кристаллизации из смеси хлороформ–метанол). Спектр ЯМР ¹Н (выборочно), δ , м. д., *J*, Гц: 10.26, 10.14, 10.08, 10.02 (4H, все с, *мезо*-H); 9.07 (1H, с, β -H); 4.75 (1H, м, –С<u>H</u>CH₃); 4.41 (4H, два т, *J* = 7.5, 2 × –С<u>H</u>₂CH₂COOCH₃); 4.07 (1H, м, –С<u>H</u>OH); 3.74, 3.64 (6H, 12H, с, 6 ×–CH₃); 3.28 (4H, два т, *J* = 7.5, 2 × –CH₂C<u>H</u>₂COOCH₃); 3.45, 2.85 (2H, м, *J*_{AB} = 17.5, –CH₂–); 2.13 (3H, д. *J*_{H,CH3} = 7.2, –C₍₁)С<u>H</u>₃); 1.38 (3H, д. *J*_{H,CH3} = 7.2, –C₍₄)<u>H</u>₃); -3.81 (2H, с, 2 × –NH–).

ΑΠΕΤΑΤ 30. Πолучают из 0.21 г (0.32 ммоль) **27** обработкой 6 ч смесью 10 мл пиридина и 1 мл уксусного ангидрида. Выход ацетата **30** 0.21 г (86 %), игольчатые кристаллы красного цвета (из смеси хлороформ-метанол). ИК спектр, см⁻¹ (CO): 3312 ($v_{\rm NH}$); 1733, 1739. Спектр ЯМР ¹H, δ, м. д., *J*, Гц: 10.20, 10.14, 10.08, 10.03 (4H, все с, *мезо*-H); 9.08 (1H, с, β-H); 5.28 (1H, м, $-C_{(3)}$ HOAc); 4.71 (1H, м, $-C_{(1)}$ HCH₃); 4.43, 4.41 (4H, два т, *J* = 7.7, 2 × -CH₂CH₂COOCH₃); 3.753, 3.739, 3.660, 3.657, 3.644, 3.636 (18H, с, 6 × -CH₃); 3.294, 3.287 (4H, два т, *J* = 7.8, 2 × -CH₂CH₂COOCH₃); 3.04, 2.60 (2H, м, *J*_{HA,HB} = 13.0, *J*_{HA,C(1)H} = *J*_{HA,C(3)H} = 8.2, $-C_{(2)}$ H₂-); 2.16 (3H, с, -Ac); 2.12 (3H, д, $-C_{(1)}C$ H₃); 1.36 (3H, д, $-C_{(4)}$ H₃); -3.80 (2H, с, 2 × -NH–).

Диметиловый эфир 4-[3-гидроксибутил]-1-метилдейтеропорфирина-IX (28) и диметиловый эфир 4-[1-метил-3-ацетоксибутил]дейтеропорфирина-IX (31). Получают из соединения 13 аналогично.

Порфирин 28. Спектр ЯМР, δ , м. д., *J*, Гц: 10.31, 10.23, 10.11, 10.03 (4H, все с, *мезо-*H); 9.07 (1H, с, β-H); 4.70 (1H, м, $-C\underline{H}CH_3$); 4.43, 4.41 (4H, два т, *J* = 7.45, 2 × $-C\underline{H}_2CH_2COOCH_3$); 4.10 (1H, м, $-C\underline{H}OH$); 3.73, 3.71, 3.66, 3.65, 3.64 (3H, 3H, 6H, 3H, 3H, с, 6 × $-CH_3$); 3.28 (4H, два т, *J* = 7.45, 2 × $-C\underline{H}_2COOCH_3$); 2.83, 2.56 (2H, м, $-C\underline{H}_2-$); 2.13 (3H, д. д. $-C_{(1)}HC\underline{H}_3$); 1.38 (3H, д. $-C_{(4)}\underline{H}_3$); -3.86 (2H, с, 2 × -NH-).

Auetat 31. ИК спектр, см⁻¹ (CO): 3310 (v_{NH}); 1732. Спектр ЯМР ¹H, δ, м. д., *J*, Гц: 10.18, 10.13, 10.12, 10.05, 10.03 (4H, все с, *мезо*-H); 9.08 (1H, с, β-H); 5.35–5.23 (1H, м, –С<u>H</u>OAc); 4.72–4.39 (1H, уш. м, –С<u>H</u>CH₃); 4.45, 4.43 (4H, два т, *J* = 7.5, 2 × –С<u>H</u>₂CH₂COOCH₃); 3.74, 3.71, 3.67, 3.65 (3H, 3H, 6H, 6H, с, 6 × –CH₃); 3.30 (4H, два т, *J* = 7.5, 2 × –CH₂C<u>H</u>₂COOCH₃); 3.00, 2.60 (2H, м, –C₍₂₎H₂–); 2.17, 1.94 (3H, с, –Ac); 2.14, 2.10 (3H, д, –C₍₁₎C<u>H₃</u>); 1.36, 1.21 (3H, д, –C₍₄₎<u>H₃</u>); –3.80 (2H, с, 2 × –NH–).

Триметиловый эфир 2-дезвинил-2-(1-метоксиэтил)хлорина е₆ (**32**). Получают с выходом 65 % согласно известным процедурам [6, 22, 27] выдерживанием 12 ч 3 г хлорина е₆ [28] в 45 мл раствора HBr в уксусной кислоте (*d* = 1.44–1.46) с последующей обработкой промежуточного пербромида метанолом. Спектр ЯМР ¹H, δ, м. д., *J*, Гц: 9.76, 9.69, 8.71 (3H, все с, *мезо*-H); 5.87 (1H, м, –С<u>Н</u>СН₃); 5.28 (2H, м, *γ-мезо*-С<u>Н</u>₂ССООМе); 4.42 (2H, м, 7-H, 8-H); 4.25 (3H, с, 6-СООСН₃); 3.79 (2H, к, 4-С<u>Н</u>₂СН₃); 3.76, 3.62, 3.57 (9H, все с, 3 × –СН₃); 3.54 (3H, два с, –СНОС<u>Н</u>₃); 3.44, 3.30 (6H, с, 2 × –СН₃); 2.54, 2.20 (4H, м, –С<u>Н</u>₂С<u>Н</u>₂СООСН₃); 2.12 (3H, д, –СНС<u>Н</u>₃); 1.74 (3H, д, 8-С<u>Н</u>₃); 1.70 (3H, т, 4-СН₂С<u>Н</u>₃); -1.36, –1.48 (2H, 2 с неравн. инт., 2 × –NH–).

Триметиловый эфир 2-дезвинил-2-[2-ацетил-1-метил-3-оксобутил]хлорина е₆ (34) и его Zn-комплекс (33). Аналогично порфиринам 3–6 из 1 г (1.49 ммоль) триметилового эфира 2-дезвинил-2-(1-метоксиэтил)хлорина е₆ 32 получают 0.78 г (65 %) комплекса 33 и затем 0.71 г (64 %) хлорина 34.

Комплекс 33. Спектр ЯМР ¹Н, δ , м. д., *J*, Гц: 9.55, 9.54, 9.50, 9.49, 8.48 (0.5H, 0.5H, 0.5H, 0.5H, 1H, дв. с, дв. с, с, *мезо*-H); 5.30–4.95 (2H, д. д, γ -*мезо*-CH₂COOMe); 5.20 (1H, уш. м под сигн. от γ -*мезо*-CH₂COOMe, $-C_{(1)}$ HCH₃); 5.05 (1H, уш. м под сигн. от γ -*мезо*-CH₂COOMe, $-C_{(1)}$ HCH₃); 5.05 (1H, уш. м под сигн. от γ -*мезо*-CH₂COOMe, $-C_{(1)}$ HCH₃); 5.05 (1H, уш. м под сигн. от γ -*мезо*-CH₂COOMe, $-C_{(1)}$ HCH₃); 3.78 (2H, к, 4-CH₂CH₃); 3.54, 3.43, 3.38, 3.30 (12H, с, с, дв. с, дв. с, 4 × -CH₃); 2.52, 2.48 (1.5H, 1.5H, с, 1 × -COCH₃); 2.52, 2.22, 2.08 (1H, под сигн. от $-COCH_3$, 3H, м, $-CH_2CH_2COOCH_3$); 1.82 (3H, уш. д, $-C_{(1)}$ HCH₃); 1.70 (6H, перекр. д и т, 8-CH₃, 4-CH₂CH₃); 1.65, 1.61 (1.5H, 1.5H, уш. с, 1 × -COCH₃).

Хлорин 34. ИК спектр, см⁻¹ (CO): 3300 (v_{NH}); 1700, 1724, 1730, 1733, 1738. Спектр ЯМР ¹H, δ , м. д., *J*, Гц: 9.71, 9.57, 8.70 (3H, с, *мезо*-H); 5.50-5.10 (2H, д. д, γ -*мезо*-CH₂COOMe); 5.38 (1H, уш. м под сигн. от γ -*мезо*-CH₂COOMe, $-C_{(1)}$ HCH₃); 5.16 (1H, уш. м под сигн. от γ -*мезо*-CH₂COOMe, $-C_{(1)}$ HCH₃); 5.16 (1H, уш. м под сигн. от γ -*мезо*-CH₂COOMe, $-C_{(1)}$ HCH₃); 5.16 (3H, с, 6-COOCH₃); 3.80 (2H, к, 4-CH₂CH₃); 3.76, 3.63, 3.57, 3.45, 3.37 (15H, с, 5 × -CH₃); 2.55 (3H, с, -COCH₃); 2.50, 2.29, 2.16 (1H - под сигн. от $-COCH_3$, 3H, м, $-CH_2CH_2COOCH_3$); 1.90 (3H, уш. сигн., $-C_{(1)}CH_3$); 1.72 (6H, перекр. д и т, 8-CH₂A+CH₂CH₂); 1.65 (3H, с, $-COCH_3$); -1.54 (2H, с, 2 × –NH–).

Триметиловый эфир 2-дезвинил-2-[1-метил-3-оксобутил]хлорина е₆ (**36**). Получают из 0.78 г (0,97 ммоль) цинкового комплекса триметилового эфира 2-дезвинил-2-[1-метил-2-ацетил-3-оксобутил]хлорина е₆ **33** аналогично порфирину **18** при щелочном гидролизе 4 ч. Выход 2-дезвинил-2-[1-метил-3-оксобутил]хлорина **35** 0,57 г (90%), из которого обработ-кой раствором H₂SO₄ в MeOH (4 %) получают его триметиловый эфир **36** с выходом 0.52 г (85 %). ИК спектр, см⁻¹ (CO): 3305 (NH); 1715, 1725, 1732, 1739. Спектр ЯМР 1Н, δ, м. д., *J*, Гц: 9.68, 9.51, 8.66 (3H, с, *мезо*-H); 5.27 (2H, д. д, γ*-мезо*-С<u>H</u>₂COOMe); 4.92 (1H, к, -C₍₁₎<u>H</u>CH₃); 4.40 (2H, д. д, 7-H, 8-H); 4.24 (3H, с, 6-COOCH₃); 3.78 (2H, к, 4-C<u>H</u>₂CH₃); 3.75, 3.62 (6H, с, 2 × –CH₃); 3.58 (2H, м, –CH₂–); 3.56, 3.43, 3.32 (9H, с, 3 × –CH₃); 2.49, 2.14 (4H, м, –C<u>H</u>₂C<u>H</u>₂COOCH₃); 2.11 (3H, с, –COCH₃); 2.00 (3H, дв. д, –C₍₁₎C<u>H</u>₃); 1.70 (6H, перекр. д и т, 8-C<u>H</u>₃, 4-CH₂C<u>H</u>₃); -1.34, –1.42 (2H, 2 с неравн. инт., 2 × –NH–).

Триметиловый эфир 2-дезвинил-2-[1-метил-3-ацетоксибутил]хлорина е₆ (**39**). Получают из 0.57 г (0.87 ммоль) цинкового комплекса 2-дезвинил-2-[1-метил-3-оксобутил]хлорина е₆ **35** аналогично порфирину**30**. Выход хлорина **39** 0.26 г (40 %). ИК спектр, см⁻¹ (CO): 3310 (v_{NH}); 1726, 1731, 1735. Спектр ЯМР 1H, 8, м. д., *J*, Гц: 9.67, 9.44, 8.66, 8.64 (1H, 1H, 0,5H, 0,5H, с, с, дв. с, *мезо*-H); 5.40-5.10 (2H, д. д, γ -*мезо*-CH₂COOMe); 5.22 (0.5H, м под сигн. от γ -*мезо*-CH₂COOMe, 1/2 × –CHOAc); 4.80 (1H, уш. м, –C₍₁₎HCH₃); 4.50–4.30 (2H, м, 7-H, 8-H); 4.41 (0.5H, м под сигн. от γ -*мезо*-CH₂COOMe, 1/2 × –CHOAc); 4.24 (3H, с, 6-COOCH₃); 3.78 (2H, к, 4-CH₂CH₃); 3.75, 3.61, 3.56, 3.41, 3.35, 3.34, 3.30 (3H, 3H, 3H, 2H, 0.5H, 0.5H, 3H, с, 5 × –CH₃); 2.80, 2.50 (2H, м, –C₍₃₎H₂–); 2.50, 2.16 (4H, м, – CH₂CH₂COOCH₃); 1.99 (3H, д. д, –C₍₁₎HCH₃); 1.99, 1.95 (3H, с, –OCOCH₃); 1.71, 1.70 (6H, перекр. д и т, 8-CH₃, 4-CH₂CH₃); 1.34, 1.32 (3H, два д, –C₍₄₎H₃); –1.32, –1.40 (2H, 2 с неравн. инт., 2 × –NH–).

Авторы выражают искреннюю благодарность А. М. Шульге за съемку и интерпретацию спектров ЯМР¹Н порфиринов **9** и **10**.

СПИСОК ЛИТЕРАТУРЫ

- 1. Г. В. Пономарев, Г. В. Кириллова, Д. В. Яшунский, ХГС, 1197 (2000).
- 2. R. K. Pandey, F.-Y. Shiau, A. B. Sumlin, T. J. Dougherty, K. M. Smith, *Bioorg. Med. Chem. Lett.*, **2**, 491 (1992).
- 3. R. K. Pandey, F.-Y. Shiau, N. W. Smith, T. J. Dougherty, K. M. Smith, *Tetrahedron*, **48**, 7591 (1992).
- 4. X. Jiang, R. K. Pandey, K. M. Smith, Tetrah. Lett., 36, 365 (1995).
- 5. X. Jiang, R. K. Pandey, K. M. Smith, J. Chem. Soc. Perkin Trans. 1, 1607 (1996).
- R. K. Pandey, A. B. Sumlin, S. Constantine, M. Auodia, W. R. Potter, D. A. Bellnier, B. W. Henderson, M. A. Rodgers, K. M. Smith, T. J. Dougherty, *Photochem. and Photobiol.*, 64, 194 (1996).
- 7. R. W. Boyle, D. Dolphin, Photochem. and Photobiol., 64, 469 (1996).
- 8. Г. В. Пономарев, XГС, 1422 (1976).
- 9. Г. В. Пономарев, ХГС, 943 (1980).
- 10. Г. В. Пономарев, Г. В. Кириллова, А. М. Шульга, *ХГС*, 1564 (1991).

- 11. Г. В. Пономарев, А. М. Шульга, *ХГС*, 126 (1992).
- 12. W. S. Caughey, J. O. Alben, W. Y. Fujimoto, J. Lyndal York, J. Org. Chem., 31, 2631 (1966).
- 13. H. Jr. Brockmann, K. M. Bliesener, H. Inhoffen, Ann., 718, 148 (1968).
- 14. А. Ф. Миронов, В. Д. Румянцева, М. А. Кулиш, Т. В. Кондукова, Б. В. Розынов, Р. П. Евстигнеева, *ЖОХ*, **41**, 1114 (1971).
- 15. K. M. Smith, E. M. Fujinari, K. C. Langry, D. W. Parish, H. D. Tabba, J. Amer. Chem. Soc., 105, 6638 (1983).
- 16. P. S. Clezy, V. Diakiw, Aust. J. Chem., 28, 1589 (1975).
- 17. А. В. Решетников, И. В. Жигальцев, С. Н. Коломейчук, А. П. Каплун, В. И. Швец, О. С. Жукова, А. В. Карменян, А. В. Иванов, Г. В. Пономарев, Биоорганич. химия, 25, 782 (1999).
- 18. D. Dolphin, A. Wick, Tabulation of infrared spectral data, J. Wiley & Sons, NY, London, Sydney, Toronto, 1977, 179.
- 19. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, Chapman and Hall, London, 1975, 160.
- 20. И. М. Карнаух, А. С. Московкин, Г. В. Пономарев, ХГС, 1478 (1993).
- 21. Г. В. Пономарев, Г. В. Кириллова, Б. В. Розынов, И. А. Богданова, ХГС, 860 (1973).
- 22. Г. В. Кириллова, В. Г. Яшунский, Т. А. Бабушкина, Г. В. Пономарев, А. с. СССР 857138; Б. И., № 31, 115 (1981); Chem. Abstr., 96, 35331 (1982).
- 23. Г. В. Кириллова, Г. В. Пономарев, Тез. докл. V Всесоюз. конф. по координац. и физической химии порфиринов, Иваново, 1988, 56.
- 24. Г. В. Пономарев, А. В. Решетников, Т. Н. Гусева-Донская, В. И. Швец, Р. Ф. Баум, В. В. Ашмаров, Пат. России, решение о выдаче от 22 янв. 1999 г. по заявке № 98100545.
- A. V. Ivanov, A. V. Reshetnickov, V. I. Shvets, G. V. Ponomarev, Abstr. of 7th Internat. Conf. "Laser Applications in Life Sciences", Bratislava, 1998.
 A. B. Иванов, A. B. Решетников, А. А. Дмитриев, А. Т. Градюшко, В. И. Швец,
- Г. В. Пономарев, Мат. Второго съезда фотобиологов России, Пущино, 1998, 362.
- 27. R. K. Pandey, T. J. Dougherty, USA Pat. 5.002.962; Chem. Abstr., 113, 58795 (1990).
- 28. S. Lötjönen, P. H. Hynninen, Synthesis, 541 (1980).

Институт биомедицинской химии РАМН. Москва 119832, Россия e-mail: gelii@.ibmh.msk.su

Поступило в редакцию 15.03.99

^аГНЦ РФ, Институт биофизики, Москва 123182, Россия

⁶НПЦ "ФАРМЗАЩИТА" Министерства здравоохранения РФ, Химки 141400, Московская обл., Россия