Я. Озолс, Б. Виганте, Л. Баумане, А. Мишнев,И. Туровскис, Г. Дубурс, Я. Страдынь

ГЕКСАГИДРОИЗОХИНОЛОНЫ-8 С ЭЛЕКТРОНОАКЦЕПТОРНЫМИ ЗАМЕСТИТЕЛЯМИ В ПОЛОЖЕНИИ 4

При взаимодействии 2-ацетил-5,5-диметил-2-циклогексен-1-она с некоторыми нитроенаминами получены гексагидроизохинолоны-8 с нитрогруппой в положении 4, определены потенциалы их электрохимического окисления, высказаны соображения о возможном механизме и проявлении структурных эффектов в этом процессе. Структура 1,3,6,6-тетраметил-4-нитро-2,4а,5,6,7,8-гексагидроизохинолона-8 установлена методом PCA.

Производные гексагидроизохинолона-8 с электроноакцепторными заместителями (нитро- и этилтиокарбонильные группы) в положении 4 относятся к недостаточно исследованному классу гидрированных азотистых гетеросистем, содержащих β -аминовинилкарбонильный структурный фрагмент, в котором кетогруппа фиксирована в *s*-цис-конфигурации по отношению к двойной связи. В настоящей работе синтезированы и изучены новые представители этого класса соединений.

Гексагидроизохинолоны III синтезированы нагреванием промежуточного 2-ацетил-5,5-диметил-2-циклогексен-1-она (II) с енаминными соединениями в метаноле. Кетон II получен гидрогенолизом 2-ацетил-3-хлор-5,5-диметил-2-циклогексен-1-она (I) под действием цинка, активированного ацетатом серебра [1—3].

a R = H, R¹ = NO₂; 6 R = Me, R¹ = NO₂; B R = Me, R¹ = COSEt; r R = Me, R¹ = COOEt; $g R = Me, R^1 = COMe$

В электронных спектрах впервые синтезированных соединений IIIа—в имеются длинноволновые максимумы поглощения при 455, 448 и 421 нм соответственно (табл. 1), что характерно для соединений гексагидроизохинолонового ряда [2]. В спектре соединения IIIв наблюдается батохромный сдвиг длинноволнового максимума на 23 нм по сравнению с кислородсодержащим аналогом, что говорит о более сильном сопряжении этилтиокарбонильного заместителя с β-аминовинильной системой [2,4]. В ИК спектрах соединений Ша—в в области валентных колебаний двойных связей и групп NH имеются полосы поглощения, характерные для енаминокарбонильного фрагмента, нитро- и этилтиокарбонильной группы (табл. 1).

В спектрах ПМР обнаружены характерные сигналы структурных фрагментов гидрированных изохинолонов III. Химические сдвиги и мультиплетность сигналов протонов подтверждают строение полученных веществ. Наиболее характерным является присутствие сигнала метинового протона в *γ*-положении 1,4-дигидропиридинового фрагмента в виде двойного дублета около 4 м.д., а также синглетный сигнал протонов группы NH в более слабых полях (табл. 1).

Таблица 1

Соедине- ние	Электронный спектр, λ_{\max} , нм (ε)	ИК спектр, см ⁻¹	Спектр ПМР (ДМСО-D ₆), δ , м. д. (<i>I</i> , Гп)
IIIa	208 (9000), 234 (10000), 264 (8200), 455 (2000)	1325, 1370, 1415, 1510, 1608, 1652, 1685, 3180, 3240	1,01 и 1,14 (два с, 3Н и 3Н, 6-(СНз) ₂ ; 2,16 (с, 3Н, 1-СНз); 1,53 и 2,40 (два д.д. 1Н и 1Н, <i>J</i> =13 и 12, 5-СН _{а и} 5-СН _е); 2,18 и 2,38 (АВ, два д. 1Н и 1Н, <i>J</i> =18, 7-СН _е и 7-СН _е); 4,10 (д.д. <i>J</i> =12 и 4, С(4а)Н); 6,31 (уш.с. 1Н, NH); 7,62 (д. 1Н, <i>J</i> =6, 3-СН)
Шб	210 (7200), 264 (6400), 305 (4400), 448 (7800)	1375, 1460, 1482, 1595, 1615, 1628, 1680, 3065, 3330	0,95 и 1,07 (два с, 3H и 3H, 6-(CH3) ₂ ; 1,45 и 2,25 (два д.д. 1H и 1H, <i>J</i> =12 и 11,5, 5- CH _a ; <i>J</i> =12 и 4, 5-CH _c); 2,15 и 2,35 (два с, 3H и 3H, 1,3-2CH ₃); 2,17 и 2,38 (AB, два д, 1H и 1H, <i>J</i> =18, 7-CH ₂); 4,15 (д.д. <i>J</i> =11,5 и 4, C _(4a) H); 5,77 (уш.с. 1H, NH)
Шв	210 (8400), 252 (7600), 283 (5600), 421 (4400)	1310, 1370, 1382, 1480, 1560, 1590, 1655, 1673, 2950, 3310	0,93 и 1,05 (два с, 3H и 3H, 6-(CH ₃) ₂ ; 2,06 и 2,18 (два с, 3H и 3H, 1,3-2-CH ₃); 2,04 и 2,33 (АВ, два д, 1H и 1H, J=16, 7-CH _a и 7- CH _c); 1,27 (т, 3H,CH ₂ CH ₃); 1,50 и 2,01 (т и д.д, 1H и 1H, J=12, 5-CH _a и 5-CH _c); 2,96 (к, 2H, SCH ₂); 3,92 (д.д, 1H, J=12 и 2,2, C _(4a) H); 5,17 (уш.с, 1H, NH)

Спектральные характеристики соединений Ша-в

Описанная реакция является единственным известным способом синтеза производных гексагидроизохинолона-8 III, которые, в отличие от гидрированных хинолонов IV [5, 6], не относятся к веществам, получаемым известными способами. Это расширяет возможности модификации гидрированных азотсодержащих гетеросистем с 1,4-дигидропиридиновым фрагментом.

С целью синтеза новых гидрированных хинолонов IVa,г,д и моноциклических 1,4-дигидропиридинов VIs,и с нитрогруппой в β -положении (по нашим соображениям, некоторые из них необходимы для изучения электрохимического окисления) проведена конденсация калиевых солей нитроуксусного альдегида и нитроацетона с соответствующим альдегидом и 5,5-диметил-1,3-циклогександионом. В результате получены хинолоны IVa,г,д, в которых кетогруппа фиксирована в *s-mpaнc*-конфигурации по отношению к двойной связи. Модификацией реакции Ганча получены моноциклические 1,4-дигидропиридины с нитрогруппой в β -положении VIs,и, а описанные уже IV и VI синтезированы по известным методикам [5, 6]. Спектральные характеристики соединений типа IV и VI, которые получены впервые, обобщены в табл. 2.

Спектральные характеристики	соединений	IVа.г.д.	VIз.и
-----------------------------	------------	----------	-------

Соедине- ние	Электронный спектр, λ_{\max} , нм (\mathcal{E})	ИК спектр, см ⁻¹	Спектр ПМР (ДМСО-D ₆), δ , м. д. (<i>I</i> , Гц)
IVa	205 (8800), 272 (10800), 425 (8000)	1610, 1640, 1660, 3180, 3300	0,91,0 (м, 9H, 7-(CH ₃) ₂ , 4-CH ₃); 2,18 (д, 2H, 8-CH ₂); 2,33 (д, 2H, 6-CH ₂); 2,42 (с, 3H, 2-CH ₃); 4,09 (к, 1H, 4-CH); 9,56 (с, 1H, N-H)
IVr	205 (10000), 256 (10000), 287 пл.(8000), 430 (9200)	1610, 1640, 1660, 3100, 3200, 3260	0,91,0 (м, 9H, 7-(CH ₃) ₂ , 4-CH ₃); 2,19 (c, 2H, 8-CH ₂); 2,33 (c, 2H, 6-CH ₂); 4,09 (κ, 1H, 4-CH); 7,93 (c, 1H, 2-CH); 9,89 (c, 1H, N-H)
IVд	205 (16000), 233 (10400), 263 (8000), 423 (9200)	1610, 1640, 1680, 3240	0,87 (c, 3H, 7-CH ₃); 1,02 (c, 3H, 7-CH ₃); 2,08 (c, 2H, 8-CH ₂); 2,16 (c, 2H, 6-CH ₂); 5,14 (c, 1H, 4-CH); 7,20 (c, 5H, 4-C ₆ H ₅); 8,11 (c, 1H, 2-CH); 10,11 (c, 1H, N-H)
VI3	205 (8400), 258 (8800), 294 пл.(6400), 432 (9400)	1610, 1645, 1680, 3120, 3250	1,18 (д, 3H, 4-CH ₃); 2,27 (с, 3H, 6-CH ₃); 2,36 (с, 3H, 5-COCH ₃); 4,29 (к, 1H, 4-CH); 6,53 (д, 1H, N-H); 7,73 (д, 1H, 2-CH)
VIи	205 (15200), 232 (10400), 287 (7400), 430 (8600)	1600, 1640, 1680, 3100, 3200	2,16 (с, 3H, 6-CH ₃); 2,24 (с, 3H, 5-COCH ₃); 5,29 (с, 1H, 4-CH); 7,24 (с, 5H, 4-C ₆ H ₅); 7,96 (д, 1H, <i>J</i> =6, 2-CH); 9,91 (д, 1H, <i>J</i> =6, N-H)

Процессы электрохимического окисления гексагидроизохинолонов-8 до сих пор не изучались, поэтому с целью выявления влияния структурных факторов на электрохимическое окисление в этом ряду соединений были определены их потенциалы окисления, а для сравнительного изучения потенциалы соответствующих *s-mpaнc*-фиксированных хинолонов IV, потенциал пентаметилдекагидрофенантридиндиона-1,7 (V) и ряда моноциклических 1,4-дигидропиридинов VI.

IV a $R = R^1 = Me$; $R^2 = NO_2$; $\delta R = R^1 = Me$; $R^2 = COOEt$; $B R = R^1 = Me$; $R^2 = COMe$; r R = H, $R^1 = Me$; $R^2 = NO_2$; $\pi R = H$, $R^1 = Ph$; $R^2 = NO_2$

VI a R = Me, R¹ = H, R² = R³ = COOEt;
$$6 R = Me, R^1 = H, R^2 = R^3 = COMe;$$

B R = R¹ = Me, R² = R³ = COOEt; r R = R¹ = Me, R² = R³ = COMe;
 $\pi R = Me, R^1 = Ph, R^2 = R^3 = COOEt; \pi R = Me, R^1 = Ph, R^2 = R^3 = COMe;$
 $3 R = H, R^1 = Me, R^2 = NO_2, R^3 = COMe; \pi R = H, R^1 = Ph, R^2 = NO_2, R^3 = COMe;$
 $\pi R = Me, R^1 = Ph, R^2 = NO_2, R^3 = COOEt$

При рассмотрении результатов электрохимического окисления обнаружено, что влияние β -заместителей дигидропиридинового фрагмента соединений III, IV на изменение потенциалов такое же, что и при окислении моноциклических 1,4-дигидропиридинов [7—10]. Введение сильно электроноакцепторной нитрогруппы в β -положение соединений III и IV вызывает повышение потенциала электрохимического окисления на 0,15 и 0,26 В по сравнению с этоксикарбонильным и на 0,24 и 0,44 В по сравнению с ацетильным заместителем (табл. 3). Замещение метильной группы в α -положении атомом водорода в случае β -нитропроизводных IIIа и IVг несколько облегчает окисление. *s*-цис-Фиксированные соединения III окисляются легче не только их *s*-*транс*-аналогов, но и 1,4-дигидропиридинов с соответствующими нефиксированными β -заместителями (табл. 3).

Таблица З

Соединение	<i>E</i> _{1/2} , B	Число электронов, п	Соединение	<i>Е</i> 1/2, В	Число электронов, n
IIIa	+0,76	1,0	Vla	+0,73	1,5
шб	+0,78	1,6	VIб	+0,50	1,0
Шв	+0,68	1,0	VIB	+0,76	1,1
IIIr	+0,63	1,0	VIr	+0,70	1,2
Шд	+0,54	1,0	VIд	+0,79	1,1
IVa	+1,16	1,0	VIж	+0,80	~1,2*
IVб	+0,90	1,4	VI3	+1,03	1,6
IVв	+0,72	1,1	VIи	+1,10	1,6
IVr	+1,08	1,6	VIĸ	+1,22	1,0
IVд	+1,19	1,4			
V	+0,77	1,2			1

Потенциалы полуволн (*E*_{1/2}) и число электронов (n), затрачиваемых на одну молекулу, при электрохимическом окислении соединений III—VI

* Высоту волны измерить затруднительно из-за дальнейшего окисления первичного продукта.

Трициклическое соединение V имеет $E_{1/2}$ при +0,77 B, что на 0,05 B выше $E_{1/2}$ *s-mpanc*-фиксированного гидрированного хинолона IVв с нефиксированным β -ацетильным заместителем. В этом случае β -аминовинилкарбонильный фрагмент соединения V с эндоциклической *s-цис*-фиксированной карбонильной группой затрудняет электрохимическое окисление более, чем такой же фрагмент с нефиксированной ацетильной группой. Однако сравнение потенциалов окисления и других физико-химических свойств 1,4-дигидропиридинов с нефиксированными карбонилсодержащими β -заместителями и их аналогами, имеющими эндоциклическую карбонильную группу (гидрированные хинолоны и изохинолоны), достаточно условно, ибо свойства последних зависят также от величины и стереохимии цикла [11].

Сравнение потенциалов электрохимического окисления незамещенных в α -положении хинолонов IIIa и IVr с моноциклическим производным VIз показало, что для соединения IIIa потенциал значительно ниже, чем для моноциклического производного VIз, а для соединения IVr потенциал несколько превышает значение потенциала соединения VIз. Аналогичная картина наблюдается при сравнении соединений III6, IVa и VIк, замещенных в α -положении метильной группой.

Во всех изученных соединениях при замене ацетильного заместителя на этоксикарбонильный в β -положении гетероцикла наблюдалось изменение

значений потенциалов электрохимического окисления, противоположное тому, которое ожидалось в соответствии с изменением величин Гамметовских σ -констант. Такое явление, наблюдавшееся при изучении электрохимического окисления производных 1,2-дигидропиридина [12], было объяснено на основании предположения о том, что затруднение при окисления этоксикарбонилпроизводных обусловлено индуктивным эффектом поля F, определяемым константой Свейна—Лаптона [13]. Можно полагать, что такое объяснение справедливо и в применении к изученным в настоящей работе соединениям.

Таблица 4

Связь	<i>d</i> , Å	Угол	ω, град.
N(1)-C(2)	1,35(1)	C(2)-N(1)-C(6)	121,9(1)
N(1)-C(6)	1,40(1)	$C_{(3)}-C_{(2)}-N_{(1)}$	119,7(1)
C(2)-C(3)	1,32(2)	C(3)-C(2)-C(12)	128,3(1)
C(2)C(12)	1,53(2)	N(1)-C(2)-C(12)	112,0(1)
C(3)—N(13)	1,46(2)	C ₍₂₎ -C ₍₃₎ -N ₍₁₃₎	122,1(1)
C(3)—C(4)	1,48(2)	$C_{(2)}-C_{(3)}-C_{(4)}$	123,8(1)
C(4)-C(5)	1,51(1)	N(13)-C(3)-C(4)	114,0(1)
C(4)C(7)	1,54(1)	$C_{(3)}-C_{(4)}-C_{(5)}$	111,0(1)
C(5)C(6)	1,32(1)	$C_{(3)}-C_{(4)}-C_{(7)}$	116,5(1)
C(5)-C(10)	1,44(2)	$C_{(5)}-C_{(4)}-C_{(7)}$	109,5(1)
C(6)-C(11)	1,50(2)	C(6)-C(5)-C(10)	121,7(1)
C(7)-C(8)	1,51(2)	C(6)-C(5)-C(4)	121,5(1)
C(8)—C(16)	1,53(2)	$C_{(10)}-C_{(5)}-C_{(4)}$	116,3(1)
C(8)-C(9)	1,55(2)	C(5)-C(6)-N(1)	120,3(1)
C(8)—C(17)	1,55(2)	C(5)-C(6)-C(11)	128,5(1)
C(9)-C(10)	1,56(1)	N(1)-C(6)-C(11)	111,0(1)
C(10)-O(18)	1,23(1)	$C_{(8)}-C_{(7)}-C_{(4)}$	115,5(1)
N(13)O(15)	1,21(1)	$C_{(7)}-C_{(8)}-C_{(16)}$	110,0(1)
N(13)-O(14)	1,23(1)	$C_{(7)}-C_{(8)}-C_{(9)}$	110,7(1)
		$C_{(16)}-C_{(8)}-C_{(9)}$	105,6(1)
		$C_{(7)}-C_{(8)}-C_{(17)}$	113,1(1)
		$C_{(16)}-C_{(8)}-C_{(17)}$	107,5(1)
		$C_{(9)}-C_{(8)}-C_{(17)}$	109,6(1)
		$C_{(8)} - C_{(9)} - C_{(10)}$	108,3(1)
		$O_{(18)}-C_{(10)}-C_{(5)}$	125,2(1)
		O(18)-C(10)-C(9)	120,6(1)
		$C_{(5)}-C_{(10)}-C_{(9)}$	114,1(1)
		O(15)—N(13)—O(14)	124,3(1)
		O(15)-N(13)-C(3)	116,9(1)
		$O_{(14)} - N_{(13)} - C_{(3)}$	118,6(1)

Длины связей (d) и валентные углы (w) в молекуле Шб

Высоты полярографических волн соединений III—VI либо одноэлектронны, либо соответствуют дробному числу электронов (см. табл. 2). На кольцевом электроде ни в одном случае не обнаружено проявление обратимости процесса окисления. Следовательно, первичные продукты электроокисления — катион-радикалы — претерпевают достаточно быстрые превращения, причем в случае одноэлектронной волны катион-радикалы, вероятно, гибнут с выбросом атома водорода и образованием катиона пиридиния, а в случае дробного числа электронов возможны два параллельных пути гибели катион-радикалов — с выбросом как атома водорода, так и протона и дальнейшим окислением пиридинильного радикала до пиридина, как это показано ранее [14]. Указанное предположение экспериментально подтверждается наблюдаемыми на кольцевом электроде волнами восстановления катиона пиридиния (в интервале потенциалов от -0,6 до -1,2 В) и пиридина (в интервале от -1,7 до -2,2 В). Не наблюдается четкой закономерности изменения высоты полярографических волн в зависимости от строения соединений, однако видно, что введение нитрогруппы в β -положение гетероцикла во всех случаях (кроме соединения IVа) приводит к повышению высоты волны электрохимического окисления. Введение в молекулу сильного электроноакцепторного заместителя затрудняет отрыв первого электрона, однако в состоянии катион-радикала оно же ускоряет процесс дальнейшего окисления с отщеплением второго электрона за счет изменения электронного или стерического строения частицы.

Таблица 5

I

Угол	τ, град.	Угол	τ, град.
$C_{(2)} - N_{(1)} - C_{(2)} - C_{(3)}$	11(2)	$C_{(4)}-C_{(7)}-C_{(8)}-C_{(9)}$	-18(2)
$N_{(1)} - C_{(2)} - C_{(3)} - C_{(4)}$	-1(2)	$C_{(7)}-C_{(8)}-C_{(9)}-C_{(10)}$	60(1)
$C_{(2)} - C_{(3)} - C_{(4)} - C_{(5)}$	-10(2)	$C_{(6)}-C_{(5)}-C_{(10)}-O_{(18)}$	-21 (2)
$C_{(2)} - C_{(3)} - C_{(4)} - C_{(7)}$	116(1)	$C_{(4)} - C_{(5)} - C_{(10)} - O_{(18)}$	167(1)
$C_{(3)} - C_{(4)} - C_{(5)} - C_{(6)}$	12(2)	$C_{(6)}-C_{(5)}-C_{(10)}-C_{(9)}$	160(1)
C(3) = C(4) = C(5) = C(6)	-118(1)	$C_{(4)} - C_{(5)} - C_{(10)} - C_{(9)}$	-12(2)
C(7) = C(4) = C(5) = C(10)	54(1)	$C_{(8)}-C_{(9)}-C_{(10)}-O_{(18)}$	136(1)
$C_{(10)} - C_{(5)} - C_{(6)} - N_{(1)}$	-176(1)	$C_{(8)}-C_{(9)}-C_{(10)}-C_{(5)}$	-46(1)
C(10) = C(5) = C(6) = N(1)	-4(2)	$C_{(2)}-C_{(3)}-N_{(13)}-O_{(15)}$	170(1)
C(x) - N(x) - C(x) - C(x)	-8(2)	$C_{(4)} - C_{(3)} - N_{(13)} - O_{(15)}$	-6(2)
$C_{(2)} = C_{(4)} = C_{(5)} = C_{(5)}$	-165(1)	$C_{(2)}-C_{(3)}-N_{(13)}-O_{(14)}$	-5(2)
$C_{(5)} - C_{(4)} - C_{(7)} - C_{(8)}$	-38(2)	$C_{(4)}-C_{(3)}-N_{(13)}-O_{(14)}$	178(1)

Важнейшие торсионные углы в молекуле Шб

Таблица б

Координаты	неводородных	атомов	(×10 ⁴)	со	стандартными	отклонениями
- · ·		ΒM	олекуле	Шć	5	

			1	
Атом	x	у	z	
	1000 (0)	(775(10)	822(5)	
N(1)	1028(9)	0775(10)	823(5)	
C(2)	-102(14)	7048(11)	689(5)	
C(3)	-934(11)	6280(11)	766(6)	
C(4)	-708(10)	5107(11)	987(6)	
C(5)	592(10)	4854(12)	988(6)	
C(6)	1380(11)	5660(12)	933(5)	
C(7)	-1247(12)	4745(12)	1684(7)	
C(8)	-756(11)	3673(12)	1992(7)	
C(9)	-99(12)	2982(12)	1436(7)	
C(10)	921(12)	3713(13)	1147(6)	
C(11)	2682(11)	5583(11)	1020(6)	
C(12)	-237(12)	8287(10)	489(6)	
N(13)	-2157(12)	6509(11)	598(6)	
O(14)	-2434(8)	7472(8)	423(5)	
O(15)	-2823(8)	5711(8)	595(5)	
C(16)	-1759(12)	2918(12)	2241 (8)	
C(17)	64(13)	3885(12)	2615(7)	
C(18)	1906(7)	3307(7)	1060(5)	

Для установления пространственной и молекулярной структуры соединения IIIб проведено его рентгеноструктурное исследование. Модель молекулы с обозначением атомов представлена на рис. 1. Длины связей, валентные и торсионные углы приведены в табл. 4—6. 1,4-Дигидропириди-

Молекула 1,3,6-тетраметил-4-нитро-2,4а,5,6,7,8-гегсагидроизохинолина-8 (IIIб)

новый цикл имеет конформацию мелкой ванны. Атомы $N_{(1)}$ и $C_{(4)}$ отклонены в одну сторону от строго плоского фрагмента $C_{(2)}C_{(3)}C_{(5)}C_{(6)}$ на 0,09(1) и 0,14(1) Å соответственно. Второй цикл также имеет конформацию ванны. Выход атомов $C_{(4)}$ и $C_{(9)}$ из плоскости остальных четырех атомов 0,57(1) и 0,66(1) Å соответственно. Атом $C_{(3)}$ занимает экваториальное положение по отношению ко второму циклу. Одинарная связь $C_{(5)}-C_{(10)}$ несколько укорочена (1,44 Å) из-за наличия сопряжения в цепочке $N_{(1)}-C_{(6)}-C_{(5)}-C_{(10)}-O_{(18)}$, однако полной копланарности в этой пентаде атомов не наблюдается; торсионный угол $C_{(6)}-C_{(5)}-C_{(10)}-O_{(18)}$ составляет -21(2)° (табл. 5), а двугранный угол между средними плоскостями обоих циклов — 38,6(4)°. Молекулы в кристалле образуют межмолекулярные водородные связи $N_{(1)}-H...O_{(18)}$ (N...O = 3,01, H...O = 2,17Å, преобразование симметрии 1/2 - x, 1/2 + y, z).

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектры получены на приборе Perkin-Elmer 580В в нуйоле, электронные спектры — на приборе Spectra UV-vis (в этаноле), спектры ПМР — на спектрометре Bruker WH-90/DS, внутренний стандарт ТМС. Масс-спектры сняты на приборе AEI MS-50. Контроль за ходом реакции осуществляли с помощью ТСХ на пластинках Silufol UV-254 в системе растворителей хлоро-форм—гексан—ацетон—этанол, 9:7:2:1, проявление в УФ свете.

Потенциалы электрохимического окисления соединений III—V ($c = 5.10^{-4}$ моль.л⁻¹) определены в безводном ацетонитриле [15] (фоновый электролит 0,1 моль.л⁻¹ гексафторфосфата тетрабутиламмония) на вращающемся дисковом электроде с кольцом (графит/графит) Bruker 350С (электрод сравнения 0,1 моль.л⁻¹ Ag/AgNO₃ в ацетонитриле, вспомогательный электрод — платиновая проволка, скорость вращения 2000 об/мин). Число электронов определяли по сравнению 1378 высоты полярографических волн исследуемого соединения с высотой одноэлектронной волны восстановления 4'-(*м*-нитрофенил)-3,5-диэтоксикарбонил-1,2,6-триметил-1,4-дигидропиридина, зарегистрированных в идентичных условиях эксперимента. Потенциалы полуволны отнесены к Ag/AgNO₃.

Кристаллы соединения Шб состава С₁₃H₁₈N₂O₃, выращенные из хлороформа, ромбические и имеют следующие кристаллографичесие параметры: a=11,391(4), b=11,887(4), c=19,316(7)Å, V=2615(2)Å³, M=250,29, $d_{\rm Bbry}=1,27$ г/см³, Z=8, пр. группа Pbca.

Интенсивности 1178 отражений измерены на автоматическом дифрактометре Syntex P2₁ (МоК α -излучение, графитовый монохроматор, $\Theta/2\Theta$ -сканирование, $2\Theta_{max} = 43^\circ$). В расчетах использовано 707 независимых отражений с $I \ge 2\sigma_I$.

Структура расшифрована прямым методом по программе SHELXS-86 [16] и уточнена полноматричным МНК в анизотропном приближении для неводородных атомов до окончательного значения R = 0,078. Координаты неводородных атомов приведены в табл. 6.

Соединения Шг,д синтезированы согласно методике [2], IV6,в, VIa—ж — [5, 6]; a VIк — [20]. 1,6,6-Триметил-4-нитро-2,4а,5,6,7,8-гексагидроизохинолон-8 (Ша). Смесь 1,76 г (20 ммоль) 1-амино-2-нитроэтилена [16, 17] и 3,3 г (20 ммоль) ендиона II, полученного согласно методике [1], кипятят в 30 мл метанола 3 ч, фильтруют и в четыре приема хроматографируют на препаративных стеклянных пластинках 220 × 280 мм на незакрепленном слое силикагеля L 40/100 в системе хлороформ—гексан—ацетон—этанол, 9:7:2:1. С пластинок собирают полосы оранжевого цвета, элюируют смесью 120 мл этанола и 60 мл ацетона, фильтруют, упаривают в вакууме; остаток обрабатывают сухим эфиром. Получают оранжевое вещество с $T_{IIЛ}$ 108...110°С (из этанола). Выход 0,5 г (11%). Масс-спектр^{*}: 236 (M⁺). Найдено, %: С 60,7; Н 7,1; N 11,9. С12Н16N2O3. Вычислено, %: С 61,0; Н 6,8; N 11,8.

1,3,6,6-Тетраметил-4-нитро-2,4а,5,6,7,8-гексагидроизохинолон-8 (Шб). Аналогично из 3,3 г (20 ммоль) ендиона II и 2,05 г (20 ммоль) 2-амино-1-нитропропилена [17, 18] получают 0,8 г (16%) соединения Шб с T_{nn} 175°С (из этанола). Масс-спектр: 250 (М⁺). Найдено, %: С 62,5; Н 7,3; N 11,0. С₁₃Н₁₈N₂O₃. Вычислено, %: С 62,5; Н 7,2; N 11,1.

1,3,6,6-Тетраметил-4-этилтиокарбонил-2,4а,5,6,7,8-гексагидроизохинолон-8 (Шв). Аналогично из 3,3 г (20 ммоль) ендиона II и 2,92 г (20 ммоль) *S*-этилового эфира β -аминотиокротоновой кислоты получают 0,9 г (15%) соединения Шв с $T_{\Pi\Pi}$ 124...±126°С (из этанола). Масс-спектр: 293 (М⁺). Найдено, %: С 64,8; Н 7,7; N 4,5; S 10,5; С₁₆Н₂₃NO₂S. Вычислено, %: С 65,4; Н 7,8; N 4,8; S 10,9.

2,4,7,7-Тетраметил-3-нитро-1,4,5,6,7,8-гексагидрохинолон-5 (IVa). Раствор 1,4 г (10 ммоль) 5,5-диметилциклогександиона-1,3, 1,49 г (10 ммоль) калиевой соли нитроацетона [18], 2,5 мл (45 ммоль) уксусного альдегида и 2,5 г ацетата аммония кипятят 3 ч в смеси 15 мл этанола и 10 мл уксусной кислоты. После охлаждения отделяют желтое вещество с $T_{\rm LLI}$ 246...248°C (из смеси этанол—АсОН). Выход 1,6 г (65%). Масс-спектр: 250 (M⁺). Найдено, %: С 62,5; H7,2; N 11,0. С₁₃H₁₈N₂O₃. Вычислено, %: С 62,4; H 7,2; N 11,2.

4,7,7-Триметил-3-нитро-1,4,5,6,7,8-гексагидрохинолон-5 (IVr). Аналогично соединению ІVа из 1,4 г (10 ммоль) 5,5-диметилциклогександиона-1,3, 1,27 г (10 ммоль) калиевой соли нитроуксусного альдегида [18], 2,5 мл (45 ммоль) уксусного альдегида и 2,5 г ацетата аммония получают гексагидрохинолон IVг. Разделяют на препаративных пластинках силикагеля в системе хлороформ—гексан—ацетон—этанол, 9:7:2:1. Получают 0,81 г (35%) желтого вещества с $T_{\Pi \pi}$ 207...210°С (из смеси этанол — AcOH). Масс-спектр: 236 (M⁺). Найдено,%: С 60,8; H 6,9; N 11,7. С12H16N2O3. Вычислено, %: С 61,0; Н 6,8; N 11,9.

7,7-Диметил-4-фенил-3-нитро-1,4,5,6,7,8-гексагидрохинолон-5 (IVд). Раствор 1,4 г (10 ммоль) 5,5-диметилщиклогександиона-1,3, 0,88 г (10 ммоль) 1-амино-2-нитроэтилена и 1,06 г (10 ммоль) бензальдегида кипятят 6 ч в смеси 30 мл этанола и 3 мл уксусной кислоты. Растворители удаляют в вакууме и остаток обрабатывают метанолом. Получают 1,19 г (40%) желтого вещества с $T_{\rm III}$ 250°C (из смеси метанол-AcOH). Найдено,%: С 68,4; Н 6,1; N 9,4. С₁₇H₁₈N₂O₃. Вычислено, %: С 68,2; Н 6,2; N 9,1.

2,4-Диметил-3-ацетил-5-нитродигидропиридин-1,4 (VI3). Раствор 0,6 г (5 ммоль) ацетилацетона, 0,44 г (5 ммоль) 1-амино-2-нитроэтилена и 0,84 мл (15 ммоль) ацетальдегида в смеси 10 мл этанола и 1 мл уксусной кислоты кипятят 1 ч. Растворители удаляют в вакууме и остаток разделяют в два приема на препаративных пластинках силикагеля в системе хлороформ—гексан—ацетон—этанол,

^{*} Здесь и далее для пиков ионов даны величины m/z.

9:7:2:1. С пластинок собирают оранжевую полосу. Получают 0,4 г (41%) соединения VI3, *T*_{ПЛ} 165...167°С (из метанола). Найдено,%: С 54,8; Н 6,0; N 14,1. С9Н₁₂N₂O₃. Вычислено, %: С 55,0; Н 6,1; N 14,3.

2-Метил-4-фенил-3-ацетил-5-нитродигидропиридин-1,4 (VIи). Раствор 0,99 г (10 ммоль) 4-аминопентен-3-она-2, 1,27 г (10 ммоль) калиевой соли нитроуксусного альдегида и 1,06 г (10 ммоль) бензальдегида в 20 мл смеси этанола и 3 мл уксусной кислоты (1:1) кипятят 4 ч. Растворители удаляют в вакууме и остаток обрабатывают метанолом. Получают 0,9 г (35%) красного вещества VIи с $T_{\rm HI}$ 152...156°C (из метанола). Масс-спектр: 258 (M⁺). Найдено,%: С 65,0; H 5,4; N 10,8. С14H₁4N₂O₃. Вычислено, %: С 65,1; H 5,5; N 10,9.

Работа выполнена при финансовой поддержке Латвийского совета по науке (гранты 700, 701, 718).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ахрем А. А., Лахвич Ф. А., Пырко А. Н. // ЖОрХ. 1983. Т. 19. С. 2322.
- 2. Озолс Я. Я., Пырко А. Н., Лахвич Ф. А., Виганте Б. А., Дубуре Р. Р., Дубур Г. Я., Ахрем А.А. // ХГС. 1990. № 1. С. 66.
- 3. Clark R. D., Heathcock C. H. // J. Org. Chem. 1976. Vol. 41. P. 636.
- Виганте Б. А., Озолс Я. Я., Дубур Г. Я., Бейлис Ю. И., Белаш Е. М., Преждо В. В. // ХГС. — 1982. — № 2. — С. 219.
- 5. Eisner U., Kuthan J. // J. Chem. Rev. 1972. Vol. 72. P. 1.
- 6. Kuthan J., Kurfurst A. // Ind. Eng. Chem. Prod. Res. Dev. 1982. Vol. 21. P. 191.
- 7. Страдынь Я. П., Бейлис Ю. И., Улдрикис Я. Р., Дубур Г. Я., Саусинь А. Э., Чекавичус Б. С. // ХГС. 1975. № 11. С. 1525.
- Страдынь Я. П., Дубур Г. Я., Бейлис Ю.И., Улдрикис Я. Р., Саусинь А. Э., Чекавичус Б. С. // ХГС. — 1975. — № 11. — С. 1530.
- 9. Страдынь Я. П., Дубур Г. Я., Бейлис Ю. И., Улдрикис Я. Р., Короткова А.Ф. // ХГС. 1972. № 1. С. 84.
- 10. Огле Я. В., Страдынь Я. П., Дубур Г. Я., Лусис В. К., Кадыш В. П. // ХГС. 1980. № 9. — С. 1263.
- 11. Граник В. Г. // Успехи химии. 1982. Т. 51. С. 207.
- 12. Страдынь Я., Гаварс Р., Баумане Л., Дубурс Г. // ХГС. 1997. № 6. С. 772.
- 13. Hansch C., Leo A., Taft R.W. // Chem. Rev. 1991. Vol. 91. P. 165.
- 14. Ogle J., Stradins J., Baumane L. // Electrochim. acta. 1994. Vol. 39. P. 73.
- 15. Clark D., Fleishmann M., Pletcher D. // J. Electroanal. Chem. 1972. Vol. 1. P. 137.
- Sheldrick G.M. // Crystallographic Computing. 3 / Eds. G. M. Sheldrick, C. Kruger, R. Goddard. — Oxford Univ. Press, 1985. — P. 175.
- 17. Faulques M., Rene L., Royer R. // Synthesis. 1982. N 4. P. 260.
- 18. Krowczynski A., Kozerski L. // Synthesis. 1983. N 6. P. 489.
- 19. Бабиевский К.К., Беликов В.М., Тихонова Н.А. // Изв. АН СССР. 1970. № 5. С. 1161.
- 20. Pat. 3206671, BRD / Franckowiak G. // C. A. 1983. Vol. 98. P. 215488.

Латвийский институт органического синтеза, Рига LV-11006 e-mail: aiva@osi.lanet.lv Поступило в редакцию 18.03.98