Т. В. Рыбалова, В. Ф. Седова, Ю. В. Гатилов, О. П. Шкурко

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 2-НИТРОПИРИДИНА

Методом PCA определена кристаллическая структура 2-нитропиридина. Обсуждается влияние нитрогруппы на геометрические параметры его молекулы, а также на параметры молекул других нитропиридинов в зависимости от положения этой группы в пиридиновом кольце.

Заместители в ароматических соединениях оказывают заметное влияние на геометрические параметры цикла [1]. Так, при введении в бензольное кольцо нитрогруппы, обладающей сильным электроноакцепторным характером, наибольшие деформации испытывают эндоциклические углы, прежде всего угол при *unco*-атоме углерода, связанном с нитрогруппой, тогда как длины связей бензольного кольца меняются незначительно [2]. Показано, что молекула нитробензола плоская, а многие его *мета-* и *пара-*замещенные производные имеют конфигурацию, близкую к копланарной; угол поворота нитрогруппы обычно не превышает 20° [3, 4]. В случае *орто-*замещенных нитробензолов стерические взаимодействия соседних заместителей с нитрогруппой способствуют выводу последней из плоскости кольца, что изменяет физические характеристики и реакционную способность таких соединений [3].

В отличие от нитробензолов геометрия нитропиридинов изучена значительно меньше. Опубликованы данные главным образом для замещенных 3(5)-нитропиридинов, нитрогруппа в которых по структурным параметрам сравнима с нитрогруппой в производных бензола. Сведения о структуре 2- и 4-нитрозамещенных пиридинов весьма ограничены. По данным Кембриджского банка структурных данных [5], геометрия 4-нитропиридинов изучалась только на примере замещенных 4-нитропиридин-N-оксидов. О 2-нитропиридине (I) данных не имеется, а из соединений, содержащих 2-нитропиридиновый фрагмент, кристаллическая структура определена для 6-экзо-ацетокси-3-нитро-5,6,7,8-тетрагидро-5,8-метаноизохинолина (II) [6] и 2,7,8-тринитро-1,4-бензодиоксино [2,3-*b*]пиридина (III) [7]. Однако для последних следует учитывать возможные структурные искажения молекул под влиянием других структурных фрагментов.

В настоящей работе экспериментально определена кристаллическая структура 2-нитропиридина (I). Координаты его атомов приведены в табл. 1, длины связей — в табл. 2.

Молекула соединения I в кристалле плоская. В упаковке молекул имеются слабые (контакт О...Н короче 2,6 Å [9]) межмолекулярные водородные связи со следующими параметрами: O₍₁₎...H₍₆₎ 2,57 Å, угол O₍₁₎...H₍₆₎—C₍₆₎ 175°, O₍₂₎...H₍₃₎ 2,51 Å, угол O₍₂₎...H₍₃₎—C₍₃₎ 147°, O₍₂₎...H₍₅₎ 2,58 Å, угол O₍₂₎...H₍₅₎—C₍₅₎ 169°.

Строение молекулы 2-нитропиридина I по данным РСА (показаны 25% тепловые эллипсоиды)

Расчеты [10] геометрических параметров изомерных нитропиридинов, проведенные ранее методом ab initio в базисе 3-21G, показали, что нитрогруппа в положении 2 пиридинового кольца оказывает наибольшее влияние на длину связи N(1)-C(2) (a). При этом связь укорачивается до 1,305 Å по сравнению с расчетной величиной 1,331 Å для самого пиридина. Это подтверждают и данные PCA для соединений I и II, в которых длина указанной связи составляет соответственно 1,306(4) и 1,313(6), 1,308(6) Å (для двух независимых молекул соединения II в кристаллической ячейке), что заметно меньше, чем экспериментально определено для пиридина (1,337(1) Å [11]), и ниже среднестатистической величины (1,339(19) Å) для замещенных пиридинов [12]. Влияние нитрогруппы на другие связи менее значительно (табл. 2). Отметим, что экспериментально найденные длины связей С-С в соединении I оказались на 0,010...0,036 Å меньше, чем следовало из расчетов. Расхождение рассчитанных длин связей С-С в 3-нитропиридине [10] и найденных для тех же связей в (IV)3,5-динитропиридине (V) [15] укладывается в интервал 0,006...0,017 Å.

По данным РСА, длина связи С₍₂₎—NO₂ в молекуле 2-нитропиридина I 1,492(5) Å, что значительно больше рассчитанной (1,460 Å) и больше значения, рассчитанного (1,449 Å) [10] и экспериментально найденного (1,465(2) Å) [13] для связи С—NO₂ в нитробензоле (VI). В то же время эта величина сопоставима с измеренной длиной связи С₍₂₎—NO₂ в соединении II (1,499(6) и 1,502(6) Å. Заметим, что длина связи С—NO₂ в 1368 3,5-динитропиридине (1,468(3) Å [15]) близка длине связи С—NO₂ в нитробензоле и соответствует средней величине этой связи (1,468(14) Å) для нитроаренов [12], а ее длина в 4-нитропиридин-N-оксиде даже еще меньше (1,455(3) Å) [16].

Таблица 1

Атом	x/a	y/b	z /c	U _{ЭКВ}
0(1)	9573(3)	2500	8049(4)	103(1)
O(2)	10961 (2)	2500	6216(3)	79(1)
N(1)	9502(2)	2500	3643(4)	61(1)
N(2)	9940(3)	2500	6590(4)	63(1)
C(2)	9054(3)	2500	5186(4)	49(1)
C ₍₃₎	7906(3)	2500	5614(5)	68(1)
C(4)	7140(3)	2500	4258(7)	83(1)
C(5)	7543(4)	2500	2631 (6)	76(1)
C(6)	8718(4)	2500	2370(5)	75(1)

Координаты ($\times 10^4$) и эквивалентные изотропные тепловые факторы (Å 2 \times 10^3) неводородных атомов 2-нитропиридина I

По расчетам для *орто-*, *мета-* и *пара-*нитропиридинов длины обеих связей N—O (*h*,*i*) различаются между собой только для *орто-*изомера IV [10]. Однако экспериментально найденные величины этих связей для соединений I, II, V мало различимы (табл. 2).

Таблица 2

			-						
	Пири	цин	2-	-Нитропириди	пны		2	Нитро	бензол
Связь				I	п	IV* pacчer	V*~ P CA [15]	`	/1
расчет [10	расчет [10]	P CA [11]	расчет [10]	р са	P CA [6]* ³	[10]	1 011 [10]	расчет [10]	P CA [13]
a	1,331	1,337(1)	1,305	1,306(4)	1,311(6)	1,326	1,327(4)	1,378	1,387(2)
b	1,383	1,382(2)	1,374	1,358(5)	1,388(6)	1,379	1,373(4)	1,378	1,384(2)
с	1,384	1,376(7)	1,383	1,373(6)	1,374(6)	1,378	1,361(3)	1,381	1,385(2)
d	1,384	1,379(3)	1,384	1,348(7)	1,395(6)	1,380	1,370(3)	1,386	1,388(2)
е	1,383	1,379(7)	1,385	1,362(6)	1,385(6)	1 ,383	1,374(4)	1,386	1,387(2)
f	1,331	1,334(3)	1,329	1,337(5)	1,334(6)	1 ,333	1,330(3)	1,381	1,384(2)
g	-	—	1,460	1,492(5)	1,501(6)	1,440	1,468(3)	1,449	1,465(2)
h		—	1,228	1,210(4)	1,222(7)	1 ,243	1,212(4)	1,244	1,228(2)
i	_	_	1,253	1,206(4)	1,198(9)	1 ,24 4	1,220(3) 1,215(4)	1,244	1,223(2)

Длины связей (Å) в молекулах нитробензола и нитропроизводных пиридина

* 3-Нитропиридин. *2 3,5-Динитропиридин.

³ Среднее для двух независимых молекул в кристаллической решетке.

Таблица З

	Theman		2-Нитропиридины					Нитробензол	
Угол	1111	ридин		I	п	IV* Dacyer [10]	V* ² P CA [15]	VI	
	расчет [10]	P CA [11]	расчет[10]	P CA	P CA [6]* ³	F [1	<u>(</u>]	расчет [10]	P CA [13]
- 4	102	102.8(5)	124	107 4(2)	139.0(4)	101	100 3 (3)	100	102.0(1)
ao	125	123,8(3)	1,24	127,4(3)	128,0(4)	121	122,2(2)	122	122,9(1)
bc	119	118,6(1)	118	115,6(4)	114,0(4)	120	121,4(2)	119	118,0(1)
cd	119	118,8(2)	119	120,1(3)	120,6(4)	118	115,8(2)	120	120,3(1)
de	119	118,5(2)	118	118,6(3)	119,1(4)	118	121,1(2)	120	120,5(1)
ef	119	123,5(2)	119	123,7(3)	121,5(4)	123	122,2(2)	120	120,2(1)
af	119	116,6(2)	119	114,6(3)	116,9(4)	119	117,4(2)	122	118,1(1)
hi	—.		126	124,3(3)	125,4(5)	125	124,7(2) 124,9(3)	125	123,2(1)

Валентные углы (град) в молекулах нитробензола и нитропроизводных пиридина

* 3-Нитропирицин. *2 3.5 Пинитропирицин.

² 3,5-Динитропиридин. 3 Среднее для двух независимых молекул в кристаллической решетке.

Таблица 4

Соеди- нение	Угол	Увеличение угла, град.	Угол поворота NO ₂ , град.	Литература	
I	ab	3,6*	0,0		
П	ab	4,2*	2,4(3) и 9,3(2)* ²	[6]	
rv	bc(de)	2,6(2,8)*	1,5(7,0)	[15]	
v	ab	2,9* ³	2,18(5)	[13]	

Изменение эндоциклического угла при введении в кольцо нитрогруппы

*, Относительно соответствующего угла пиридинового кольца [11].

^{*2} Для двух независимых молекул в кристаллической решетк *3 Относительно внутреннего угла бензольного кольца.

относительно внутремнего угла освоельного кольца.

По данным РСА (табл. 3), угол О—N—O (< hi) в рассматриваемых соединениях I (124,3(3)°), II (125,6(4) и 125,1(5)° [6]), III (124,9(2) [7]), V (124,7(2)° и 124,9(3)° [15]) больше, чем в нитробензоле VI (123,2(1)° [13]). Однако, если в ряду замещенных нитробензолов отмечается удлинение связи С—NO₂ при увеличении угла О—N—O [3], то в ряду рассматриваемых нитропиридинов I—III, V такой зависимости не наблюдается.

Нами было прослежено изменение эндоциклического угла (< ab) в пиридиновом кольце при ипсо-атоме углерода как наиболее чувствительного параметра, характеризующего эффект электроноакцепторного заместителя в молекулах нитроаренов [14]. В 2-нитропиридине I угол N(1)-C(2)-C(3) увеличен до 127,4(3)° по сравнению с тем же углом в пиридине (123,8(5)° [11]), а также относительно значения 124(1)°, полученного нами путем усреднения соответствующих углов для серии из 17 2-аминозамещенных пиридинов по данным работы [5]. Аналогичное увеличение угла N(1)—C(2)—C(3) было отмечено ранее для соединений II (128,3(4) и 127,6(4)° [6]) и III (125,6(2)° [7]). В табл. 4 приведены величины, характеризующие увеличение эндоциклического угла при ипсо-атоме углерода в молекулах 2-нитропиридинов I, II и 3,5- динитропиридина (V) по сравнению с пиридином, а также угла в молекулах нитробензола (VI) по сравнению с бензолом. Можно отметить различие во влиянии нитрогруппы на величину эндоциклического угла в зависимости от ее положения в пиридиновом кольце, при этом наибольший эффект проявляется при введении нитрогруппы в положение 2 пиридинового кольца.

Приведенные данные свидетельствуют о перераспределении заселенностей электронов sp^2 -гибридных орбиталей атома C₍₂₎ пиридинового кольца, участвующих в образовании связей N₍₁₎—C₍₂₎ и C₍₂₎—NO₂ в молекуле 2-нитропиридина, таким образом, что на эндоциклической связи N₍₁₎—C₍₂₎ увеличивается доля *s*-электронов, а на экзоциклической связи C₍₂₎—NO₂ увеличивается доля *p*-электронов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеноструктурное исследование 2-нитропиридина І. Кристаллы соединения І получены кристаллизацией реактивного препарата из этанола, $T_{IIЛ}$ 71...72 °С [8]. Рентгеноструктурный эксперимент проведен на дифрактометре Syntex P21 (СиК α -излучение с графитовым монохроматором, $2\theta/\theta$ -сканирование в области $2\theta < 110^{\circ}$). Кристалл I прозрачный, светло-желтого цвета, летучий, размером 0,5 × 0,4 × 0,3 мм был помещен в полиэтиленовый капилляр. Ячейка ромбическая, пространственная группа Pnma, a = 11,465 (2), b = 6,388 (1), c = 7,782 (1) Å, V = 569,9(2) Å³, Z = 4. С₅H4N₂O₂. $d_{\text{ВЫЧ}} = 1,446 \text{ г/см}^3$, $\mu = 0,99 \text{ мм}^{-1}$. Измерены интенсивности 404 независимых отражений, для которых введены поправки на падение до 80,4% интенсивностей контрольных отражений и на поглощение по программе DIFABS (коррекция 0,13...1,30). Расшифровка структуры проведена прямым методом по программе SHELXL-86, уточнение — полноматричным методом наименьших квадратов по программе SHELXL-93 в анизотропном приближении по всем F^2 до $wR_2 = 0,1314$, S = 1,067 (R = 0,0443 для 334 $F > 4\sigma$). Положения атомов водорода найдены из разностного синтеза, однако при уточнении координаты рассчитывались геометрически с фиксированными U_{iso} .

Авторы благодарны Международному научному фонду за финансовую поддержку (грант NQN300) и Российскому фонду фундаментальных исследований за помощь в оплате лицензии на пользование Кембриджским банком структурных данных (проект 96-07-89187).

СПИСОК ЛИТЕРАТУРЫ

- Domenicano A., Vaciago A., Coulson C. A. // Acta crystallogr. Ser. B. 1975. Vol. 31. P. 1630.
- 2. Norrestam R., Schepper L. // Acta chem. Scand. Ser. A. 1981. Vol. 35. P. 91.
- 3. Садова Н. И., Вилков Л. В. // Успехи химии. 1982. Т. 51. С. 153.
- 4. Звонкова З. В. // Успехи химии. 1977. Т. 46. С. 907.
- 5. Allen F. H., Kennard O. // Chemical Design Automation News. 1993. Vol. 8. P. 31.
- 6. Tanida H., Irie T., Wakisaka Y. // J. Heterocycl. Chem. 1986. Vol. 23. P. 177.
- Piorko A., Christie S., Crook M., Sampson P. // J. Heterocycl. Chem. 1994. Vol. 31. -P. 717.
- 8. Kirpal A., Bohm W. // Ber. 1931. Bd 64. S. 767.
- 9. Китайгородский А. И. Молекулярные кристаллы. М.: Наука, 1971. 424 с.
- 10. Murray J. S., Seminario J. M., Politzer P. // J. Mol. Struct. 1989. Vol. 187. P. 95.
- 11. Mootz D., Wussow Y. G. // J. Chem. Phys. 1981. Vol. 75. P. 1517.
- 12. Allen F. H., Kennard O., Watson D. J., Brammer L., Orpen A. G., Taylor R. // J. Chem. Soc. Perkin Trans. I. 1987. N 12. P. S31.
- 13. Boese R., Becuser D. B., Nussbaumev M., Krygowski T. M. // Struct. Chem. 1992. Vol. 3. P. 363.
- 14. Domenicano A., Murray-Rust P. // Tetrah. Lett. 1979. N 24. P. 2283.
- 15. Destro R., Pilate T., Simonetta M. // Acta crystallogr. Ser. B. 1974. Vol. 30. P. 2071.
- 16. Coppens P., Lehmann M. S. // Acta crystallogr. Ser. B. 1976. Vol. 32. P. 1777.

Новосибирский институт органической химии СО РАН, Новосибирск 630090 e-mail: gatilov@nioch.nsc.ru

Поступило в редакцию 09.12.97