А. Е. Обухов, Л. И. Беленький^а

ВЛИЯНИЕ *иис-транс*-ИЗОМЕРИИ НА ЭЛЕКТРОННО-КОЛЕБАТЕЛЬНУЮ СТРУКТУРУ ОСНОВНОГО И ВОЗБУЖДЕННЫХ СОСТОЯНИЙ И РЕАКЦИОННУЮ СПОСОБНОСТЬ 2-(ФУРИЛ-2)-И 2-(ТИЕНИЛ-2)ОКСАЗОЛА

Изучены спектрально-флуоресцентные свойства, строение и электронная структура основного и возбужденных электронных синглетных и триплетных состояний цис- и транс-форм 4,5-дигидро-2-(фурил-2)оксазола, 4,5-дигидро-2-(тиенил-2)оксазола, 2-(фурил-2)оксазола (FO) и 2-(тиенил-2)оксазола (ТО). Полуэмпирическими методами INDO/S (валентное приближение) и PPP/S (п-приближение) изучена орбитальная природа нижних возбужденных синглетных и триплетных состояний. Показано, что для молекул FO и TO нижним триплетным (T) является состояние $\pi\pi$ -типа, для которого характерна делокализация электронного возбуждения по атомам, а при синглетном возбуждении наблюдается инверсия энергетических уровней делокализованных состояний *пл**-типа и локализованных на нескольких связях состояний пл*-типа (для свободных молекул **ТО** и **FO** нижние возбужденные синглетные состояния S₁* относятся к лл*-типу и пл*-типу соответственно). Вследствие низкого расположения уровней $T_{\pi\pi}$ * и $T_{n\pi}$ * относительно синглетного уровня *пл**-типа константа скорости интеркомбинационной конверсии превышает константу скорости излучательного распада. Поэтому в условиях электронно-колебательного возбуждения происходит эффективное заселение триплетных состояний молекул. Направленность реакций в ходе синтеза сопоставлена с индексами локализации в основном состоянии для процессов электрофильного, нуклеофильного и радикального замещения, а также с числами локализации возбуждения L_и для широкого набора электронно-возбужденных состояний. Сделан вывод, что изменение строения молекулы азола при замене атома О на атом S либо при переходе от частично гидрированной системы к гетероароматической является основной причиной изменения всех спектральных параметров, характеризующих электронно-колебательное и спин-орбитальное взаимодействия наиболее активных групп атомов в молекулярной структуре.

Ключевые слова: 4,5-дигидро-2-(тиенил-2)оксазол, 4,5-дигидро-2-(фурил-2)оксазол, 2-(фурил-2)оксазол, 2-(тиенил-2)оксазол; *s-цис-* и *s-транс-*формы, спектрально-флуоресцентные свойства, строение и электронная структура основного и возбужденных электронных синглетных и триплетных состояний, квантово-химические расчеты.

При изучении взаимосвязи строения, спектрально-флуоресцентных свойств и реакционной способности некоторых 2-замещенных оксазолов, отличающихся природой заместителя – 2-фенилоксазола (РО), 2-(фурил-2)оксазола (FO) и 2-(тиенил-2)оксазола (ТО) – были рассмотрены лишь наиболее энергетически выгодные конформеры двух

последних систем – *s-транс*-формы **FO** и **TO** в их основном и нижних возбужденных синглетном и триплетном состояниях [1–3]. Настоящая статья посвящена изучению зависимости реакционной способности и электронной структуры в основном и возбужденных электронных синглетных и триплетных состояниях 2-(фурил-2)оксазола и 2-(тиенил-2)-оксазола от их пространственного строения. Указанные соединения являются промежуточными в ходе направленного синтеза лазерно-активных веществ [4]. Постановка задачи исследования детально изложена нами в работах [2, 3].

Квантово-химические расчеты полуэмпирическими методами PPP/S и INDO/S проведены для двух возможных планарных конформеров молекул с использованием спектральных параметров. Методики расчетов подробно описаны в работе [2].

1. ИЗМЕНЕНИЕ НАПРАВЛЕННОСТИ ЭЛЕКТРОФИЛЬНОГО ЗАМЕЩЕНИЯ

Полученные нами данные показывают, что в условиях, исключающих протонирование или образование комплекса с кислотой Льюиса, оксазольное ядро в 2-фенил-, 2-(2-тиенил)- и 2-(2-фурил)оксазолах ведет себя по отношению к электрофильным агентам подобно активированным пятичленным гетероароматическим системам с одним гетероатомом: бромируется бромом без катализатора, нитруется ацетилнитратом и борфторидом **N-нитропиколиния** и даже формилируется по Вильсмейеру [4-6]. При этом не только бензольное, но и тиофеновое кольцо не затрагивается, а в случае FO получается смесь продуктов замещения в оксазольном или фурановом фрагменте. Протонирование или образование комплекса (изучены комплексы с AlCl₃) происходит по «пиридиновому» атому азота [7, 8], что приводит к дезактивации оксазольного цикла, так что реакции направляются только в фенильный (гетарильный) фрагмент (схема).

 $X = CH = CH, S, O; A = H^+, AlCl_3$

2. ИНДЕКСЫ РЕАКЦИОННОЙ СПОСОБНОСТИ ОТДЕЛЬНЫХ ПОЛОЖЕНИЙ МОЛЕКУЛ В ОСНОВНОМ СОСТОЯНИИ

В табл. 1 представлены рассчитанные методом PPP/S индексы свободной валентности (FV) и граничные электронные плотности (FED) для азоциклических молекул в модельных реакциях трех типов: электрофильного FED(E), нуклеофильного FED(N) и радикального FED(R) замещения. Эти величины указывают на значительные различия в направленности отмеченных типов реакций.

Таблица 1

Соеди- нение	Изомер	Индекс*	O(1)	C(2)	N(3)	C(4)	C(5)	O(1') S(1')	C(2')	C(3')	C(4')	C(5')
2-(Фурил-2)-	uuc-FO	FV	0.077	0.240	0.142	0.385	0.511	0.102	0.258	0.413	0.380	0.501
оксазол		FED(E)	0.023	0.200	0.151	0.188	0.450	0.002	0.321	0.239	0.069	0.358
(FO)		FED(N)	0.165	0.355	0.230	0.001	0.224	0.164	0.258	0.282	0.014	0.306
		FED(R)	0.094	0.277	0.190	0.094	0.337	0.083	0.289	0.260	0.042	0.332
		q_i^{o}	0.319	0.026	-0.272	0.004	-0.102	0.311	-0.098	-0.045	-0.070	-0.074
	транс-FO	FV	0.051	0.240	0.146	0.386	0.506	0.079	0.251	0.416	0.381	0.495
	a	FED(E)	0.023	0.215	0.145	0.206	0.486	0.003	0.288	0.221	0.082	0.350
		FED(N)	0.166	0.343	0.230	0.000	0.207	0.176	0.285	0.290	0.008	0.295
		FED(R)	0.095	0.279	0.188	0.103	0.337	0.090	0.287	0.255	0.045	0.322
•	-	q_i^{0}	0.322	0.030	-0.286	0.001	-0.09	0.327	-0.087	-0.082	-0.073	0.068
2-(Тие-	иис-ТО	FV	0.071	0.223	0.146	0.385	0.510	0.625	0.366	0.466	0.420	0.636
нил-2)-	,	FED(E)	0.024	0.288	0.146	0.190	0.444	0.001	0.288	0.310	0.078	0.321
оксазол		FED(N)	0.098	0.153	0.171	0.001	0.139	0.416	0.393	0.124	0.463	0.463
(TO)		FED(R)	0.061	0.176	0.158	0.096	0.291	0.022	0.352	0.351	0,101	0.392
		q_i°	0.324	0.031	-0.273	0.003	-0.095	0.054	-0.034	0.011	-0.011	0.010
	транс-ТО	FV	0.065	0.223	0.144	0.384	0.509	0.599	0.354	0.467	0.419	0.627
		FED(E)	0.022	0.205	0.144	0.189	0.447	0.002	0.264	0.304	0.092	0.330
		FED(N)	0.101	0.150	0.174	0.002	0.138	0.048	0.442	0.394	0.105	0.446
		FED(R)	0.061	0.178	0.159	0.096	0.293	0.025	0.353	0.349	0.098	0.388
		qi	0.328	0.004	-0.273	0.004	0.092	0.061	-0.009	-0.027	0.021	0.000

Индексы реакционной способности атомов в молекулах 2-(фурил-2)оксазола и 2-(тиенил-2)оксазола по данным метода PPP/S

* FV — индексы свободной валентности, FED(E), FED(N) и FED(R) - граничные электронные плотности как индексы для электрофильного, нуклеофильного и радикального замещения соответственно.

В случае 2-(фурил-2)оксазола индексы FV для *цис*-FO (*транс*-FO) уменьшаются в последовательности: C(5) > C(5') > C(3') > C(4) > C(4') > C(2') > C(2), но в *цис*-TO (*транс*-TO) максимальные индексы FV имеют атомы S и C(5') тиофенового цикла, причем значения индексов FV уменьшаются в ряду: C(5') > S(1) > C(5) > C(4') > C(3') > C(2') > C(2).

Для электрофильного замещения *цис*-FO (*транс*-FO) наибольшие индексы FED(E) относятся к атомам C(5) и C(5'). Отметим, что, по экспериментальным данным [4], эти положения конкурируют при формилировании по Вильсмейеру (см. разд. 1). Для нуклеофильного замещения наибольшими индексами FED(N) обладают атомы C(2) и C(5'), отметим также высокие индексы FED(N) атомов C(2') и C(3'), равные 0.258 (0.285) и 0.282 (0.290), которые позволяют допустить участие свободного положения 3 фуранового цикла в реакциях нуклеофильного замещения. В случае радикального замещения наиболее высокие индексы FED(R) имеют атомы C(5) и C(5').

Для электрофильного замещения *цис*-**ТО** (*транс*-**ТО**) наибольшим индексом FED(E) характеризуется атом C(5), что согласуется с результатами эксперимента [4]. В согласии с экспериментальными данными [4], индексы FED(E) предсказывают, что в реакциях электрофильного замещения роль атома C(4) невелика (ср. разд. 1). В случае нуклеофильного замещения, судя по величинам FED(N), наиболее активными должны быть свободные положения тиофенового кольца. При этом переход от *цис*конформации к *транс*-форме может сопровождаться заметным увеличением активности положения 3 тиофенового кольца: значение FED(N) растет с 0.124 до 0.442. Из величин индексов FED(R) следует, что возможна конкуренция между тиофеновым циклом и положением 5 оксазольного кольца.

3. СОПОСТАВЛЕНИЕ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА И КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ С ДАННЫМИ ЯМР

Параметры спектров ЯМР ¹Н приведены в табл. 2. Видно, что химические сдвиги протонов H(4) и H(5) оксазольного ядра для фенил-, фурили тиенилзамещенных мало отличаются друг от друга. Спектры 2-фенил-, 2-(2-фурил)- и 2-(2-тиенил)-4,5-дигидрооксазолов (DHPO, DHFO, **DHTO**) типичны для монозамещенных бензолов, фуранов и тиофенов с электроноакцепторными заместителями, имеющими -М-І-эффект (оксазолиновый остаток эквивалентен иминоэфирному заместителю). При переходе к РО и ТО происходит дезэкранирование сигналов протонов бензольного и тиофенового циклов, за исключением сигнала H(5') тиофенового кольца. В случае же FO, напротив, наблюдается усиление экранирования протонов H(3') и H(4') фуранового кольца, а химический сдвиг Н(5') не изменяется. Причиной указанного различия, вероятно, является высокая электроотрицательность гетероатома фуранового цикла, что обусловливает меньшую передачу электронной плотности с фуранового на оксазольный фрагмент и может объяснить отмеченные выше отличия в реакционной способности ТО и FO, а также РО [1, 2].

がため、おからないためにはないために、「あためのないない」というためです。 ちょうちょう またのでは、またのであるためである。 またので、このではないないできた。 またので、た

Соединение	Оксазол ци	иновый кл	Оксазо ци	льный кл	Фенил, Н(3 [°]) или	Фурил-2,	Тиенил-2, H(5') или
	H(4)*	H(5)*	H(4)* ²	H(5)* ²	<i>о</i> -Н	n(4)	<i>м</i> -H + <i>n</i> -H
4,5-Дигидро- 2-фенилоксазол ^{*3}	3.97	4.08	_	_	7.76 м (2H)		7.22 м (3Н)
4,5-Дигидро- 2-(фурил-2)- оксазол ^{*4*5}	4.10	4.20		_	7.49 дд	6.97 дд	7.45 дд
4,5-Дигидро- 2-(тиенил-2)- оксазол ^{*3*6}	4.07 .	4.22			6.87 д	6.38 дд	7.45 д
2-Фенилоксазол* ³			7.10	7.53	7.95		7.30 м (3Н)
2-(Фурил-2)- оксазол* ³	—	—	7.07	7.51	6.87 дд	6.35 дд	7.45 д. уш.
2-(Тиенил-2)- оксазол* ³	_	_	7.08	7.55	7.51 дд	6.98 дд	7.32 д. уш.

Химические сдвиги (м. д.) в спектрах ЯМР ¹Н 2-арил-, 2-гетарилоксазолов, 4,5-дигидро-2-арил- и -2-гетарилоксазолов

^{*} Сигналы имеют вид перекрывающихся мультиплетов, $J_{45} = 7-8$ Гц.

*² Сигналы имеют вид синглетов (КССВ $J_{45} < 1$ Гц в спектре ЯМР ¹Н на частоте 60 МГ ц не проявляются).

*³ В растворе CCl₄.

*⁴ В растворе CDCl₃.

*⁵ В фурановом цикле $J_{3'4'} = 3.5, J_{4'5'} = 2.5$ Гц.

*⁶ В тиофеновом цикле $J_{3'4'} = 4$, $J_{3'5'} = 1.5$, $J_{4'5'} = 5.5$ Гц.

Данные расчетов методом INDO/S (табл. 3) указывают на то, что в основном состоянии атом C(3') в фурановом или тиофеновом цикле отличается наименьшей электронной заселенностью. Наибольшая электронная заселенность в этих циклах характерна для атома C(5'). Разница в значениях $\Delta \rho_{\pi z}^{0i}$ может объяснить более сильнопольный химический сдвиг сигналов протонов H(5') для **ТО** по сравнению с **FO**, а также более слабопольный химический сдвиг для протонов H(3') в тиофеновом цикле, обусловленный большей электронной заселенностью на атоме C(3') (см. выше).

Аналогичные величины для атомов оксазольного цикла C(4) и C(5) в *цис*- и *транс*-конформерах составляют $\Delta \rho_{\pi z}^{0i} = 0.058$ и 0.097 (FO) и $\Delta \rho_{\pi z}^{0i} = 0.062$ и 0.074 (TO) соответственно. Таким образом, проявляется качественное согласие изменений электронной плотности на атомах и значений химических сдвигов ядер молекул, но следует отметить и некоторые несоответствия, по-видимому, связанные с невозможностью полного учета в математических моделях различных внешних воздействий среды на органическую многоатомную систему [3].

Таблица З

Заряды $q_e, \sum_i q_e$ и числа локализации возбуждения $L_i, \sum_i L_i$ (%) на атомах в синглетных и триплетных возбужденных

состояниях 2-(фурил-2)- и 2-(тиенил-2)оксазола (метод PPP/S) и ${}^{\scriptscriptstyle O}$ $\rho_{\pi z}^{\scriptscriptstyle O}$	(метод INDO/S)
--	----------------

		Атомы										$\sum_{i} q_{e}$	17			
Соеди- нение	Кон- фор- мация	Элек- тронное состоя- ние	Параметр	O(1)	C(2)	N(3)	C(4)	C(5)	O(1') S(1')	C(2')	C(3')	C(4')	C(5')	и $\sum_{i} L_e$ на ато- мах ок- сазоль- ного цикла	ди- поль- ный мо- мент <i>d</i> , D	Энергия сольвата- ции <i>М</i> ₀ ^{so/v} , ккал/моль
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
2-(Фу- рил-2)- окса-	цис-FO	S_1^* S_2^* S_3^*	q_e^*	0.249 0.288 0.265	-0.089 -0.012 0.073	-0.344 -0.306 -0.276	0.094 0.035 0.092	0.018 0.086 0.092	0.242 0.285 0.301	-0.043 -0.117 -0.012	-0.070 -0.032 0.007	-0.037 0.052 -0.094	-0.019 -0.107 -0.119	-0.072 -0.081 -0.083	4.7 4.3 3.8	-42.8 -49.2 -47.3
зол)		S_1^* S_2^* S_3^*	L_i	4.9 2.1 4.8	15.5 5.4 10.5	11.0 4.9 13.1	4.6 2.7 14.8	15.5 5.8 15.3	3.6 6.6 4.0	14.2 13.2 10.5	13.6 18.7 12.1	1.9 21.2 3.2	15.1 19.4 9.1	51.6 20.9 61.1		
		$ \begin{array}{c} T_{3} \\ T_{4} \\ T_{5} \\ T_{6} \end{array} $	q_e^*	0.264 0.247 0.311 0.315 0.434 0.302	0.015 0.041 0.030 0.012 0.268 0.058	0.256 0.258 0.292 0.302 0.293 0.338	0.042 0.036 -0.018 -0.100 0.262 0.062	-0.069 -0.090 -0.090 0.043 -0.048 -0.088	0.229 0.269 0.318 0.334 0.319 0.374	-0.058 -0.076 -0.126 -0.127 -0.136 0.214	-0.033 -0.041 0.008 -0.032 -0.164 -0.342	0.049 0.056 0.003 0.047 0.028 0.183	-0.056 -0.072 -0.145 -0.096 -0.079 0.120	$\begin{array}{c} -0.033 \\ -0.024 \\ -0.059 \\ -0.032 \\ 0.087 \\ -0.120 \end{array}$	3.9 4.0 4.4 5.7 6.6 8.0	-35.5 -39.0 -56.4 -61.1 -91.8 -88.3
		$ \begin{array}{c} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{array} $	L _i	3.8 4.8 1.0 3.6 12.3 2.2	9.8 13.4 2.1 20.5 15.6 5.2	7.4 2.5 4.0 22.0 24.9 6.5	44 15.7 5.2 16.3 20.2 5.2	13.6 25.4 5.4 16.5 5.7 3.4	4.6 2.9 8.0 3.8 2.9 5.2	17.8 9.1 13.7 5.4 3.0 10.2	14.1 3.5 19.8 7.6 6.9 22.5	5.7 8.3 21.8 1.4 4.7 28.4	18.9 14.5 18.9 2.9 3.8 11.2	39 61.8 17.8 78.9 78.7 22.5		

			1	1	1			1	ļ		1	1	1		1	1
	транс-	S1*	*	0.261	-0.072	-0.361	0.105	0.034	0.254	-0.059	-0.124	-0.033	-0.006	-0.033	11	-47.0
	FO	S2*	q_e	0.298	-0.006	-0.323	0.044	-0.073	0.292	-0.115	-0.083	0.055	-0.090	-0.059	2.4	-51.7
		S_3^*		0.275	-0.053	-0.287	0,068	0.092	0.314	0.009	0.017	-0.112	-0.106	-0.088	0.6	-50.0
	{	S1 *		5.2	15.4	10.4	5.4	15.8	3.9	14	13.6	2.1	14.3	52.2		
		S_2^*	I	2.2	5.9	4.9	3.1	6.1	6.5	13.5	18.2	20,7	19	22.2		
		S3*	L_i	4.5	12.4	12.1	13.6	14.6	4.2	11.4	13.1	3.9	10.1	57.2		
		T_1		0.272	-0.010	-0.270	0.044	-0.063	0.241	-0.056	-0.074	-0.048	-0.049	0.026	1.1	37.9
	[T ₂	a*	0.258	0.047	-0.272	0.036	-0.089	0.281	-0.061	-0.076	0.056	0.068	-0.020	1.0	-41.7
	1	T ₃	q_e	0.324	0.040	-0.306	0.025	-0.077	0.327	-0.090	-0.042	-0.036	-0.114	-0.044	2.0	58.6
		T_4		0.325	0.031	-0.341	-0.103	0.064	0.351	-0.120	-0.065	-0.051	-0.090	-0.025	2.3	-67.2
		<i>T</i> ₅		0.431	-0.207	-0.270	0.181	-0.095	0.361	-0.158	-0.255	0.032	-0.019	0.040	0.3	90.8
	1	<i>T</i> ₆		0.337	-0.114	-0.343	0.128	-0.058	0.361	-0.191	-0.315	0.126	0.067	-0.049	2.8	-84.2
		T_1		4.0	4.6	7.4	4.6	13.9	4.8	17.4	13.9	5.5	18.3	40.1		
	}	T_2	L_{i}	4.8	13.0	2.4	15.4	25.0	3.1	9.3	3.6	8.5	14.8	60.6		
		T ₃	-/	1.0	2.4	4.2	6.2	6.2	7.0	13.4	19.1	21.5	18.9	20.2		
		T_4		3.1	19.7	20.1	16.8	16.5	4.3	6.2	8.6	1.6	3.0	76.3		
		<i>T</i> ₅		11.4	12.6	20.2	13.4	3.8	4.7	6.2	11.1	11.1	5.7	61.3	1	
		<u>T</u> 6		4.4	8.2	12.0	10.8	4.1	4.3	8.9	17.6	21.3	8.6	39.4		
		S_0	$\wedge 0^{0i}$	-0.191	0.240	0.300	0.058	0.097	-0.203	0.142	-0.028	-0.041	0.106	1	2.7	
		$S_2^* \pi \pi^*$)	$\Delta P_{\pi z}$	0.065	0.054	0.031	-0.071	-0.102	0.046	-0.008	0.052	-0.030	-0.028			
		$T_1(\pi\pi)$		0.073	0.030	-0.007	-0.045		0.031	-0.011	0.021	-0.010	-0.006			
2(Тие-	uuc-TO	S_1^*		0.283	0.023	-0.301	0.080	0.040	0.038	0.067	-0.035	-0.013	-0.046	-0.124	4.2	-30.5
нил-2)-	ļ	S_2^*	~*	0.298	0.010	-0.319	0.013	-0.107	0.589	-0.220	0.081	0.025	-0.207	-0.106	6.1	-81.0
оксазол		S3*	Y_e	0.272	0.041	-0.344	0.132	-0.010	0.220	-0.106	0.051	0.001	-0.056	-0.092	5.1	-41.5
		<u>S4*</u>		0.286	-0.130	-0.297	0.110	0.017	0.128	0.091	0.127	-0.213	-0.118	-0.014	4.8	-41.4
		S_1^*		3.1	9.1	9.0	4.1	13.0	1.2	18.0	17.6	5.2	19.6	38.4	ĺ	1
		S2*	L_i	1.4	2.5	3.3	0.8	3.3	28.9	13.5	15.2	14,1	16.9	11.3		
		S3*		3.0	10.9	6.6	8.6	12.2	10.1	16.2	12.5	4.4	15.5	41.3	1	
		<u>S4*</u>		4.0	14.6	7.8	5.8	11.2	4.6	12,1	10.4	12.6	17.0	43.3		
		T_1		0.311	0.023	-0.266	0.015	0.079	0.032	-0.020	0.000	-0.005	-0.011	0.004	3.0	-29.9
		T_2	a*	0.243	0.019	-0.254	0.063	-0.062	0.049	-0.038	0.000	-0.002	-0.020	0.049	2.5	-70.2
			-16	0.295	0.061	-0.276	0.002	-0.104	0.070	-0.037	0.017	-0.001	-0.026	-0.023	3,2	-29.8
		14		0.332	0.039	0,305	0.114	0.063	0.069	-0.039	-0.008	-0.012	-0.025	0.014	4.4	-39.0
		15		0.386	-0.165	-0.297	0.279	0.021	0.122	-0.100	-0.123	-0.028	-0.097	0.225	7.4	-60.0
O,	ł	16	L <u></u>	0.330	[-0.033	0.297	0.044		0.683	-0.205	-0.163		-0.181	-0.069	[7.1	-98.8

Окончание таблицы З

1	2	3	4	5	6	7	. 8	9	10	11	12	13	14	15	16	17
		T_1		1.7	2.2	4.7	1.0	4.6	1.1	25.8	18.8	12.3	27.7	14.2	·	
		T_2	Τ	5.0	15.0	5.3	10.1	22.5	0.5	3.5	6.5	15.0	16.6	57.9		
	l	<i>T</i> ₃	D_{i}	2.9	5.7	1.6	11.4	15.2	1.7	16.5	18.7	13.0	13.1	36.8		
		T_4		4.3	20.4	22.9	18.9	18.7	1.1	4.4	6,3	0.5	2.5	85.1		
		T_5		7.9	12.1	22.9	22.5	7.3	4.4	5.6	8.1	2.9	6.3	72.6		
		T ₆		3.3	3.5	7.2	3.5	2.2	33.3	12.4	11.8	8.7	14.2	19.7		
	транс-	S_1^*		0.286	0.028	-0.308	0.088	0.046	0.048	-0.077	-0.090	-0.001	-0.019	0.140	3.4	
	TO	S_2^*	~*	0.303	0.009	-0.323	0.010	-0.111	0.718	-0.238	-0.115	-0.011	-0.242	-0.112	2.9	
		S3*	q_e	0.273	0.048	-0.347	0.125	-0.005	0.152	-0.203	0.203	0.038	0.009	0.095	1.5	
	l	S_4^*		0.298	-0.115	-0.280	0.120	0.013	0.106	0.097	0.097	-0.240	-0.121	0.036	4.6	
		$\overline{S_1}^*$		3.3	9.2	8.5	4.5	13.5	1.6	17.9	17.4	5.1	18.9	39.0		
		S_2^*	L_{i}	1.4	1.8	3.1	0.6	2.6	35.4	13.8	14.6	11.3	15.5	9.4		
		S3*	\square_i	3.0	11.2	6.6	8.4	12.5	6,6	17.2	9.5	5.6	16.2	41.7		
	ļ	S_4^*		4.0	13.2	7.6	6.2	10.8	3.2	11.8	11.1	13.8	18.3	41.8		
		T_1		0.313	0.022	0.268	0.016	0.076	0.036	-0.014	-0.026	-0.004	0.001	0.008		
		T_2	a*	0.245	0.019	-0.255	0.068	-0.057	0.055	-0.014	-0.038	-0.012	-0.012	0.020		
		<i>T</i> ₃	\mathcal{Y}_{e}	0.298	0.057	0.276	0.006	0.102	0.081	-0.018	-0.016	-0.017	-0.012	-0.017		
		T_4		0.336	0.059	-0.317	-0.118	0.066	0.087	0.024	-0.049	-0.023	-0.017	0.026		
		T_5		0.312	0.008	-0.313	0.002	0.118	0.802	0.219	-0.215	-0.071	0.118	-0.109		
		T_6		0.412	-0.203	-0.265	0.316	0.023	0.052	0.079	-0.158	-0,027	-0.070	0.283		
		T_1		1.7	2.3	4.6	1.0	4.8	1.3	25.7	18.8	12.2	27.5	14.6		
		<i>T</i> ₂	L_{i}	5.1	15.3	5.4	9.7	22.5	0.6	3.5	6.5	14.9	16.6	57.9		
		T_3	-1	2.9	5.8	1.5	10.7	14.6	2.0	16.9	19.1	13.2	13.3	35.6		
		T_4		4.1	19.4	21.7	20.2	19.4	1.8	4.4	6.2	0.4	2.5	84.8		
		T_5		1.5	1.6	3.2	0.3	1.8	39.4	15.1	12.3	9.4	15.6	8.3		
		<i>T</i> ₆		9.8	13.8	27.6	25.4	7.1	0.5	4.3	6.9	0.7	3.9	83.7		
		'S ₀	$\wedge 0^{0/a}$	-0.208	0.278	0.322	0.062	0.074		0.051	-0.002	-0.027	0.035		4.6	
	Į	$S_{1} * \pi \pi^{*}$	$\Delta P_{\pi z}$	0.039	0.076	0.038	-0.104	0.153	0.033	0.014	0.088	0.033	0.002		ļļ	
		$T_{1}(\pi\pi^{*})$		0.031	0.036	0.036	-0.050	-0.050	0.021	-0.006	0.047	0.020	0.016			

^{а)} По данным метода INDO/S.

194ⁱ

Знак минус в расчетах методом PPP/S означает увеличение электронной заселенности относительно присущей атому, методом INDO/S – дефицит электронной заселенности относительно числа валентных электронов в атоме.

4. СПЕКТРАЛЬНО-ФЛУОРЕСЦЕНТНЫЕ ХАРАКТЕРИСТИКИ

По данным рентгеноструктурного анализа, системы, построенные из непосредственно связанных ароматических и (или) гетероароматических циклов, в кристаллическом состоянии являются планарными (симметрия молекул не выше C_s), но в парах и растворах в основном состоянии энергетически наиболее выгодны непланарные конформеры с углом между циклами менее 35–45[°] [9]. УФ спектры поглощения молекул **DHFO, DHTO, FO** и **TO** в растворах свидетельствуют о присутствии всех типов конформеров. В УФ спектрах азолов в растворах (видимо, также в парах) наблюдается одна широкая и интенсивная длинноволновая полоса поглощения (ДПП), экстинкция (ε_{abs}^{max}) которой достаточно высока (рис. 1). Спектральные данные приведены в табл. 4.

Для частично гидрированных соединений с сопряженными связями – 4,5,4',5'-тетрагидро-2,2'-биоксазола (**THBO**), **DHFO** и **DHTO** – коэффициент экстинкции растворов \mathcal{E}_{abs}^{max} составляет от 7.51·10⁻³ до 18·10⁻³ и заметно увеличивается при переходе к гетероароматическим бициклическим молекулам **FO** и **TO**: $\mathcal{E}_{abs}^{max} = 28.3 \cdot 10^{-3}$ и 24.1·10⁻³ М⁻¹·см⁻¹ соответственно. Это приводит к закономерному увеличению сечения поглощения в максимуме ДПП от $\sigma_{13}^{max} \approx 10^{-18}$ до $\sigma_{13}^{max} \approx 10^{-17} - 10^{-16}$ см². При замене атома O на S (переход от фуранового цикла к тиофеновому) наблюдается сдвиг ДПП на $\Delta \lambda_{abs}^{max} = 19$ (**DHFO** – **DHTO**) и 14 (**FO** – **TO**) нм и

полос флуоресценции на $\lambda_{osc,fl}^{\max} = -20$ нм, а полоса 0-0-перехода сдвигается всего на $\Delta \lambda_{0-0} = 2$ нм (~215 см⁻¹) по сравнению со стоксовым сдвигом на $\Delta \lambda_{abs}^{\max} = 24$ нм (табл. 4, рис. 2 и 3).

Рис. 2. Спектры УФ поглощения ε'_{abs} (1, 2, 3) и флуоресценции ω'_{fl} (4, 5) растворов 2-(фурил-2)оксазола (FO) в этаноле (3, 4), циклогексане (1) и смеси этанол—H₂SO₄ (3, 5). Вертикальными линиями (6, 7) обозначены силы осцилляторов (f') электронных переходов $S_0 \rightarrow S_n^*$, рассчитанные методами PPP/S (7) и INDO/S (6) для *цис*- и *транс*-конформеров

Рис. 3. Спектры УФ поглощения $\varepsilon_{abs}^{v}(1, 2, 3)$ и флуоресценции $\omega_{fl}^{v}(4, 5)$ растворов 2-(тиенил-2)оксазола (**TO**) в этаноле (3, 4), циклогексане (1) и смеси этанол—H₂SO₄ (3, 5). Вертикальными линиями (6, 7) обозначены силы осцилляторов (f^{\dagger}) электронных переходов $S_0 \rightarrow S_n^*$, рассчитанные методами PPP/S (7) и INDO/S (6) для *цис*- и *транс*-конформеров

Таблица 4

Характеристики электронных спектров поглощения производных оксазола в растворах и результаты расчетов методами INDO/S и PPP/S^a

Соединение	Растворитель	V_{abs}^{\max} , cM^{-1}	λ^{\max}_{abs} , нм	V_{fl}^{\max} , cm ⁻¹	λ_{fl}^{\max} ,	V ₀₀ , см ⁻¹	λ ₀₀ , нм	γ	$\mathcal{E}_{abs}^{\max} \times 10^3,$ M ⁻¹ .cm ⁻¹	$k_{fl} imes 10^9$, c ⁻¹	$k_{ST} \times 10^9$, c ⁻¹	$\sigma_{13}^{\max} \times 10^{-16},$	$\sigma_{31}^{osc} \times 10^{-16},$
4,5,4',5'-Тетрагидро- 2,2-биоксазол (ТНВО)	Этанол	46729	214					0.001	7.5	~0.001	~0.1	<0.03	~0.001
4.5-Дигидро-2- (фурил-2)оксазол (DHFO)	Этанол	39526	253			_		0.001	8.7	~0.001	~0.1	<0.004	~0.001
4.5-Дигидро-2- (тиенил-2)оксазол (DHTO)	Этанол	36765	272					0.01	18.0	0.005	0.50	1.52	0.08
2-(Фурил-2)-	Этанол	33764	264	31646	350	32680	- 306	0.04	28.3	0.01	0.23	1.10	0.15
оксазол	Этанол+ H ₂ SO ₄	33784	296	28570		30960	323	0.14	27.4	0.2	0.56	0.97	0.49
(FO)	расчеты:			1	-								
	INDO/S	40500	247	32110	311	34710	288	0.01		0.088	0.14	1.0	0.004
	PPP/S	40500	247	35300	283	37900	264	0.01		0.086	0.21	1.0	0.005
2-(Тиенил-2)-	Этанол	35461	282	30303	330	32895	304	0.03	24.1	0.003	0.10	0.93	0.53
оксазол (ТО)	Этанол+ H ₂ SO ₄	33784	296	28090	356	34710	326	0.14	22.8	0.4	0.58	0.36	0.56
	расчеты:												
	INDO/S	37300	268	32100	288	34700	288	0.01	—	0.055	0.55	0.96	0.007
	PPP/S	36300	275	31100	297	33700	297	0.01	_	0.058	0.58	0.97	0,008

^{a)} INDO/S и PPP/S – характеристики свободных молекул, рассчитанные соответствующим методом, λ_{abs}^{max} (V_{abs}^{max}), λ_{fl}^{max} (V_{fl}^{max}), λ_{00} (V_{00}) – длины волн (частоты) максимумов соответственно УФ поглощения, флуоресценции и электронного 0–0-перехода, \mathcal{E}_{abs}^{max} – коэффициент экстинкции в максимуме длинноволновой полосы УФ поглощения, γ – квантовый выход флуоресценции, k_{fl} и k_{ST} – константы скорости излучательного распада и интеркомбинационной конверсии, σ_{13}^{max} и σ_{31}^{osc} (σ_{13}^{fl}) – сечения поглощения и вынужденного испускания.

При переходе к бициклическим молекулам, включающим два гетероароматических фрагмента, изменяются на несколько порядков не только параметры \mathcal{E}_{abs}^{max} и σ_{13}^{max} , но и квантовый выход флуоресценции (γ), который, хотя и остается очень малым, увеличивается более чем на два порядка – от $\gamma = 0.0001 - 0.001$ до $\gamma = 0.01 - 0.04$. Видно, что изменение природы азоцикла приводит к малому снижению константы скорости интеркомбинационной конверсии до $k_{ST} \approx 10^8 - 10^9 \text{ c}^{-1}$ и соответствующему увеличению константы скорости излучательного распада от $k_{fl} = (0.001 - 0.01) \cdot 10^9$ до $k_{fl} \approx 0,1 \cdot 10^9 \text{ c}^{-1}$, а также к закономерному росту сечения вынужденного испускания $\sigma_{31}^{osc,max}$ и более слабому увеличению сечения поглощения σ_{13}^{max} (табл. 4).

В ряду растворителей (циклогексан, толуол, этанол, ДМФ, ДМСО, диэтиленгликоль) с увеличением диэлектрической постоянной и вязкости или ассоциативных свойств наблюдается заметный батохромный сдвиг ДПП на $\Delta \lambda_{abs}^{max} = 1 - 3$ нм и полос флуоресценции на $\Delta \lambda_{osc, fl}^{max} = 2 - 10$ нм, а также незначительные изменения величин γ , k_{fl} и k_{ST} . Сечение $\sigma_{31}^{osc,max}$ растворителях. В мало изменяется В разных условиях комплексообразования и протонирования в смеси этанол + H₂SO₄ испытывают разное батохромное смещение спектральные полосы относительно полос в спектре раствора в этаноле: $\Delta \lambda_{abs}^{max} = 20$ нм (FO и TO), $\Delta \lambda_{asc,fl}^{max} = 34$ нм (FO) и $\Delta \lambda_{asc,fl}^{max} = 24$ нм (TO). При этом значения параметров γ , k_{fl} , k_{ST} и $\sigma_{31}^{osc,max}$ не улучшаются.

Таким образом, вследствие высоких скоростей интеркомбинационной конверсии изучаемые молекулы лишь эффективно преобразуют энергию электронно-колебательного возбуждения в тепловую. При этом с высокой скоростью заселяются триплетные состояния.

По данным метода INDO/S, в основном состоянии молекул FO и TO наивысшая электронная заселенность наблюдается на атоме N, в то время как отмечается сильное снижение электронной плотности на атомах О молекулы FO, а также на атомах О и S молекулы TO (табл. 3). Видно, что даже в условиях конкурентного увеличения электронной заселенности на атоме С оксазольного цикла наличие неподеленной электронной пары на местом наиболее вероятной атаки атоме Ν лелает его при протонировании. Как показали предыдущие исследования, изменение геометрии азолов при протонировании сопровождается изменением всех их спектральных характеристик [1-3].

5. СОПОСТАВЛЕНИЕ ПОЛНЫХ И **б**- И **л**-Составляющих Энергий связывания молекул

Расчеты методом PPP/S молекул **FO** и **TO** указывают на закономерное изменение полной энергии связывания $E_{\sigma\pi}^{bond}$ (о π -электронной энергии, ккал/моль): -1335.29 / -1338.38 = 0.997(7) для *цис*- и *транс*-**FO**; -1241.06 / -1241.57 = 0.999(6) для *цис*- и *транс*-**TO**, а также о- и π -составляющих

этой энергии: $E_{\sigma}^{bond} / E_{\sigma}^{bond} = -929.71 / -894.39 = 1.04$ и $E_{\pi}^{bond} / E_{\pi}^{bond} = -405.58 / -346.67 = 1.17$ для *цис*-FO и *цис*-TO; $E_{\sigma}^{bond} / E_{\sigma}^{bond} = -929.69 / -894.36 = 1.04$ и $E_{\pi}^{bond} / E_{\pi}^{bond} = -408.69 / -347.21 = 1.18$ для *транс*-FO и *транс*-TO. Таким образом, полная энергия связывания молекулы TO меньше, чем FO, что экспериментально подтверждается батохромным смещением полос флуоресценции (рис. 4 и 5), а соотношения σ - и π -компонент этой энергии составляют $E_{\sigma}^{bond} / E_{\pi}^{bond} = -929.71 / -405.58 = 2.29$ и -929.69 / -408.69 = 2.28 для *цис*- и *транс*-FO; -894.39 / -346.67 = 2.58 и -894.36 / -347.21 = 2.58 для *цис*- и *транс*-FO; соответственно. Следовательно, относительный вклад E_{σ}^{bond} в несколько раз больше, чем E_{π}^{bond} , и он практически сохраняется при *цис-транс*-изомеризации, причем для TO этот вклад выше, чем для FO.

При замене фуранового цикла на тиофеновый наблюдается уменьшение энергий сольватации (например, для *цис*-FO и *цис*-TO $M_0^{solv} = -45.21$ и -26.88, а для *транс*-FO и *транс*-TO $M_0^{solv} = -46.88$ и -27.03 ккал/моль соответственно). Таким образом, для *транс*-изомеров значения M_0^{solv} несколько больше (табл. 5) и, следовательно, выше их способность к сольватации.

Таблица 5

Соединение	Изомер	E_{π}^{bond}	$\mathrm{E}_{\sigma}^{\mathit{bond}}$	$\mathrm{E}^{bond}_{\pi+\sigma}$	M ₀ ^{solv}
2-(Фурил-2)оксазол	цис-FO	-405.58	-929.71	-1335.29	45.21
	транс-FO	-408.69	929.69	-1338.38	46.88
2-(Тиенил-2)оксазол	цис-ТО	-346.67	-894.39	-1241.06	26.88
	транс-ТО	-347.21	-894.36	-1241.57	27.03

Полная и л-, о-составляющие энергии связывания молекулы по данным метода PPP/S (ккал/моль)

6. ОРБИТАЛЬНАЯ ПРИРОДА НИЖНИХ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ И ПЕРЕХОДОВ

В табл. З приведены характеристики, а на рис. 4 и 5 представлены схемы возбужденных электронных синглетных (S_1^*) и триплетных (T_j) состояний молекул FO и TO, рассчитанных методами PPP/S и INDO/S. Из сравнения рис. 4 и 5 вытекает, что при замене фуранового цикла (в FO) на тиофеновый (в TO) наблюдается инверсия возбужденных синглетных состояний $S_{1,2}^*$ $\pi\pi^*$ - и $n\pi^*$ -типов вследствие увеличения как энергии запрещенного по симметрии перехода $S_1^* \rightarrow S_0$ $n\pi^*$ -типа более чем на 7800 см⁻¹ (*транс*-FO \rightarrow *транс*-TO), так и энергии T_1 -состояния на 2800 см⁻¹. В то же время в УФ спектре молекулы FO не наблюдается электронных переходов $n\pi^*$ -типа.

Рис. 4. Схемы электронных синглетных S_i* и триплетных состояний T_j и переходов свободной молекулы 2-(фурил-2)оксазола (FO) по данным методов INDO/S (a) и PPP/S (b). Вертикальными прямыми обозначены силы осцилляторов излучательных переходов S₁*→S₀ и T₁→S₀, а волнистыми показаны спин-орбитально взаимодействующие электронные состояния nπ*-, ππ*- и σπ*-типов (k_{st}, k_{nr} – константы скорости интеркомбинационной и внутренней конверсии)

Puc. 5. Схемы электронных синглетных S_i* и триплетных состояний T_j и переходов свободной молекулы 2-(тиенил-2)оксазола (**TO**) по данным методов INDO/S (*a*) и PPP/S
 (б). Вертикальными прямыми линиями обозначены силы осцилляторов излучательных переходов S₁*→S₀ и T₁→S₀, волнистыми – спин-орбитально взаимодействующие электронные состояния nπ*-, ππ*- и σπ*-типов (k_{st}, k_{nr} – константы скорости интеркомбинационной и внутренней конверсии)

Наличие широкой и интенсивной ДПП свидетельствует о том, что она образована колебательными прогрессиями, все члены которых сформированы электронно-колебательными переходами $\pi\pi^*$ -типа.

Переходы другой орбитальной природы ($\Delta \lambda_{osc,fl}^{\max}$) маскируются $\pi \pi^*$ рассчитанного INDO/S переходами. Различие методом И экспериментального УФ спектров молекулы FO связано с воздействием растворителя на неподеленную пару электронов атома N, вследствие чего изменяется характер локализации электронной плотности по атомам в нижнем синглетном сольватированном состоянии $n\pi^*$ -типа И увеличивается частота перехода в экспериментальном спектре [1].

Флуоресцентный переход $S_{1,2}^* \rightarrow S_0$ ($\pi\pi^*$ -типа) в молекулах *транс*-FO и *транс*-ТО разрешен и отличается высокой силой осциллятора: $f_e^{osc} =$ 0.80 и 0.69 (INDO/S) и f_e^{osc} = 0.90 и 0.78 (PPP/S). По данным метода PPP/S, для цис-FO и цис-TO силы осцилляторов f. несколько больше, чем для транс-форм этих молекул, и составляют 0.95 и 0.80 соответственно, а переходы из высоко расположенных состояний S_{345}^* характеризуются заметно меняющейся силой осциллятора ($f_{e}^{osc} = 0.001 - 0.001$ 0.2) в зависимости от того, в цис- или транс-форме находится соединение. Например, интенсивность перехода $S_0 \rightarrow S_4^*$ для *транс*-форм значительно ниже, чем для иис-форм: для транс- и иис-FO $f_e^{osc} = 0.020$ и 0.281, для *транс-* и *цис-***ТО** $f_{e}^{osc} = 0.023$ и 0.214 соответственно. Поэтому наблюдающийся интенсивности полосы рост коротковолнового поглощения (ПКП) УФ спектра в циклогексане и этаноле (рис. 1), видимо, связан с преобладанием цис-форм молекул вследствие образования внутримолекулярной водородной связи между неподеленной электронной парой атома N оксазольного цикла и протоном в положении 4' фуранового либо тиофенового цикла.

Судя по УФ спектрам растворов и паров, доля *цис*-формы для **ТО** выше, чем для **FO**. В смеси этанол + H_2SO_4 интенсивности ПКП для **FO** и **TO** снижаются. Это может быть связано с тем, что в данной смеси вместо внутримолекулярной образуется более сильная межмолекулярная водородная связь с атомом азота молекулы **FO** либо **TO**. В результате этого вероятность образования *цис*-форм молекул закономерно снижается, из-за чего и уменьшается интенсивность ПКП.

Переходы $T_1 \rightarrow S_0$ ($\pi\pi^*$ -типа) в молекулах **FO** и **TO** с силой осциллятора $f_e^{phosph} \approx 7.4$ и $8.7 \cdot 10^{-10}$ запрещены по симметрии. Это характерно для большинства гетероароматических соединений [3]. Таким образом, энергии электронного возбуждения, относящиеся к триплетным состояниям, будут наиболее эффективно расходоваться при неоптических переходах.

Флуоресцентные переходы $S_{1,2}^* \to S_0$ в молекулах **FO** и **TO** осуществляются преимущественно с высшей занятой (B3, HOMO) на низшую свободную (HC, LUMO) молекулярную орбиталь (MO). В методе

PPP/S полученные характеристики МО в базисе атомных орбиталей (АО) могут быть представлены следующим образом:

uuc-FO:

 $\begin{aligned} &|\psi_{\text{HOMO}\to\text{LUMO}}|^2 = 0.98, \text{ } \text{E}_{\text{HOMO}} = -9.11 \text{ } \text{ } \text{B}, \text{ } \text{E}_{\text{LUMO}} = -1.36 \text{ } \text{s} \text{B}, \text{ } \Delta \text{E}_{\text{HOMO}\to\text{LUMO}} \\ &= 7.75 \text{ } \text{s} \text{B}. \\ &\psi_{\text{HOMO}} = \varphi_{C_4}(0.307) + \varphi_{C_5}(0.474) + \varphi_{O_1}(0.029) + \varphi_{C_5}(0.401) + \varphi_{C_6}(0.345), \end{aligned}$

$$\psi_{LUMO} = \varphi_{O_1}(0.288) + \varphi_{C_2}(0.339) + \varphi_{N_3}(0.019) + \varphi_{O_1}(0.287) + \varphi_{C_3}(0.376) + \varphi_{C_3}(0.376) + \varphi_{O_1}(0.287) + \varphi_{O_2}(0.376) + \varphi_{O_3}(0.019) + \varphi_{O_3}(0.$$

 $\varphi_{C_{1}}$ (0.084).

транс-FO:

$$\begin{split} &| \varphi_{\text{HOMO} \to \text{LUMO}} |^2 = 0.98, \quad \text{E}_{HOMO} = -9.14 \quad \text{3B}, \text{E}_{LUMO} = -1.37 \quad \text{3B}, \\ &\Delta \text{E}_{HOMO \to LUMO} = 7.77 \text{ 3B}. \\ &\psi_{HOMO} = \varphi_{C_4}(0.321) + \varphi_{C_5}(0.483) + \varphi_{O_1}(0.041) + \varphi_{C_2}(0.380) + \varphi_{C_3}(0.332), \\ &\psi_{LUMO} = \varphi_{O_1}(0.288) + \varphi_{N_3}(0.339) + \varphi_{O_1}(0.297) + \varphi_{C_2}(0.381) + \varphi_{C_4}(0.064). \end{split}$$

*uuc-***TO**:

 $\begin{aligned} |\psi_{\text{HOMO}\to\text{LUMO}}|^2 &= 0.98, \quad \text{E}_{HOMO} &= -1.98 \quad \text{3B}, \quad \text{E}_{LUMO} &= -9.06 \quad \text{3B}, \\ \Delta \text{E}_{HOMO\to LUMO} &= 8.08 \quad \text{3B}. \\ \psi_{HOMO} &= \varphi_{C_4}(0.380) + \varphi_{C_5}(0.471) + \varphi_{S_1}(0.018) + \varphi_{C_{2^*}}(0.380) + \varphi_{C_{3^*}}(0.394), \\ \psi_{LUMO} &= \varphi_{O_1}(0.276) + \varphi_{C_4}(0.024) + \varphi_{C_5}(263) + \varphi_{C_{2^*}}(0.456) + \varphi_{C_{5^*}}(0.481). \\ mpahc-TO: \end{aligned}$

 $\begin{aligned} &| \psi_{\text{HOMO} \to \text{LUMO}} |^2 = 0.98, \ \text{E}_{HOMO} = -2.03 \ \text{B}, \ \text{E}_{LUMO} = -9.12 \ \text{B}, \ \Delta \text{E}_{HOMO \to LUMO} \\ &= 7.14 \ \text{B}. \\ &\psi_{HOMO} = \varphi_{C_4}(0.307) + \varphi_{C_5}(0.473) + \varphi_{S_5}(0.031) + \varphi_{C_6}(0.364) + \varphi_{C_6}(0.390) \end{aligned}$

 $\psi_{LUMO} = \varphi_{O_1}(0.225) + \varphi_{N_3}(0.295) + \varphi_{S_1}(0.155) + \varphi_{C_2}(0.444) + \varphi_{C_4}(0.229).$

Из приведенных данных следует, что для *цис-* и *транс-*форм как **FO**, так и **TO** наибольшие вклады в НОМО дают АО атомов C(2) и C(5) в свободных положениях оксазольного цикла и C(2') и C(3') фуранового цикла.

Взаимное превращение цисоидной и трансоидной конформаций (для краткости часто называемое нами *цис-транс*-изомеризацией) молекул FO и TO заметно влияет на коэффициенты в разложениях LUMO по AO. В случае *цис*-FO с наибольшими коэффициентами входят только AO двух атомов C и двух атомов O оксазольного и фуранового циклов – C(2), C(3') (max), O(1), O(1'), но для *цис*-TO – уже AO атомов C(2), C(5), C(2'), C(5') (max), т. е. при замене фуранового цикла на тиофеновый наиболее активным становится атом C(5') последнего. В случае *транс*-FO изменения в разложении LUMO по AO затрагивают преимущественно коэффициенты при AO атомов O(1) и N(3) оксазольного цикла, а также при AO атомов C(2') и C(3') фуранового цикла. Однако в случае *транс*-TO в разложение входят кроме AO атомов O(1) и N(3) также AO

атомов S и других атомов C тиофенового цикла – C(3') (max) и C(4'). Отсюда следует, что при изменении положения конформационного равновесия в результате изменения растворителя, температуры и т. д. возможно варьирование места атаки реагента, т. е. направленности реакции присоединения–отщепления.

7. СВОЙСТВА ВОЗБУЖДЕННЫХ СОСТОЯНИЙ И ОЦЕНКА РЕАКЦИОННОЙ СПОСОБНОСТИ

В соответствии с данными работ [1-3, 14], отличия спектральных сдвигов полос λ_{abs}^{\max} , λ_{0-0} и λ_{osc}^{\max} в оптических спектрах свидетельствуют об изменении электронно-колебательных взаимодействий валентных связей в нижних возбужденных состояниях молекул FO и TO, что в свою очередь должно сказываться на геометрии их подсистем. Рассмотрение данных табл. 4 и рис. 4, 5 показывает, что отклонения частот электронного 0-0-перехода, рассчитанных методами INDO/S и PPP/S, от определенной по спектрам УФ поглощения и флуоресценции для раствора в циклогексане (наиболее близко к оптическим спектрам органических молекул в плотных парах [3]), составляют для *цис*-FO: $\Delta v_{0-0} = v_{0-0}^{exp} - v_{0-0}^{theor} = 32680 - v_{0-0}^{theor}$ 30100 = 1150 см⁻¹ (INDO/S) и Δv_{0-0} =32680 – 37893 = -5213 см⁻¹ (для транс-FO методом PPP/S найдено $\Delta v_{0-0} = 32680 - 37890 = -5210 \text{ см}^{-1}$). Для *цис*-**ТО** такие разности меньше: $\Delta v_{0-0} = v_{0-0}^{exp} - v_{0-0}^{theor} = 32895 - 30000 =$ -2895 см⁻¹ (INDO/S) и ∆v₀₋₀ = 32895 - 33664 = -769 см⁻¹; для *транс*-ТО $\Delta v_{0-0} = 32895 - 33482 = -587 \text{ cm}^{-1}$ (PPP/S). Таким образом, хотя полные энергии иис- и транс-конформеров бициклических азолов мало отличаются (как в свободном состоянии, так и в растворах, что следует из близости приведенных в табл. З значений энергий сольватации для цис- и транс-FO или цис- и транс-TO), тем не менее активность соответствующих положений в циклах может изменяться заметно.

8. ЭЛЕКТРОННЫЕ ХАРАКТЕРИСТИКИ ОСНОВНОГО И ВОЗБУЖДЕННЫХ СОСТОЯНИЙ

Для того, чтобы охарактеризовать спектральные свойства любой многоатомной молекулы, эту молекулу можно представить в виде системы квантовых возбужденных электронных состояний S_i^* и T_i . Электронная система молекулы после поглощения кванта возбуждения дезактивирует запасаемую энергию в оптических и неоптических процессах. В матричной механике эти процессы рассматриваются как внутримолекулярные релаксационные и описываются операторами электронного, электронно-колебательного и спин-орбитального взаимодействия (оператор неадиабатичности) [3, 10]. Рассчитанные полуэмпирическими методами INDO/S и PPP/S [1–3] электронные и электронно-колебательные характеристики S_i^* и T_j -состояний для молекул FO и TO представлены в табл. 3.

8.1. Локализация зарядов в основном состоянии

Из данных табл. 3 следует, что в изучаемых молекулах распределения зарядов q_e и $\Delta \rho_{\pi z}^{0i}$ существенно локальны. Наивысшая электронная плотность локализована на атоме N. По данным метода PPP/S, заряд q_e на атоме N наибольший для *транс*-FO, но, согласно методу INDO/S, высшее значение $\Delta \rho_{\pi z}^{0i}$ имеет атом N в *цис*-TO. Замена фуранового цикла на тиофеновый принципиально не изменяет характер распределения зарядов в оксазольном цикле, но заметно снижает его электронодонорную способность: суммарный отрицательный заряд на оксазольном цикле при переходе от *цис-(транс)*-FO к *цис-(транс)*-TO уменьшается с $\sum q_e = -0.025$ (-0.020) до $\sum q_e = -0.010$ (-0.004) (табл. 3). Это связано с резким уменьшением для TO различий в зарядах q_e на атомах C по сравнению с FO и обусловлено наличием атома S в молекуле TO. Отрицательный заряд на атоме C(3') в фурановом цикле больше, чем в тиофеновом, что согласуется с более сильным сдвигом в слабые поля сигналов протонов H(3') молекулы TO по сравнению с FO (табл. 2 и 3).

8.2. Локализация зарядов в возбужденных состояниях

Из данных табл. 5 следует, что при возбуждении распределения зарядов q_e^* в S_1^* -, S_2^* - и T_1 -состояниях молекул FO и TO изменяются не только количественно, но и качественно. Поскольку для изученных соединений наблюдается флуоресценция из возбужденных синглетных состояний $\pi\pi^*$ -типа (S_2^* для FO и S_1^* для TO), ниже основное внимание будет уделено именно этим состояниям.

Для *цис-(транс-)***FO** в S_2^* -флуоресцентном состоянии $\pi\pi^*$ -типа наибольший отрицательный заряд локализован на атоме N(3) (электроотрицательность увеличивается по сравнению с основным состоянием). Максимальный отрицательный заряд на атоме N(3) характерен и для *цис-(транс)*-**TO** (состояние $S_1^* \pi\pi^*$ -типа). Однако заряд на атоме N(3) для этих соединений уменьшается в фосфоресцентном состоянии $T_1\pi\pi^*$ -типа, причем это изменение значительно больше проявляется в случае **FO**.

В S_1^* - и S_2^* -флуоресцентных состояниях заряды на атомах C(3'), C(4') и C(5') в конформерах заметно различаются. Тенденции изменений электронных заселенностей в состояниях S_1^* и T_1 не совпадают, например, для *транс*-форм **FO** и **TO** в состоянии T_1 , в отличие от S_1^* , на атоме C(3') локализована наибольшая электронная плотность (табл. 3).

Характер изменений q_e^* и $\Delta \rho_{\pi z}^*$ в более высоко расположенных S_i^* и T_j -состояниях существенно иной, чем в S_1^* - и T_1 -состояниях, но практически всегда на атоме N(3) локализована избыточная электронная плотность. Таким образом, в условиях комплексообразования и протонирования азолов возможно только одно место для атаки активным протоном – атом N(3) (табл. 3).

Конформеры в состоянии S_0 обладают заметно отличающимися дипольными моментами: для *цис-(транс-)*FO $d_0 = 4.81 D$ (1.39 D) и для *цис-(транс-)*TO $d_0 = 3.26 D$ (2.52 D). В возбужденных S_1^* - и T_1 -состояниях значения дипольного момента изменяюся: для *цис-(транс-)*FO $d_0^S = 4.72 D$ (1.14 D) и $d_0^T = 3.86 D$ (1.1 D); для *цис-(транс-)*TO $d_0^S = 4.24 D$ (3.36 D) и $d_0^T = 3.0 D$ (2.56 D). В более высокорасположенных состояниях S_i^* и T_j дипольный момент, как правило, растет. Таким образом, при возбуждении молекул FO и **TO** в любое из электронно-колебательных состояний S_i^* и T_j существенно возрастает роль ориентационных эффектов (диполь-дипольный механизм межмолекулярного взаимодействия). Отметим сильное увеличение значений M_0^{solv} как в синглетных, так и в триплетных состояниях, что свидетельствует об увеличении сольватационной способности изученных азолов при возбуждении. Для *транс*-форм азолов возрастание M_0^{solv} выражено заметно сильнее, что может быть связано с большей стерической доступностью атома N.

По данным метода PPP/S, при возбуждении молекулы TO величина и направление внутримолекулярного переноса заряда (ВПЗ) зависят от номеров электронных состояний S_i^* и T_i . Для возбужденных состояний $S_{1,...,4}^*$ и $T_{1,...,4}$ молекулы FO характерно, что ВПЗ осуществляется с фуранового на азоцикл. В этом случае оксазольный цикл является акцентором, а фурановый – донором электронов: для азоцикла цис-(транс-)FO в S_2^* -состоянии $\sum q_i^* = -0.081$ (-0.059). В состояниях S_1^* и T_1 азоцикл более слабый акцептор электронной плотности: для цис-(транс-)FO $\sum q_i^* = -0.072$ (-0.033) и -0.033 (-0.026) соответственно. Отметим, что азоцикл *транс*-изомера **ТО** в *T*₁-состоянии является даже слабым донором электронов ($\sum_{i} q_{i}^{*} = 0.008$). Поскольку в T_{1} -состоянии величина $\sum_{i} q_{i}^{*}$ существенно меньше, то электронно-колебательный флуоресцентный переход $S_1^* \to S_0$ в возбужденной молекуле FO более делокализован, чем фосфоресцентный переход T₁ → S₀. Таким образом, для *цис-* и *транс-*изомеров FO характерно, что изменение спина электронной системы влияет не только на величину ВПЗ, но и на его направление.

В случае молекулы *цис-(транс-)***ТО** в основном состоянии S_0 и в возбужденном T_1 -состоянии оксазольный цикл почти электронейтрален, т. е. молекула **ТО** практически не поляризована и только в S_1^* -состоянии она сильно поляризуется: $\sum_i q_i^* = 0.124$ (0.140). Таким образом, структурные преобразования в изученных молекулах (замена фуранового цикла на тиофеновый либо *цис-транс*-изомеризация) изменяют электронные

характеристики возбужденных состояний разной спиновой и орбитальной

природы.

8.3. Числа локализации электронного возбуждения

В табл. 3 представлены рассчитанные методом PPP/S числа локализации электронного возбуждения на атомах L_i и подсистемах $\sum L_{\mu}$

в возбужденных S_i^* - и T_i - состояниях молекул.

Анализ распределений чисел локализации L_i по атомам показывает, что в *цис-(транс)*-изомерах FO наиболее активными являются положения 2, 3, 5 оксазольного и 2', 3', 5' фуранового цикла: в оксазольном цикле свободной молекулы в состоянии S_i^* для атомов C(2), N(3) и C(5) $L_i = 15.5$ (15.4); 11.0 (10.4) и 15.5 (15.8) %, а в T_1 -состоянии $L_i = 9.8$ (4.6), 7.4 (7.4) и 13.6 (13.9) % соответственно; в фурановом цикле для атомов C(2'), C(3'), C(5') в состоянии S_i^* $L_i = 14.2$ (14.0); 13.6 (13.6); 15.1 (14.3) %, а в состоянии T_1 $L_i = 17.8$ (17.4); 14.1 (13.9); 18.9 (18.3) %. Отметим при этом, что, судя по приведенным числам локализации, реакционная способность фуранового цикла молекулы FO сравнима с таковой бензольного цикла в 2-фенилоксазоле (для *n*-положения $L_i = 14.0$ % [2]).

При замене фуранового цикла на тиофеновый относительная реакционная способность отдельных положений (атомов подсистем) сильно изменяется. Для *цис-(транс)*-**ТО** числа локализации L_i показывают, что в оксазольном цикле свободной молекулы в состоянии S_i^* наиболее активны положения 2, 3, 5: для атомов C(2), N(3) и C(5) $L_i = 9.1$ (9.2); 9.0 (8.5) и 13.0 (13.5) %, причем эти значения резко уменышаются в T_1 -состоянии $L_i = 2.2$ (2.3), 4.7 (4.6) и 4.6 (4.8) % соответственно. Однако наиболышей активностью обладают атомы C(2'), C(3'), C(5') тиофенового цикла: в S_1^* -состоянии $L_i = 18.0$ (17.9); 17.6 (17.4); 19.6 (18.9) %, а в T_1 -состоянии $L_i = 25.8$ (25.5); 18.8 (18.8); 27.7 (27.5) %. Таким образом, в нижнем триплетном состоянии T_1 α-положения тиофенового цикла молекулы **ТО**, по-видимому, заметно более активны, чем атомы С фуранового цикла свободной молекулы **FO**.

В молекуле *цис-(транс-)***FO** суммарный процент локализации возбуждения на оксазольном цикле существенно различен для разных состояний: $\sum_{i} L_{\mu} = 51.6 (52.2) (S_1^*), 20.9 (22.2) (S_2^*), 39.0 (40.1) (T_1) \%,$ т. е. в зависимости от спина возбужденного состояния возможно

т. е. в зависимости от спина возоужденного состояния возможно разнонаправленное протекание реакции вследствие различного характера локализации электронно-колебательного возбуждения.

При переходе от FO к TO наблюдается существенное перераспределение индексов $\sum_{i} L_{\mu}$. В S_1^* -состоянии для *цис-(транс-)*TO возбуждение локализовано, в основном, на *тиофеновом* фрагменте: $\sum_{i} L_{\mu} = 61.6 \ (61) \%$. В T_1 -состоянии тиофеновый фрагмент характеризуется еще большим процентом возбуждения: $\sum_{i} L_{\mu} = 85.8 \ (85.4) \%$, т.е. в нижнем

триплетном состоянии активность тиофенового фрагмента молекулы **TO** должна быть выше. В более высокорасположенных состояниях S_i^* - и

 $T_j \pi \pi^*$ -типа характер локализации возбуждения резко изменяется, что показывают значения L_{μ} и $\sum L_{\mu}$ (см. табл. 3).

Распределение индексов L_i в триплетном состоянии T_1 , по-видимому, наиболее достоверно, поскольку, по данным флуоресцентной спектроскопии, интеркомбинационная конверсия заселения более долгоживущих триплетных состояний для бициклических молекул происходит с наибольшей скоростью (разд. 4).

8.4. Геометрия молекул, порядки связей и электронно-колебательные процессы в возбужденных состояниях с разными спинами

В табл. 6 приведены значения длин и порядков валентных связей в молекулах FO и TO, полученные при оптимизации геометрии методом PPP/S и взятые из экспериментальных данных для родственных соединений: РОРОР (метод РСА) [11], 2,5-дифенил-1,3,4-оксадиазола (электронография) [9], тиофена (микроволновые спектры [12], электронография [13]). В оксазольном цикле молекул цис-(транс-)FO и 2-фенилоксазола оптимизированные длины одинарных связей O(1)-C(2), N(3)–C(4), C(5)–O(1) (l_{uv} = 1.314 (1.315); 1.347 (1.346); 1.321 (1.321) Å и $l_{\mu\nu} = 1.314$; 1.346 и 1.321 Å [2] соответственно) меньше, чем использованные в методе INDO/S экспериментальные величины $l_{uv} = 1.360;$ 1.384 и 1.378 Å (РСА), а двойных связей С(2) = N(3) и С(4) = С(5), наоборот, больше: $l_{\mu\nu}$ =1.323 и 1.377 Å (оптимизация) и $l_{\mu\nu}$ =1.294 и 1.347 Å (РСА). В фурановом цикле FO оптимизированные длины связей занижены по сравнению с экспериментальными, но правильно отражают их характер. Например, для одинарных связей O(1')-C(2') и C(5')-O(1') $l_{\mu\nu} = 1.321$ и 1.317 Å (оптимизация), а по данным РСА, $l_{\mu\nu} = 1.367$ и 1.367 Å. Отметим близость оптимизированной длины одинарной связи C(3')-C(4') $l_{\mu\nu}$ = 1.410 Å к полученной методом PCA ($l_{\mu\nu}$ =1.434 Å). Значимого различия рассчитанных длин связей в оксазольном и фурановом циклах цис- и транс-конформеров молекулы FO не наблюдается, хотя в транс-FO одинарная межциклическая связь C(2)-C(2') несколько длиннее (l_{uv} = 1.460 Å), чем в *цис*-FO (l_{uv} = 1.439 Å), причем в обоих конформерах эта связь имеет примерно один и тот же порядок (р_{иv}= 0.303 и 0.301). Длина связи C(2)-C(2') в *транс*-FO, по данным PCA, составляет $l_{\mu\nu} = 1.459$ Å (табл. 6).

Рассчитанные методом PPP/S длины связей в оксазольном цикле *цис*- и *транс*-изомеров **ТО** близки к приведенным для **FO**. В тиофеновом цикле длины одинарных ($\rho_{\mu\nu}$ = 0.181–0.205) связей S(1[°])–C(2) и C(5)–S(1[°]) ($l_{\mu\nu}$ = 1.757 и 1.755 Å) несколько завышены по сравнению с экспериментальной ($l_{\mu\nu}$ = 1.720 Å) для аналогов, но обращает на себя внимание полное

208

Таблица б

Длины I_{µv}* и порядки связей p_{µv} в молекулах 2-(фурил-2)- и 2-(тиенил-2)оксазола по данным методов PPP/S и INDO/S

	Vaudon			[[1	Γ	T	1		1
Соеди- нение	мация (метод	Параметр (состояние)*	O(1)-C(2)	C(2)–N(3)	N(3)-C(4)	C(4)-C(5)	C(5)-O(1)	.C(2)-C(2')	С(2')-О(1) или S(1')-С(2')	C(2')-C(3')	C(3')-C(4')	C(4')-C(5')	С(5')-О(1') или С(5')-S(1')
	расчета)								5(1) 5(2)				C(3)-3(1)
2-(Фурил-	yuc-FO	lµv	1.315	1.322	1.347	1.376	1.322	1.439	1.323	1.384	1.410	1.378	1.319
2)оксазол	(PPP/S)	$p_{\mu\nu}(S_0)$	0.483	0.706	0.567	0.781	0.440	0.303	0.435	0.736	0.583	0.768	0.463
		$p_{\mu\nu}(S_1^*)$	0.312	0.445	0.636	0.650	0.405	0.581	0.331	0.462	0.665	0.673	0.384
•		$\Delta p_{\mu\nu}, \%$	13.5	14.3	-4.2	6.5	3.1	18.5	9.2	14.4	4.8	4.8	6.6
		$p_{\mu\nu}(S_2^*)$	0.171	0.261	0.069	0.131	0.035	0.278	0.104	0.274	0.082	0.095	0.079
		$p_{\mu\nu}(S_3^*)$	0.422	0.624	0.564	0.726	0.414	0.401	0.33	0.530	0.371	0.448	0.397
		p _{µv} (S4*)	0.352	0.558	0.427	0.544	0.383	0.359	0.440	0.517	0.555	0.712	0.373
		$p_{\mu\nu}(T_1)$	0.377	0.554	0.624	0.647	0.385	0.470	0.323	0.441	0.639	0.599	0.345
		$\Delta p_{\mu\nu}, \%$	9.1	9.0	3.8	7.2	5.2	14.8	10.8	16.7	3.7	9.2	10.6
		$p_{\mu\nu}(T_2)$	0.361	0.661	0.611	0.390	0.336	0.260	0.375	0.375	0.603	0.562	0.389
		$p_{\mu\nu}(T_{3})$	0.462	0.668	0.529	0.693	0.434	0.362	0.366	0.366	0.342	0.453	0.390
		$p_{\mu\nu}(T_4)$	0.438	0.318	0.393	0.546	0.403	0.307	0.426	0.426	0.551	0.768	0.430
		$p_{\mu\nu}(T_{5})$	0.333	0.437	0.165	0.641	0.509	0.376	0.391	0.391	0.517	0.716	0.461
		$p_{\mu\nu}(T_6)$	0.421	0.626	0.478	0.730	0.436	0.372	0.323	0.323	0.171	0.445	0.595
	транс-FO	Iµv	1.314	1.323	1.347	1.377	1.321	1.460	1.321	1.385	1.410	1.379	1.317
	(PPP/S)	$p_{\mu\nu}(S_0)$	0.492	0.699	0.569	0.778	0.449	0.301	0.450	0.731	0.585	0.765	0.472
		$p_{\mu\nu}(S_1^*)$	0.319	0,448	0.635	0.636	0.419	0.581	0.334	0.459	0.658	0.675	0.400
		$\Delta p_{\mu\nu}, \%$	13.8	14.0	4.1	7.1	2.6	18.8	10.1	14.6	4.3	4.6	6.0
		$p_{\mu\nu}(S_2^*)$	0.427	0.617	0.561	0.720	0.422	0.394	0.337	0.530	0.377	0.454	0.406
		$p_{\mu\nu}(S_3^*)$	0.386	0.560	0.448	0.556	0.389	0.362	0.453	0.493	0.551	0.692	0.376
		$p_{\mu\nu}(T_{i})$	0.381	0.545	0.628	0.640	0.390	0.472	0.332	0.441	0.639	0.603	0.356
		$\Delta p_{\mu\nu}$. %	9.4	9.1	4.0	7.3	5.4	15.0	10.9	16.5	35.2	8.8	10.2
		$p_{\mu\nu}(T_2)$	0.373	0.628	0.611	0.395	0.341	0.258	0.386	0.656	0.605	0.554	0.393
		$p_{\mu\nu}(T_{3})$	0.471	0.658	0.528	0.672	0.445	0.361	0.383	0.500	0.353	0.447	0.405
		P µv (T4)	0.447	0.337	0.405	0.530	0,422	0.304	0.438	0.595	0.542	0.767	0.434
]	$p_{\mu\nu}(T_5)$	0.372	0.475	0.276	0.713	0.468	0.381	0.469	0.615	0.431	0.648	0.508
		$p_{\mu\nu}(T_{6})$	0.397	0.578	0.369	0.689	0.474	0.371	0.350	0.571	0.275	0.531	0.559

	mpauc-FO	1a	1.360	1.294	1.384	1.347	1.378	1.459	1.367	1.343	1.434	1.343	1.367
	(INDO/S)	Dun (So)	0.060	0.225	0.155	0.264	0.045	0.032	0.032	0.280	0.100	0.308	0.043
	(III DOID)	$p_{\mu\nu}(S_{1}^{*})(\pi\pi^{*})$	-0.158	-0.260	0.099	0.165	-0.048	0.268	-0.085	-0.263	0.101	-0.107	-0.057
		$p_{\mu\nu}(D_1)(\pi\pi^*)$	-0.164	-0.232	0.144	-0.289	-0.112	0.149	-0.044	-0.182	0.046	-0.071	-0.049
2-(Тиенил-	June-TO	L.	1 315	1.324	1.346	1.378	1.321	1.455	1.757	1,364	1.440	1.355	1.755
2)0869201	(PPP/S)	n (Sa)	0.485	0.696	0.575	0.773	0.450	0.329	0.196	0.853	0.412	0.900	0.205
2)08043054	(11/0)	$p_{\mu\nu}(S_{1})$	0 382	0.520	0.633	0.653	0.439	0.577	0.091	0.501	0.594	0.706	0.177
	· ·	$p_{\mu\nu}(S_1^*)$	0.456	0.652	0.566	0.771	0.423	0.411	0.127	0.617	0.419	0.688	0.204
]	$p_{\mu\nu}(S_2^*)$	0.396	0.594	0.541	0.616	0.398	0.345	0.233	0.577	0.522	0.720	0.022
		$p_{\mu\nu}(S_{4}^{*})$	0.348	0.531	0.584	0.642	0.455	0.365	0.110	0.679	0.422	0.601	0.188
		$p_{\mu\nu}(Z_{1})$	0.451	0.642	0.588	0.750	0.436	0.431	0.111	0.426	0.595	0.550	0.116
		$p_{\mu\nu}(T_2)$	0.347	0.543	0.654	0.492	0.341	0.386	0.160	0.806	0.361	0.603	0.177
		$D_{\mu\nu}(T_3)$	0.421	0.689	0.565	0.522	0.399	0.306	0.190	0.528	0.288	0.676	0.187
		$p_{\mu\nu}(T_{4})$	0.448	0.311	0.377	0.501	0.400	0.333	0.130	0.766	0.416	0.889	0.185
		$D_{\mu\nu}(T_{9})$	0.352	0.502	0.166	0.585	0.534	0.423	0.134	0.740	0.434	0.832	0.174
		$D_{\mu\nu}(T_{10})$	0.447	0.615	0.489	0.765	0.434	0.402	0.085	0.641	0.452	0.712	0.151
	транс-	Inv	1.315	1.324	1.346	1.377	1.321	1.455	1.760	1.363	1.441	1.355	1.758
	ТО	$p_{\mu\nu}(S_0)$	0.483	0.697	0.571	0.776	0.446	0.328	0.181	0.850	0.410	0.902	0.193
	(PPP/S)	$p_{\mu\nu}(S_1^*)$	0.383	0.518	0.630	0.664	0.435	0.577	0.093	0.501	0.598	. 0.700	0.154
		$p_{\mu\nu}(S_2^*)$	0.450	0.647	0.568	0.764	0.418	0.410	0.111	0.620	0.398	0.640	0.252
		$p_{\mu\nu}(S_3^*)$	0.393	0.602	0.530	0.617	0.399	0,346	0.254	0.585	0.534	0.534	0.741
		$p_{\mu\nu}(S_4^*)$	0.338	0.513	0.593	0.646	0.446	0.354	0.091	0.688	0.426	0.629	0.184
		$p_{\mu\nu}(T_1)$	0.452	0.638	0.592	0.746	0.439	0.433	0.119	0.425	0.596	0.552	0.124
		$p_{\mu\nu}(T_2)$	0.348	0.536	0.659	0.494	0.341	0.386	0.173	0.805	0.365	0.602	0.186
		$p_{\mu\nu}(T_3)$	0.451	0.684	0.572	0.532	0.401	0.303	0.206	0.519	0.288	0.673	0.197
		Puv (T4)	0.466	0.335	0.377	0.473	0.409	0.339	0.207	0.764	0.419	0.887	0.194
		$p_{\mu\nu}(T_5)$	0.341	0.652	0.561	0.781	0.423	0.390	0.040	0.614	0.460	0.695	0.144
		$p_{\mu\nu}(T_6)$	0.396	0.460	0.093	0.577	0.546	0.432	0.168	0.754	0.436	0.874	0.178
	транс-	l _{µv} ^a	1.360	1.294	1.384	1.347	1.378	1.490	1.720	1.343	1.440	1.343	1.720
	ТО	$p_{\mu\nu}(S_0)$	1.056	1.267	1.094	1.313	1.031	1.025	1.020	1.310	1.078	1.334	1.034
	(INDO/S)	$p_{\mu\nu}(S_1^*)(\pi\pi^*)$	-0.152	-0.234	0.110	-0.175	-0.003	0.268	-0.092	-0.271	0.121	-0.132	-0.035
		$p_{\mu\nu}(T_1)(\pi\pi^*)$	-0.071	-0.113	0.100	-0.128	-0.030	0.139	-0.088	-0.340	0.161	-0.263	-0.092

* $I_{\mu\nu}$ –длины связей, полученные оптимизацией геометрии методом PPP/S; $I_{\mu\nu}^{a}$ –длины связей из экспериментальных данных (PCA, электронография, микроволновые спектры) для родственных соединений [9, 11–13].

совпадение оптимизированной длины одинарной связи C(3')–C(4') ($l_{\mu\nu}$ = 1.440 Å) с данными PCA. Незначительно отличаются и длины двойных связей C(2')=C(3') и C(4')=C(5'): $l_{\mu\nu}$ = 1.363 и 1.355 Å (оптимизация PPP/S) и $l_{\mu\nu}$ = 1.363 Å для каждой из связей (PCA). Следует отметить более высокий порядок двойных связей C(2')=C(3') и C(4')=C(5') в тиофеновом цикле **ТО** ($\rho_{\mu\nu}$ = 0.850 и 0.902) по сравнению с аналогичными связями в *фурановом* цикле **FO** ($\rho_{\mu\nu}$ = 0.736 и 0.768). В *цис*- и *транс*-**ТО** длины одинарной межциклической связи C(2)–C(2') одинаковы ($l_{\mu\nu}$ = 1.455 Å, $\rho_{\mu\nu}$ = 0.328). Длина связи C(2)–C(2') в *транс*-**ТО**, по данным PCA, составляет $l_{\mu\nu}$ = 1,490 Å (табл. 6).

По данным расчетов методами PPP/S и INDO/S, при возбуждении молекул происходит перераспределение порядков связей $\rho_{\mu\nu}$: порядки одинарных в основном состоянии связей увеличиваются, а двойных – понижаются. Особенно заметно изменение порядка межциклической связи C(2)–C(2') при электронных переходах $S_0 \rightarrow S_1 *$ и $T_1 \rightarrow S_0$: согласно методу PPP/S, для *цис-(mpaнc-)*FO в S_0 -состоянии $\rho_{\mu\nu} = 0.303$, в флуоресцентном S_1^* -состоянии $\rho_{\mu\nu}^* = 0.581$ (0.581) и в T_1 -состоянии $\rho_{\mu\nu}^* = 0.470$ (0.472), а для *цис-(mpanc)*-TO соответственно $\rho_{\mu\nu} = 0.328$ (0.329) (S_0), $p_{\mu\nu}^* = 0.577$ (S_1^*) и $p_{\mu\nu}^* = 0.431$ (0.433) (T_1). Это свидетельствует об увеличении взаимодействия $\sigma\pi$ -электронных подсистем циклов в возбужденных состояниях по сравнению с основным, в котором циклы квазиавтономны, особенно в *транс*-конформациях.

Изменение порядка межциклической связи С(2)-С(2'), соотносящееся с формированием электронно-колебательной структуры ДПП в спектрах УΦ поглощения флуоресценции, экспериментально И доказано низкотемпературными спектрами некоторых полициклических азолов, включающих те же подсистемы, а также квантово-химическими методами [14, 157. Анализ электронно-колебательной структуры полос флуоресценции и фосфоресценции в парах и растворах показывает, что в возбужденных состояниях исследуемые молекулы должны иметь копланарное расположение циклов. В основном состоянии наиболее устойчивы конформеры с разворотом циклов на угол $\varphi = 24 - 45^{\circ}$ [9]. Это позволило методически обосновать применимость метода PPP/S к расчету фотофизических свойств гетероциклических молекул [1-4].

Следует отметить, что, по данным расчетов методом PPP/S, при возбуждении *цис-(транс)*-FO сильно изменяются порядки одной одинарной и двух двойных связей: в оксазольном цикле для связей O(1)-C(2), C(2)-N(3) и C(4)-C(5) они уменьшаются от $p_{\mu\nu} = 0.483$ (0.492); 0.706 (0.699) и 0.781 (0.778) в S₀-состоянии до $p_{\mu\nu}^* = 0.312$ (0.319); 0.445 (0.448) и 0.650 (0.636) в флуоресцентном S₁*-состоянии, а также до $\rho_{\mu\nu}^* = 0.377$ (0.381); 0.554 (0.545) и 0.647 (0.640) в T₁-состоянии. Порядки связей в фурановом цикле сильно зависят от спина и конформации молекулы.

Так, в *цис-(транс)*-FO порядки связей O(1')-C(2'), C(2')-C(3'), C(4')-C(5'), O(1')-C(5') изменяются от $\rho_{\mu\nu} = 0.435$ (0.450); 0.736 (0.731); 0.768 (0.765); 0.463 (0.472) (S₀) до $\rho_{\mu\nu}^* = 0.331$ (0.334); 0.462 (0.459), 0.673 (0.658); 0.384 (0.400) (S₁*) и $\rho_{\mu\nu}^* = 0.327$ (0.332); 0.441 (0.441), 0.559 (0.603; 0.345 (0.356) (T₁). Отметим для *цис*- и *транс*-FO сильное увеличение в T₁-состоянии порядка связи C(3')-C(4') в фурановом цикле (до $\rho_{\mu\nu} = 0.639$) по сравнению с S₀-состоянием ($\rho_{\mu\nu} = 0.583$ и 0.585 соответственно). Таким образом, в триплетном состоянии T₁ наблюдается активизация электронно-колебательных процессов в фурановом цикле – суммарное изменение порядков связей $\Delta \rho_{\mu\nu}^* = 51$ (81.6) % для *цис*-(*транс*)-FO. О сходном характере изменений $\Delta p_{\mu\nu}^*$ свидетельствуют данные метода INDO/S (табл. 6).

В возбужденных состояниях цис- и транс-ТО сильно изменяются порядки связей O(1)-C(2), C(2)-N(3) и C(4)-C(5) в оксазольном цикле – от $\rho_{uv} = 0.483$ (0.485), 0.697 (0.695) и 0.776 (0.773) в S₀-состоянии до $\rho_{\mu\nu}^* = 0.383$ (0.382), 0.518 (0.520) и 0.664 (0.653) в флуоресцентном S_1^* -состоянии, а изменения порядков в T_1 -состоянии существенно меньше: до $p_{\mu\nu}^* = 0.451$ (0.452), 0.642 (0.638) и 0.750 (0.746). В тиофеновом цикле изменения порядков связей сильно зависят от спина и конформации молекулы. При возбуждении **ТО** укорачиваются связи S(1')-C(2') (наибольшее изменение в S₁*-состоянии), C(2')-C(3') (наибольшее изменение в T_1 -состоянии) и C(5')–S(1'), а связь C(3')–C(4') удлиняется. связей иис-(транс)-ТО Порядки указанных для изменяются соответственно от $p_{\mu\nu}$ = 0.181 (0.196), 0.850 (0.853), 0.410 (0.412), 0.193 (0.205) (S₀) до $\rho_{\mu\nu}^* = 0.093$ (0.091), 0.501 (0.501), 0.598 (0.594), 0.154 (0.177) (S_1^*) и $\rho_{\mu\nu}^*$ = 0.111 (0.119), 0.426 (0.425), 0.595 (0.596), 0.116 (0.124) (T1) т. е., в фосфоресцентном состоянии как для цис-, так и для транс-ТО характерна активизация электронно-колебательных процессов в тиофеновом цикле – суммарное изменение порядков связей $\Delta \rho^*_{\mu\nu} = 80.8$ -88.6 % (в флуоресцентном несколько меньше $-\Delta \rho_{\mu\nu}^* = 58.5 - 63.1$ %).

Таким образом, нами изучена взаимосвязь строения и электронноколебательных процессов в молекулах 2-(фурил-2)- и 2-(тиенил-2)оксазолов с их химической активностью. Полученные квантовохимические и спектральные характеристики позволяют на основе степени локализации и делокализации электронно-колебательного возбуждения предвидеть направленность реакций замещения в этих системах, что может быть использовано для синтеза необходимых соединений.

СПИСОК ЛИТЕРАТУРЫ

- 1. А. Е. Обухов, Л. И. Беленький, XГС, 1181 (1998).
- 2. А. Е. Обухов, Л. И. Беленький, ХГС, 948 (1999).
- 3. A. E. Obukhov, Laser Physics, 7, 1102 (1997).
- 4. Л. И. Беленький, М. А. Ческис, В. П. Зволинский, А. Е. Обухов, ХГС, 826 (1986).
- 5. Л. И. Беленький, М. А. Ческис, *XTC*, 881 (1984).
- 6. L. I. Belen'kii, G. P. Gromova, M. A. Cheskis, Ya. L. Gol'dfarb, *Chem. scripta*, **25**, 295 (1985).
- I. Belen'kii, V. S. Bogdanov, I. A. Abronin, G. P. Gromova, M. A. Cheskis, R. Z. Zakharyan, *Chem. scripta*, 25, 266 (1985).
- 8. Л. И. Беленький, Н. Д. Чувылкин, XTC, 1535 (1996).
- Н. И. Попик, М. В. Шаблыгин, Л. В. Вилков, А. С. Семенова, Т. В. Кравченко, Высокомол. coed., 25Б, 38 (1983).
- 10. A. E. Obukhov, Laser Physics, 9, 927 (1999).
- А. И. Китайгородский, П. М. Зоркий, В. К. Бельский, Строение органического вещества. Данные рентгеноструктурных исследований, Ч. 1, Наука, Москва, 1980, 647.
- 12. B. Bak, D. Christensen, L. Hansen-Nygaard, J. Rastrup-Andersen, J. Mol. Spectr., 7, 58 (1961).
- 13. R. A. Bonham, F. A. Momany, J. Phys. Chem., 67, 2474 (1963).
- 14. A. E. Obukhov, Laser Physics, 9, 699 (1999).
- 15. A. E. Obukhov, Laser Physics, 9, 723 (1999).

Российский университет дружбы народов, Москва 117302 e-mail: aobukhov@mx.pfu.edu.ru Поступило в редакцию 12.05.2000

^аИнститут органической химии им. Н. Д. Зелинского РАН, Москва 117913 e-mail: lb@1september.ru