В. П. Фешин, Е. В. Фешина

СТРУКТУРА 5-ХЛОР-1,2,4-ТРИАЗОЛА ПО РЕЗУЛЬТАТАМ РАСЧЕТОВ *ab initio*

Методами Хартри–Фока (*ab initio*) и Меллера–Плесета в базисе 6-31G(d) рассчитаны три таутомерные формы 5-хлор-1,2,4-триазола. По заселенностям 3*p*-составляющих валентных *p*-орбиталей атома Cl вычислены параметры ЯКР ³⁵Cl этих форм. На основании полученных данных сделан вывод о структуре изученного соединения.

Ключевые слова: 5-хлор-1,2,4-триазол, расчеты *ab initio*, ЯКР ³⁵Сl.

Перспективность практического применения *экзо*-галогенпроизводных 1,2,4-триазола и особенности их электронного строения стимулировали всестороннее изучение этих соединений (см., например, [1–6]). Для 3-за-мещенных 5-хлор-1,2,4-триазола в растворе возможны три таутомерные формы, аналогичные структурам 1, 2 и 3.

На основании сопоставления дипольных моментов сделан вывод [3], что 3-нитро-1,2,4-триазол и его производные в диоксане подобны структуре 1. Спектры ПМР [4] и рентгеноструктурный анализ [5, 6] показывают, что в случае 1,2,4-триазола структура типа 3 при низких температурах отсутствует. Эти данные, а также спектры ЯКР ³⁵Сl 3-замещенных 5-хлор-1,2,4-триазола привели к выводу, что энергетически наиболее выгодной для 1,2,4-триазола и его 5-хлор-3-замещенных является таутомерная форма 2 [2].

Для дальнейшего изучения электронного и пространственного строения этих соединений нами рассчитаны *ab initio* три возможные таутомерные формы 5-хлор-1,2,4-триазола. Расчеты выполнены методами Хартри-Фока (HF) и Меллера–Плесета (MP2) в базисе 6-31G(d) с полной оптимизацией геометрии молекул по программе Gaussian 94W [7]. Начало системы координат во всех случаях выбрано в точке расположения ядра атома Cl с тем, чтобы по заселенностям (*Np*) 3*p*-составляющих его валентных *p*-орбиталей можно было вычислить частоты ЯКР ³⁵Cl (v) этих форм и сопоставить их с экспериментально полученными ранее [2]. Ось *Z* выбранной системы координат направлена вдоль связи Cl–C(5), ось *X* лежит в плоскости 1,2,4-триазольного кольца, а ось *Y* им перпендикулярна.

При вычислении частот ЯКР (см., например, [8, 9]) величина $e^2Qq_{aT}/2h$ принималась равной 93.093 или 91.626 МГц при использовании результатов, полученных методом HF/6-31G(d) или MP2/6-31G(d) соответственно. Эти значения найдены при расчетах молекулы Cl₂ указанными методами:

$$v = (e^2 Q q_{\rm aT}/2h) [(N p_{\chi} + N p_{\chi})/2 - N p_{\chi}] (1 + \eta^2/3)^{1/2}$$
(1)

Результаты оптимизации геометрии каждого из трех таутомеров в приближении HF/6-31G(d) представлены в табл. 1. Все двугранные углы в формах **1–3** равны $0.0^{\circ}\pm0.1^{\circ}$ или $180.0^{\circ}\pm0.1^{\circ}$, т. е. все атомы в них, включая sp^3 -гибридизованный атом N, лежат в одной плоскости. Согласно расчетам, полные энергии этих таутомеров близки между собой. Форма **1** стабильнее, чем **2**, но всего на ~0.5 ккал/моль, а **3** менее устойчива, чем последняя на ~7.4 ккал/моль.

Таблица 1

	d, Å						
Связь	1		2		3		
	HF	MP2	HF	MP2	HF	MP2	
Cl–C(5)	1.709	1.708	1.704	1.705	1.704	1.704	
N(4)–C(5)	1.347	1.356	1.289	1.322	1.352	1.363	
C(3)–N(4)	1.299	1.330	1.358	1.363	1.358	1.366	
N(2)–C(3)	1.327	1.352	1.292	1.340	1.280	1.323	
N(1)–N(2)	1.342	1.353	1.343	1.353	1.367	1.388	
N(1)-C(5)	1.290	1.340	1.327	1.353	-	1.319	
Угол*	α, град.						
N(1)N(2)C(3)	110.0	111.2	102.4	101.3	107.8	107.5	
N(2)C(3)N(4)	110.3	109.7	115.1	115.8	110.4	110.4	
C(3)N(4)C(5)	102.1	102.1	102.0	101.9	103.5	104.4	
N(4)C(5)N(1)	115.9	116.4	111.3	110.6	-	111.4	
N(4)C(5)Cl	122.1	122.6	126.5	127.0	122.1	122.3	

Длины связей (d) и валентные углы (α) в таутомерах 1–3, рассчитанные методами HF/6-31G(d) и MP2/6-31G(d)

* B **1** \angle H(2)N(2)C(4) = 129.8°, \angle H(1)C(3)N(4) = 126.1°, B **2** \angle H(2)N(1)N(2) = 121.5°, \angle H(1)C(3)N(4) = 122.6°, B **3** \angle H(1)C(3)N(4) = 123.6°, \angle H(2)N(4)C(3) = 129.0°.

Ранее нами показано, что частоты ЯКР ³⁵Cl (v_B) и параметры асимметрии ГЭП на ядрах ³⁵Cl (η_B), вычисленные по заселенностям 3*p*-составляющих валентных *p*-орбиталей атомов Cl, полученным методом HF/6-31G(d) для органических и элементоорганических молекул, удовлетворительно согласуются с экспериментальными величинами (v_3 , η_3). Между вычисленными и экспериментальными величинами v, а также η наблюдаются удовлетворительные линейные корреляции (см., например, [8, 9]). С учетом полученных в последнее время данных корреляционное уравнение для частот ЯКР имеет вид:

$$v_{\rm B} = 1.006(\pm 0.035)v_{\rm B} - 0.300(\pm 1.120), r = 0.996, n = 28$$
 (2)

Заселенности валентных *p*-орбиталей и их 3*p*- и 4*p*-составляющих, найденные для атомов Cl в таутомерах **1–3** методом HF/6-31G(d), представлены в табл. 2. Частоты ЯКР ³⁵Cl, вычисленные по заселенностям 3*p*-составляющих (табл. 3), близки экспериментальным, особенно для форм **2** и **3**. Экспериментальный спектр ЯКР ³⁵Cl 5-хлор-1,2,4-триазола при 77 К состоит из двух линий при v⁷⁷ = 37.007 и 37.111 МГц с отношением их интенсивностей 1 : 5 [2].

Таблица 2

Заселенности валентных *p*-орбиталей (Σ*Np*) и их 3*p*- и 4*p*-составляющих в атомах Cl таутомеров 1–3, рассчитанные методами HF/6-31G(d) и MP2/6-31G(d)

БКлад	111		MP2		
Np_x	Np_y	Np_z Np_x	Np_y	Np_z	
N3p 1.333	1.310	0.930 1.333	1.311	0.927	
N4p 0.622	0.640	0.160 0.622	0.638	0.160	
Σ <i>Np</i> 1.955	1.950	1.090 1.955	1.949	1.087	
N3p 1.331	1.315	0.924 1.332	1.316	0.919	
N4p 0.619	0.631	0.150 0.617	0.629	0.149	
Σ <i>Np</i> 1.950	1.946	1.074 1.949	1.945	1.068	
N3p 1.329	1.317	0.923 1.329	1.318	0.820	
N4p 0.620	0.634	0.153 0.619	0.632	0.153	
Σ <i>Np</i> 1.949	1.951	1.076 1.948	1.950	1.073	
$\begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	1,310 0 1,310 0.640 1,950 1.315 1,315 0 1,317 0 0,634 0 1,951 1.951	Ap_2 Ap_3 0.930 1.333 0.160 0.622 1.090 1.955 0.924 1.332 0.150 0.617 1.074 1.949 0.923 1.329 0.153 0.619 1.076 1.948	$\begin{array}{c} 1.97\\ 1.311\\ 0.638\\ 1.949\\ 1.316\\ 0.629\\ 1.945\\ 1.318\\ 0.632\\ 1.950\\ \end{array}$	$\begin{array}{c} 1.000\\ 0.927\\ 0.160\\ 1.087\\ 0.919\\ 0.149\\ 1.068\\ 0.820\\ 0.153\\ 1.073\end{array}$	

Таблица З

Частоты ЯКР ³⁵Cl (v_в, МГц) и параметры асимметрии (η_в, %) ГЭП на ядрах ³⁵Cl, вычисленные по заселенностям 3*p*-составляющих валентных *p*-орбиталей атомов Cl

Форма	I	HF	MP2		
	V_{B}	$\eta_{\scriptscriptstyle B}$	$\nu_{\rm B}$	$\eta_{\scriptscriptstyle B}$	
1	36.497	8.44	36.238	8.59	
2	37.097	6.08	37.072	5.90	
3	37.211	4.40	37.005	4.23	

Можно полагать, что этот спектр соответствует либо двум кристаллографически неэквивалентным молекулам в элементарной ячейке кристалла, либо двум таутомерам, находящимся в исследуемом образце в отношении 1 : 5. Разность между рассчитанными частотами ЯКР форм 2 и 3 ($\Delta v_{\rm B} = 0.103~{\rm M}\Gamma{\rm u}$) практически равна расщеплению линий в экспериментальном спектре ЯКР ($\Delta v_{\rm 3} = 0.104~{\rm M}\Gamma{\rm u}$). Вычисленная для таутомера 1

частота ЯКР (табл. 3) заметно ниже экспериментальных, однако различие между ними находится в пределах стандартной ошибки за счет аппроксимации корреляционным уравнением (2) и вклада в частоту ЯКР 35 Сl кристаллического эффекта. Поэтому сопоставление частот ЯКР, оцененных по заселенностям 3*p*-составляющих валентных *p*-орбиталей атомов Cl в формах **1–3**, с экспериментальными для 5-хлор-1,2,4-триазола не позволяет сделать однозначного вывода о структуре этого соединения. Однако, учитывая вычисленные полные энергии таутомеров **1–3** и частоты ЯКР 35 Cl для них, с высокой степенью вероятности можно полагать, что для 5-хлор-1,2,4-триазола характерна форма **2**.

Для дальнейшего изучения строения этого соединения мы выполнили расчеты *ab initio* с учетом корреляции электронов методом MP2/6-31G(d) при полной оптимизации геометрии таутомеров **1–3**. Оптимизированные геометрические параметры, найденные этим методом и в приближении HF/6-31G(d), различаются незначительно (табл. 1). Все двугранные углы, полученные при оптимизации методом MP2/6-31G(d), равны $0.0^{\circ}\pm 0.04^{\circ}$ или 180.0°±0.02°. Полные энергии форм **1**, **2** и **3** располагаются в таком же порядке, как и в приближении HF/6-31G(d). Однако полная энергия таутомера **1**, рассчитанная методом MP2/6-31G(d), еще меньше отличается от таковой для формы **2** (на ~0.4 ккал/моль), а разность между полными энергиями систем **2** и **3** составляет ~7.5 ккал/моль.

Частота ЯКР ³⁵Cl таутомера **1**, оцененная по заселенностям *3р*-составляющих валентных *p*-орбиталей атома Cl, полученным методом MP2/6-31G(d) (табл. 2), как и в приближении HF/6-31G(d) (табл. 3), существенно ниже экспериментальной. Аналогично вычисленные частоты ЯКР систем **2** и **3** близки к экспериментальным. Однако соотношение частот ЯКР, найденное для этих двух таутомеров в рамках схемы MP2/6-31G(d), противоположно полученному при его оценке в приближении HF/6-31G(d) (табл. 3). Вычисленная частота ЯКР ³⁵Cl для формы **3** совпадает с относящейся к менее интенсивной линии в спектре 5-хлор-1,2,4-триазола, а для таутомера **2** – близка к частоте более интенсивной линии. Эти результаты расчетов методом MP2/6-31G(d) позволяют полагать, что экспериментальный спектр ЯКР ³⁵Cl 5-хлор-1,2,4-триазола при 77 К соответствует смеси изомеров **2** и **3** в соотношении 5 : 1.

Преобладание энергетически более выгодной формы 2 объяснимо. Однако при этом остаются без ответа следующие вопросы: 1. Почему в спектре ЯКР ³⁵Cl поликристаллического вещества при 77 К не проявляется еще более устойчивый таутомер 1? 2. Если спектр ЯКР ³⁵Cl при 77 К указывает на наличие некоторого количества энергетически наименее выгодной формы 3, то почему она не обнаружена методом рентгеноструктурного анализа? Возможно, это обусловлено тем, что какая-то из структур 1–3 5-хлор-1,2,4-триазола может доминировать при определенных температурах. Для проверки данного предположения необходимо исследовать температурную зависимость частот ЯКР этого соединения.

В табл. 4 приведены заселенности p_y -орбиталей и их 2*p*- и 3*p*-составляющих в атомах С и N 1,2,4-триазольного кольца, полученные при расчете изомера **2** методом MP2/6-31G(d) и показывающие, что они незначительно отличаются от полученных в приближении HF/6-31G(d).

Судя по заселенностям, p_y -орбитали атомов Cl (табл. 2), N(1), C(3) и C(5) (табл. 4) электронодефицитны. Электроны с этих орбиталей переносятся на p_y -орбитали атомов N(2) и N(4), а также на другие AO. Последнее приводит к тому, что избыток p_y -электронов на атомах N(2) и N(4) (~0.5 е) заметно меньше электронного дефицита на других атомах кольца и атоме Cl (~0.6 е). В π -систему таутомера **2** входит π -связывающая MO с E = 18.0 эВ, а p_y -орбитали атомов Cl и 1,2,4-триазольного кольца формируют три MO с E = 14.2, 11.8 и 10.1 эВ, причем последняя из них является B3MO. Указанные MO наглядно можно представить следующим образом:

Таблица 4

Заселенности *p_y*-орбиталей и их 2*p*- и 3*p*-составляющих для атомов С и N 1,2,4-триазольного кольца в форме 2, рассчитанные методом MP2/6-31G(d)

Вклад	N(1)	N(2)	C(3)	N(4)	C(5)
N2p	0.918	0.702	0.520	0.685	0.563
N3p	0.680	0.552	0.395	0.565	0.367
ΣNp	1.598	1.254	0.915	1.250	0.930

Отметим, что p_y -АО принимают также некоторое участие в формировании других МО; энергии (эВ) верхних занятых МО в структуре **2**, рассчитанной методом MP2/6-31G(d): -20.5, -18.0, -17.5, -16.5, -14.2, -13.4, -12.7, -11.8 и -10.1 эВ.

СПИСОК ЛИТЕРАТУРЫ

- 1. М. Р. Гриммет, в кн. Общая органическая химия, 8, Химия, Москва, 1985, 429.
- В. В. Макарский, М. Г. Воронков, В. П. Фешин, В. А. Лопырев, Н. И. Берестенников, Е. В. Шибанова, Л. И. Волкова, *ДАН*, 220, 101 (1975).
- 3. М. С. Певзнер, Е. Я. Федорова, *XГС*, 275 (1971).
- 4. L. T. Creagh, P. Truitt, J. Org. Chem., 33, 2956 (1968).
- 5. H. Deuschl, Ber. Bunsengesel. Phys. Chem., 69, 550 (1965).
- 6. P. Goldstein, J. Ladell, G. Abowitz, Acta crystallogr., 25, 135 (1969).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, *Gaussian 94, Revision E.3*, Gaussian, Inc., Pittsburgh PA, 1995.
- 8. V. P. Feshin, M. Yu. Konshin, Z. Naturforsch., 51a, 549 (1996).
- 9. В. П. Фешин, Электронные эффекты в органических и элементоорганических молекулах, Екатеринбург, 1997, 377.

Институт технической химии Уральского отделения РАН, Пермь 614000, Россия e-mail: cheminst@mpm.ru Поступило в редакцию 26.03.99