О. В. Федотова, Е. В. Липатова, В. К. Бельский

СТРУКТУРНЫЕ ИССЛЕДОВАНИЯ В РЯДУ СПИРО(ТИА)ХРОМАНОВ

Проведена сравнительная оценка реакционной способности карбонилсодержащих спирогидрохроманов при их взаимодействии с сероводородом в условиях кислотного катализа. На основании результатов рентгеноструктурного анализа, данных спектров ЯМР ¹³С и квантово-химических расчетов рассмотрены особенности структуры одного из полученных конденсированных спиро(тиа)хроманов.

При взаимодействии с сероводородом и кислотами карбонилсодержащих спирогидрохроманов, содержащих в положении 2 гетероцикла остатки циклогексана (I) или тетрагидронафталина (II), обнаруживаются некоторые особенности, обусловленные спецификой строения этих соединений [1, 2].

Действие сероводорода и минеральных кислот или эфирата трехфтористого бора на спиросоединение I при комнатной температуре может сопровождаться как раскрытием дигидрохроманового цикла, с образованием 2-окса-16-тиатетрацикло [7.6.1.0^{3,8}.0^{1,11}] гексадецена-3 (III), так и нуклеофильной атакой сероводорода по карбонильной группе с последующей гетероциклизацией в 16-окса-2-тиатетрацикло [7.6.1.0^{3,8}.0^{1,11}]гексадеканол- 3(IV) [2]. В аналогичных условиях из соединения II получается продукт, для которого предложено строение 2-окса-16-тиа-4,5;14,15-дибензотетрацикло [7.6.1.03,8.01,11] гексадекантиола-3(V) [1].

Продолжая систематическое изучение реакционной способности конденсированных спирогидрохроманов, мы обнаружили, что использование трифторуксусной кислоты и повышение температуры реакционной смеси способствуют рециклизации спирана I и нуклеофильному замещению его группы C=O под действием сероводорода. Так, при 60 °C взаимодействие соединения I с H₂S и апротонным реагентом — эфиратом трехфтористого бора, выполняющим функции кислоты Льюиса, завершается образованием 3,4,5,6,7,8-гексагидроспиро [тиохромен-2,1'-цикогексан]тиона-2' (VI) с выходом 74%. В ИК спектре последнего не наблюдается полоса валентных колебаний группы C=O (1720 см⁻¹), присутствующая в спектре субстрата I, и появляются полосы поглощения групп C=S (~1375 см⁻¹) и C—S—C (~730 см⁻¹).

Привлечение данных квантово-химических расчетов (метод ССП МО ЛКАО в приближении CNDO/2), позволяющих сравнить значения эффективных зарядов на атомах С(10) (δ -0,057 и 0,041) и С(2') (δ +0,225 и 0,215) в спирогидрохроманах I и II, показывает, что протонирование π -связи спирана I должно протекать легче, чем его бензаннелированного аналога II, приводя к раскрытию гетероцикла с последующей циклизацией в спирогидротиохроманы VII и VI. На основании близости величин эффективных зарядов у спирановых атомов углерода в субстратах I и II (δ + 0,149 и 0,144 соответственно) можно полагать, что для последнего рециклизация также возможна, но в более жестких условиях, в связи с чем требуется дополнительное уточнение структуры продукта, полученного ранее действием на спирогидрохроман II сероводорода и Et₂O · BF₃ при 20 °C, которому было приписано строение тиола V.

Действительно, рассматривая сигналы ключевых атомов углерода спектра ЯМР ¹³С, определяющих строение этого продукта [1], и сравнивая их с сигналами соединений III, IV, VIII [2], мы нашли, что сигнал спиранового атома С₍₂₎ равновероятно может быть отнесен к сигналу углерода, связанного с атомом кислорода или серы гетероциклического фрагмента (см. табл. 1, соединение V). Для окончательного доказательства структуры рассматриваемого соединения был проведен его рентгеноструктурный анализ, показавший, что центральный гетероцикл в молекуле является гидропирановым (см. рисунок).

Установлено, что кольца* А и F плоские в пределах 0,02 Å, угол между плоскостями колец 92,8°. В кольце В атомы C(5), C(6), C(8), C(21), C(22) копланарны в пределах 0,04 Å; атом C(7) выходит из этой плоскости на 0,65 Å; атом S(2) располагается в аксиальной позиции. Аналогичную конформацию имеет кольцо Е: атомы C(12), C(13), C(17), C(19), C(20) практически копланарны (максимальное отклонение 0,07 Å), атом C(11) выходит из плоскости на 0,68 Å. Пятичленный цикл C имеет конформацию, близкую к конверту, причем гетероатом — кислород — выходит на 0,65 Å из средней плоскости остальных атомов. Тетрагидропирановое кольцо D имеет идеальную конформацию кресла, где атомы C(8) и C(11) выходят в разные стороны из плоскости остальных четырех атомов на 0,68 и 0,65 Å соответственно.

Таким образом, согласно данным РСА, ЯМР ¹³С и квантово-химических расчетов, нами показано, что продукт взаимодействия спирогидрохромана II с сероводородом и Et₂O · BF₃ при 20 °C имеет строение 16-окса-2-тиа-4,5,14,15-дибензотетрацикло[7.6.1.0^{3,8}.0^{1,11}] гексадекантиола-3 (IX).

Использованная при описании структуры нумерация атомов отличается от номенклатурной.

Таблица 1

.

Соеди- нение	Химические сдвиги, δ , м. д.										
	C(1)	C(2)	C(3)	C(4)	C(5)	C ₍₆₎	C ₍₇₎	C(8)	C ₍₉₎	C(10)	
II		77,08	32,71	23,07	25,55	27,91			142,94	107,09	
III IV	97,64 98,95		139,45 84,98	112,72 34,54	25,00 23,26	25,34 25,27	25,84 33,12	47,97 82,89	34,04 34,25	25,15	
V	96,65	50 72	84,14)	28,30	26,61	67,40	35,12	24,19	
¥ III		50,72	54,72	27,94	20,07	27,97			130,18	119,57	
Соеди- нение	C(11)	C ₍₁₂₎	C(13)	C(14)	C ₍₁₅₎	C(2')	C(3')	C(4')	C(5')	C(6')	
п		·	·		·	191,36	·	· · · · · ·	27,39	26,36	
III	42,35	37,62	20,81	25,27	30,05	·	·	·		·	
IV	43,51	38,46	18,27	25,34	30,66	·	·		·		
v	40,90	25,12	30,13	·	·		·	·	·	·	

Данные спектров ЯМР ¹³С соединений II, III—V, VIII (б, м. д.)

Лиины	связей	ക	Ħ	валентные	VC II II	(w)	лля	молекулы	V
длины	связен	<i>(u)</i>	<u><u>r</u></u>	Балентные	AT THEFT	(ω)	для	MONCRYMON	

Связь	d, Å	Угол	ω , град.	
	1.005(0)	G . G . G	01.0(4)	
S(1)—C(21)	1,805(9)	$C_{(21)} - S_{(1)} - C_{(20)}$	107 9(4)	
$S_{(1)} - C_{(20)}$	1,867(9)	$C_{(20)} - U - C_{(8)}$	120 0(10)	
$S_{(2)} - C_{(21)}$	1,841(8)	$C_{(2)} - C_{(1)} - C_{(22)}$	120,0(10)	
0—C ₍₂₀₎	1,427(10)	$C_{(3)} - C_{(2)} - C_{(1)}$	120,7(10)	
0—C ₍₈₎	1,442(9)	$C_{(2)} - C_{(3)} - C_{(4)}$	120,3(11)	
$C_{(1)} - C_{(2)}$	1,380(2)	$C_{(5)} - C_{(4)} - C_{(3)}$	121,9(11)	
$C_{(1)} - C_{(22)}$	1,408(13)	$C_{(4)} - C_{(5)} - C_{(22)}$	117,5(10)	
$C_{(2)} - C_{(3)}$	1,340(2)	$C_{(4)} - C_{(5)} - C_{(6)}$	121,0(12)	
$C_{(3)} - C_{(4)}$	1,400(2)	$C_{(22)} - C_{(5)} - C_{(6)}$	120,8(11)	
$C_{(4)} - C_{(5)}$	1,380(2)	$C_{(5)} - C_{(6)} - C_{(7)}$	112,9(10)	
$C_{(5)}-C_{(22)}$	1,419(14)	$C_{(6)} - C_{(7)} - C_{(8)}$	111,8(8)	
$C_{(5)} - C_{(6)}$	1,468(14)	O-C ₍₈₎ -C ₍₉₎	109,0(7)	
$C_{(6)} - C_{(7)}$	1,520(2)	$O - C_{(8)} - C_{(7)}$	107,7(7)	
C ₍₇₎ —C ₍₈₎	1,518(13)	$C_{(9)} - C_{(8)} - C_{(7)}$	109,5(8)	
C(8)—C(9)	1,524(13)	$O - C_{(8)} - C_{(21)}$	103,4(7)	
C(8)—C(21)	1,561(12)	$C_{(9)} - C_{(8)} - C_{(21)}$	115,1(8)	
C(9)—C(10)	1,550(2)	$C_{(7)} - C_{(8)} - C_{(21)}$	1111,6(8)	
C(10)-C(11)	1,532(13)	$C_{(8)}-C_{(9)}-C_{(10)}$	113,7(7)	
C(11)C(20)	1,516(11)	$C_{(11)} - C_{(10)} - C_{(9)}$	110,1(8)	
$C_{(11)}-C_{(12)}$	1,535(14)	$C_{(20)}-C_{(11)}-C_{(10)}$	109,6(7)	
C(12)C(13)	1,487(13)	$C_{(20)}-C_{(11)}-C_{(12)}$	109,0(8)	
C(13)-C(14)	1,530(2)	$C_{(10)} - C_{(11)} - C_{(12)}$	113,8(8)	
C(14)—C(19)	1,387(12)	$C_{(13)}-C_{(12)}-C_{(11)}$	112,2(8)	
C(14)-C(15)	1,402(13)	$C_{(12)} - C_{(13)} - C_{(14)}$	112,9(8)	
C(15)-C(16)	1,410(2)	$C_{(19)}-C_{(14)}-C_{(15)}$	118,3(9)	
C(16)-C(17)	1,341(13)	$C_{(19)}-C_{(14)}-C_{(13)}$	123,1(9)	
C(17)C(18)	1,367(11)	$C_{(15)}-C_{(14)}-C_{(13)}$	118,6(9)	
C(18)-C(19)	1,398(13)	$C_{(14)} - C_{(15)} - C_{(16)}$	120,4(8)	
C(19)—C(20)	1,507(11)	$C_{(17)}-C_{(16)}-C_{(15)}$	118,5(10)	
$C_{(21)} - C_{(22)}$	1,540(13)	$C_{(16)} - C_{(17)} - C_{(18)}$	122,8(9)	
		$C_{(17)}-C_{(18)}-C_{(19)}$	119,3(8)	
	·	$C_{(14)}-C_{(19)}-C_{(18)}$	120,4(8)	
		C(14)-C(19)-C(20)	120,2(9)	
		$C_{(18)}-C_{(19)}-C_{(20)}$	119,4(8)	
		O-C(20)-C(19)	108,2(7)	
		O-C(20)-C(11)	111,3(7)	
		C(19)-C(20)-C(11)	112,4(7)	
		$O - C_{(20)} - S_{(1)}$	103,1(5)	
		$C_{(19)} - C_{(20)} - S_{(1)}$	110,3(6)	
	-	$C_{(11)}-C_{(20)}-S_{(1)}$	111,1(6)	
		$C_{(22)}-C_{(21)}-C_{(8)}$	112,7(8)	
		$C_{(22)}-C_{(21)}-S_{(1)}$	109,3(6)	
		$C_{(8)} - C_{(21)} - S_{(1)}$	105,0(5)	
	5	$C_{(22)}-C_{(21)}-S_{(2)}$	106,5(6)	
		$C_{(8)} - C_{(21)} - S_{(2)}$	111,5(6)	
		$S_{(1)}-C_{(21)}-S_{(2)}$	112,0(5)	
		$C_{(1)} - C_{(2)} - C_{(5)}$	119,5(10)	
		$C_{(1)} - C_{(22)} - C_{(21)}$	117,3(10)	
		$C_{(1)} = C_{(22)} = C_{(21)}$	123,2(9)	
	1	$(J) (\Delta L) (\Delta L)$		

Таблица З

Атом	x	У	2	U(eq)
S(1)	4677 (3)	4189(3)	6181(1)	55(1)
S(2)	4695(3)	5507(3)	7238(1)	81(1)
0	2925(7)	6568(7)	5887(2)	53(2)
C(1)	2232(14)	2790(14)	6962(4)	73(3)
C(2)	909(19)	1879(14)	7073(4)	85(4)
C(3)	-544(18)	2479(19)	7005(4)	93(4)
C(4)	-742(13)	4053(21)	6831 (4)	88(4)
C(5)	525(13)	5033(14)	6725(3)	69(3)
C(6)	308(14)	6682(14)	6540(4)	79(3)
C(7)	1762(15)	7734(12)	6618(4)	77(3)
C(8)	3241(11)	6965(11)	6403(3)	56(3)
C(9)	4603(15)	8161(12)	6425(3)	79(3)
C(10)	6110(13)	7584(13)	6147(4)	80(3)
C(11)	5668(11)	6877(11)	5635(4)	62(3)
C(12)	7024(12)	5975(14)	5377(4)	79(3)
C(13)	6601(12)	5450(15)	4861 (4)	90(4)
C(14)	4909(12)	4817(10)	4822(3)	60(3)
C(15)	4447(15)	4031(12)	4381 (3)	72(3)
C(16)	2865(17)	3522(13)	4316(4)	81 (3)
C(17)	1862(12)	3667(11)	4703(4)	64(3)
C(18)	2271(12)	4397(11)	5143(3)	57(3)
C(19)	3815(12)	4959(10)	5207(3)	50(2)
C(20)	4274(11)	5747(11)	5694(3)	53(2)
C(21)	3581(11)	5295(11)	6649(3)	51 (3)
C(22)	2060(12)	4369(12)	6779(3)	54(3)

Координаты неводородных атомов ($\times 10^4$) и их эквивалентные изотропные факторы ($\times 10^3$) для молекулы V

Общий вид и нумерация атомов молекулы соединения V

Уточненные спектральные характеристики могут служить для идентификации новых соединений рассматриваемых рядов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

ИК спектр получен на спектрометре UR-20 в таблетках КВг и вазелиновом масле. Спектры ЯМР ¹³С записаны на Фурье-спектрометре Varian FT-80A при 30 °С в CDCl₃.

Рентгеноструктурное исследование. Кристаллы соединения V (C₂₂H₂₂OS₂) ромбические, $a = 8,463(2), b = 8,313(2), c = 26,676(5) Å, \rho_{выч} = 1,297 г/см³, V = 1876,7 Å, Z = 4, пр. группа$ $P2₁2₁2₁. Параметры ячейки и интенсивности 846 независимых отражений с <math>I > 2\sigma$ (I) измерены на дифрактометре Syntex P-1 (МоК α -излучение, $\theta/2\theta$ -сканирование). Структура VII расшифрована по программе SHELXTL-81 и SHELXTL-93 [3, 4] и уточнена методом наименыших квадратов в анизотропном приближении. Координаты атомов водорода найдены из разностного синтеза, их позиционные и тепловые параметры включены в уточнение. Окончательные значения факторов расходимости $R = 0,442, R_W = 0,1104$.

3,4,5,6,7,8-Гексагидроспиро[тиохромен-2,1'-циклогексан]тион-2' (VI). Насыщают сероводородом в течение 2 ч 30 мл уксусной кислоты, добавляют 2,2 г (0,01 моль) соединения I, 4,14 г (0,03 моль) эфирата трехфтористого бора и продолжают подавать сероводород 3 ч при температуре ~60 °C. Реакционную смесь обрабатывают 50 мл воды, экстрагируют эфиром (2 × 30 мл). Экстракт промывают водой, раствором карбоната натрия, сушат сульфатом магния. Растворитель упаривают, получают 1,85 г (74%) соединения IV. $T_{\Pi \pi}$ 128...129 °C (гексан), R_f 0,88 (пластинки Silufol UV-254, элюент гексан—эфир—ацетон, 4:1:1). Найдено, %: С 66,70; Н 7,25; S 24,82. С14H20S2. Вычислено, %: С 66,66; Н 7,94; S 25,39.

СПИСОК ЛИТЕРАТУРЫ

- 1. Капитонова Е. В., Федотова О. В., Чушков А. А., Сорокин Н. Н., Харченко В. Г. // ХГС. — 1994. — № 7. — С. 898.
- Федотова О. В., Липатова Е. В., Капитонова Е. В., Решетов П. В., Плотников О. П., Харченко В. Г. // ХГС. — 1996. — № 10. — С. 1320.
- 3. Sheldrick G. M. User Manual. Rev/3/1. Nicolet XRD Corp. USA, 1981.
- 4. Sheldrick G. M. SHELXTL-93. Programm for crystal structure refinement. Univ. of Gottingen, FRG, 1993.

Саратовский государственный университет им. Н. Г. Чернышевского, Саратов 410026, Россия e-mail: shtykov@scnit.saratov.su Поступило в редакцию 18.12.97